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Computer Engineering Laboratory

> Focuses on how to use parallelism to solve demanding problems
- Novel architectures, applications and design techniques using FPGAs

» Research: reconfigurable computing, radio frequency machine learning
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Motivation

Tradeoff between performance and precision
» CPUs/GPUs designed to support Peak TOPS | On-chip
datatypes of fixed wordlength m-

1b ~66 ~70 M
- Double, float, long, short, char 8 4 —
» FPGA and ASICs can provide 16b ~1 ~5 M
custom datapaths of arbitrary 32b ~0.3 ~2 M
wordlength

Slide: Xilinx

» So how can we utilize low-precision for inference and training?




Inference

THE UNIVERSITY OF

SYDNEY




» Understanding of radio signals in low SNR
difficult problem

» Radio data is high speed and low latency
often required (ML will never be fast
enough)

» FPGAs offer possibility of integrating radio,
signal processing and ML on the same
chip

» Study automatic modulation classification
(AMC): detect modulation type from raw IQ
samples

- Other problems similar

Binary code PRN

VAVAVAMAMAMAA

Carier wave

BPSK modulated signal
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: Background: Convolutional Neural Network

tens of megabytes of floating point weight data Slide: Xilinx
(from training)

¥
\\\ ‘\13 \13 \\‘ demae ome dense
\ | \ \ \
iz - N —L
>t b M T kﬂ[f} «cat»
\ N-"1 '\
\‘ 384 \ 256 1000
Max
pooling 4096 4096

classified

billions of floating point multiply-accumulate ops

(several joules of energy)

O’Shea et al, “Over-the-Air Deep Learning Based Radio Signal Classification”
* ResNet on the raw 1Q data gives SOA results
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Background: Binarized Neural Networks

FINN: A framework for fast, scalable binarized neural network inference,”
FPGA17

» Much smaller datapaths

- Multiply becomes XNOR, addition becomes popcount
- No DSPs needed, everything in LUTs

» Much smaller weights

- Large networks can fit entirely into on-chip memory (OCM)

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

But accuracy not good! How can we improve accuracy and performance?
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Ternary Inference Implementation

» To achieve highest speed: parallel implementation (but FPGA resources
insufficient for contemporary CNN model)

» How can we push limits of performance on an FPGA?
» Exploit unstructured sparsity and the following techniques:

1. Massively parallel ternary NN implemented as pruned adder trees
2. Common subexpression merging
3. 16-bit bit serial arithmetic to minimize accuracy loss with low area

4. Sparsity control (not discussed)
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Common Subexpression Elimination

» Weights are ternary Computingzg=c+e+f-(a+h)andzy=c+d-e-f
- Reduces convolution to a X (—1) b X 0 c X1
constructing adder tree d %0 e % 1 F 1
- Subexpression merged to g %0 hx(-1) ix0
reduce implementation
a C\ d e\ i g h i
Reg c-a) (Reg c+d) (Reg e+f Reg(h)

'Regca' !Regc+def: !Rege+fh'
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: Throughput matching with serial adders

' Input Image '

32x32x3 | 3 values every cycle

» Activations are 16-bit ‘
(Convl/Z (16-bit adders))
- Not all layers have same 39x32x64 | 64 values every cycle
throughput (M Pocl 1)

16x16x64 | 64 values every 4 cycles

- Use digit serial to make more

com p a Ct (Conv3/ 4 (é;:bit adders))

16x16x128 | 128 values every 4 cycles

N

- 4-bit digit serial has 1/4 area (Max Pool 2)

- 1-bit bit serial has 1/16 area BxBx128 | 128 values every 16 cycles

(ConvS/ 6 (1-bit adders))

8x8x256 | 256 values every 16 cycles

N

4x4x256 | 256 values every 64 cycles

4096 | 4 values every cycle

' Ou‘t’put l

Reset

10
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Accuracy on RadioML 2018.01A dataset

i) ResNet33 VGG10-128 wefime= TW-128 s TW-BA-128

i /GG10-64 —'— TW-64 s TW-BA-64-512 TW-INCRA-128

Accuracy (%)

20

-20 -10 0 10 20 30
Signal-to—Noise Ratio (dB)
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Incremental Precision

» Use incremental precision
activations instead of 16 bit
everywhere (to improve
accuracy)

- Use bit serial adders
everywhere

- Adjust precision to match the
throughput

- Same area as binary
activations

- Almost 5% accuracy gain
over binary activations

Model

CLBs

LUTs

FFs

BRAMs

DSPs

Accr

TW-64

28k
(53.5%)

