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Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  
- Novel architectures, applications and design techniques using FPGAs

› Research: reconfigurable computing, radio frequency machine learning
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Motivation

› CPUs/GPUs designed to support 
datatypes of fixed wordlength
- Double, float, long, short, char

› FPGA and ASICs can provide 
custom datapaths of arbitrary 
wordlength
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Tradeoff between performance and precision

On-chip
weights
~70 M

~10 M

~5 M

~2 M

Precision

1b

8b

16b

32b

30x

Peak TOPS 

~66

~4

~1

~0.3

200x

Slide: Xilinx

› So how can we utilize low-precision for inference and training?



1
Inference



Background: Radio Frequency Machine Learning

› Understanding of radio signals in low SNR
difficult problem

› Radio data is high speed and low latency 
often required (ML will never be fast 
enough)

› FPGAs offer possibility of integrating radio, 
signal processing and ML on the same 
chip

› Study automatic modulation classification 
(AMC): detect modulation type from raw IQ 
samples
- Other problems similar



Background: Convolutional Neural Network
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O’Shea et al, “Over-the-Air Deep Learning Based Radio Signal Classification” 
• ResNet on the raw IQ data gives SOA results

Slide: Xilinx



Background: Binarized Neural Networks
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FINN: A framework for fast, scalable binarized neural network inference,” 
FPGA’17

But accuracy not good! How can we improve accuracy and performance?

› Much smaller datapaths
- Multiply becomes XNOR, addition becomes popcount

- No DSPs needed, everything in LUTs

› Much smaller weights
- Large networks can fit entirely into on-chip memory (OCM)



Ternary Inference Implementation

› To achieve highest speed: parallel implementation (but FPGA resources 
insufficient for contemporary CNN model)

› How can we push limits of performance on an FPGA?
› Exploit unstructured sparsity and the following techniques:

1. Massively parallel ternary NN implemented as pruned adder trees

2. Common subexpression merging 

3. 16-bit bit serial arithmetic to minimize accuracy loss with low area

4. Sparsity control (not discussed)
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Common Subexpression Elimination

› Weights are ternary
- Reduces convolution to 

constructing adder tree

- Subexpression merged to 
reduce implementation
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Throughput matching with serial adders

› Activations are 16-bit
- Not all layers have same 

throughput

- Use digit serial to make more 
compact

- 4-bit digit serial has 1/4 area

- 1-bit bit serial has 1/16 area
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Accuracy on RadioML 2018.01A dataset



Incremental Precision

› Use incremental precision 
activations instead of 16 bit 
everywhere (to improve 
accuracy)
- Use bit serial adders 

everywhere

- Adjust precision to match the 
throughput

- Same area as binary 
activations

- Almost 5% accuracy gain 
over binary activations

Model TW-64 TW-96 TW-BA-
128

TW-
INCRA-
128

CLBs 28k 
(53.5%) 

47k 
(89.3%) 

43k 
(80.7%) 

42k 
(80.2%) 

LUTs 124k 
(29.1%) 

232k 
(54.7%) 

234k 
(55.1%) 

211k 
(49.6%) 

FFs 217k 
(25.5%) 

369k 
(43.4%) 

333k 
(39.2%) 

324k 
(38.1%) 

BRAMs
524 
(48.5%) 

524 
(48.5%) 

523 
(48.4%) 

512.2 
(48.3%) 

DSPs 1496 
(35%) 

1207 
(28.3%) 

1408 
(33.0%) 

1407 
(32.9%) 

Accr 78.7 81.1 75.9 80.2



Implementation

› System implemented on ZCU111 
RFSoC

› https://github.com/da-
steve101/radio_modulation

› Open Source Ternary Weight 
Network (TWN) Verilog generator

› https://github.com/da-
steve101/twn_generator
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System Implementation

14

› Automatic Modulation classifier: 488K class/s, 8us latency 
using TW-INCRA-128 



Accuracy
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TW-INCRA-128



Accuracy vs FPS/LE on CIFAR10 (not AMC)
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Summary

› Presented an optimized network for AMC which
- Applies common subexpression elimination and digit serial arithmetic to a fully 

unrolled ternary network

- Integrates the entire design on a single chip for a low-latency batch size 1 
implementation

› These serve to achieve a level of performance higher than previously 
reported

› Further research needed to achieve state of the art accuracy with lower
precision
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Training



Motivation

§ Deep learning has even higher efficiency problem than 
inference!
§ E.g. Billions of parameters, 500+ GPUs

§ Specialized number representations have been proposed
§ Alternative to FP32/FP16
§ 4-8 bits for weights, activations and gradients
§ Cheaper and faster training systems
§ Datacenter to edge? 



Minifloat

§ Narrow floating-point representation
§ Ours range between 4-8 bits
§ NaN/Infinity NOT supported

mantissaexponentsign
IEEE754 (FP32)

mes
Minifloat

§ Pros:
§ Memory (fewer bits)
§ Smaller hardware

§ Cons:
§ Dynamic Range (exponent bits)

For training >= 8 bits



Block Minifloat

§ Share exponent bias across blocks of N minifloat numbers

§ Dynamic range (with fewer bits)
§ Denser dot-products in hardware



Block Minifloat

§ Share exponent bias across blocks of N minifloat numbers

§ Dynamic range (with fewer bits)
§ Denser dot-products in hardware

§ Align wtih max exponent
§ Underflow is tolerated 



Block Minifloat

§ Block Minifloats – share exponent bias across blocks of N 
minifloat numbers
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§ Kulisch Accumulator: Fixed point accumulator wide enough 
to compute error-free sum of floating-point products

§ Integer-like hardware complexity for exponent <=4 bits

Fused Multiply-Add (FMA) with 
Kulisch Accumulation



Implementation Details

§ Three techniques to reduce data loss:
§ Gradual underflow, Block Design, Hybrid Formats 

§ Simulate specialized BM hardware on GPU (with FP32)
§ Apply Block Minifloat to all weights, acts, grads

§ Our Spectrum of Block Minifloats



End-to-end Training with BM

All off-chip memory transfers are low precision BM tensors
BM alignment, weight updates, quantisation, batchnorm and ReLU are in on-chip scalar FP32 units

Register file stores a block of weight gradients.
N=48 is a good choice 

1x floating point operation every N MACs 



Experiments and Results

§ Training experiments:
§ Datasets: (ImageNet, VOC, PTB, 

IWSLT)
§ Models: (ResNet, LSTM, TF base, 

SSD-Lite, EfficientNet)

§ RTL synthesis:
§ Fused multiply-add (FMA)
§ 4x4 systolic matrix mutlipliers



Experiments and Results

§ Training experiments:
§ Datasets: (ImageNet, VOC, PTB, 

IWSLT)
§ Models: (ResNet, LSTM, TF base, 

SSD-Lite, EfficientNet)

§ RTL synthesis:
§ Fused multiply-add (FMA)
§ 4x4 systolic matrix mutlipliers

Training Accuracy 
with BM ≈ FP32

BM units are:
- Smaller
- Consume less 

Power
- Similar in area

and power to FP8
with FP32 acc



Model: ResNet-18
Dataset: ImageNet

Imagenet



§ Block Minifloat sustains high training accuracy with lower 
precision than previous techniques

§ Faster Training is possible:
§ Fewer bits – increases performance in memory-bound
§ Narrow exponents – yield denser arithmetic units in 

compute-bound

§ This work may be particularly advantageous in moving 
training into Edge devices

§ github.com/sfox14/block_minifloat

Summary



Conclusion

› It is well known that DNN hardware performance can be significantly 
improved through precision optimisations

› We have demonstrated feasibility of
- Fully parallel, ternary single chip DNN implementations using adder trees, 

throughput matching and incremental activations

- Training of wide variety of DNNs with single 8-bit precision format

› More research needed to make this technology useful for mainstream 
applications
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