124k
(29.1%)

217k
(25.5%)

524
(48.5%)

1496
(35%)

78.7

TW-96

47K
(89.3%)

232k
(54.7%)

369Kk
(43.4%)

524
(48.5%)

1207
(28.3%)

81.1

TW-BA-
128

43k
(80.7%)

234k
(55.1%)

333k
(39.2%)

523
(48.4%)

1408
(33.0%)

75.9

TW-
INCRA-
128

42k
(80.2%)

211k
(49.6%)

324k
(38.1%)

512.2
(48.3%)

1407
(32.9%)

80.2
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Implementation

» System implemented on ZCU111

RFESoC .. Tensorflow
Model, dataset, o
> https://github.com/da-  optmzs; quenze[——(___Tors ) |
steve101/radio_modulation e '
» Open Source Ternary Weight TWN Generator' | (F o) |
. Python package !
Network (TWN) Verilog generator v

; Trained + unrolled ternary
: ( ALl il ) weights network

» https://qgithub.com/da-

.............................................................

steve101/twn generator S T ;
; RTL Netlist PS-PL / Radio interface | !
(Verilog) (Scheduler)

~,

(Synthesis / Place & Route)

Yy Vivado 2018.3
ZCU111 Bitstream

13
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System Implementation

» Automatic Modulation classifier: 488K class/s, 8us latency
using TW-INCRA-128

DRAM |«——| CPU

DMA . .
(AXI-Stream /P Configuration
(AXI-Lite)
)) > b— CRF Dartta —<—> Scheduler
ADC onverrer I/Q samples

2 x {l/Q samples} Predictions
(32b) (240b)

Convolutional Neural
Network

14
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Accuracy

D 1 @ NVIDIARTX 2080 Ti
Batch size Platform
® 256 A Xilinx ZCU111
8 TW-INCRA-128
& . TW-96
S 488}------- et S s
c TW-64
-_.C_,—D A1 00 TW-96 VGG10
S % TW.—64 . ‘
22 10 o
D ¥ ResNet33
% ~—"
O 1 ~ TW-96 VGG10
Ci:'é 0.1 e, ResNet33
75 80 85 90 95 100

Test Accuracy (%)

15
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Accuracy vs FPS/LE on CIFAR10 (not AMC)

92
This work
o
90
[Fraser et al. 2017]
ap [Li et al. 2017] T CELsWORK
Prost-Boucle et al. 2017
- [Liang et al. 2018] ‘[ J
T 86
-
(&
g [Baskin et al. 2018]
84
82
| 4
[Umuroglu et al. 2017]
80 O

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
FPS/(LE or LC)
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Summary

» Presented an optimized network for AMC which

- Applies common subexpression elimination and digit serial arithmetic to a fully
unrolled ternary network

- Integrates the entire design on a single chip for a low-latency batch size 1
implementation

» These serve to achieve a level of performance higher than previously
reported

» Further research needed to achieve state of the art accuracy with lower
precision

17
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Motivation

= Deep learning has even higher efficiency problem than
inference!

= E.g. Billions of parameters, 500+ GPUs

= Specialized number representations have been proposed
= Alternative to FP32/FP16
= 4-8 bits for weights, activations and gradients
®= Cheaper and faster training systems
= Datacenter to edge?
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Minifloat

= Narrow floating-point representation

= Qurs range between 4-8 bits
= NaN/Infinity NOT supported

sign  exponent mantissa
] | | IEEE754 (FP32)
S e m
[ I I ] Minifloat
" Pros: = Cons:

= Memory (fewer bits)
= Smaller hardware

= Dynamic Range (exponent bits)
For training >= 8 bits
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= Share exponent bias across blocks of N minifloat numbers

..................................

xO
x
x, 0
: g %,
gy g
: xN—1§
Minifloat tensor BM tensor

= Dynamic range (with fewer bits)
= Denser dot-products in hardware
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Block Minifloat

= Share exponent bias across blocks of N minifloat numbers

..................................

x, [:]
x, %o
z = |
Xps
: xhqi
Minifloat tensor BM tensor

IX| minifloat (3,2)

|al] value distribution

Align with max. exponent = N

= Dynamic range (with fewer bits)
= Denser dot-products in hardware

= Align wtih max exponent
= Underflow is tolerated
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Minifloat Block Minifloat

= Block Minifloats — share exponent bias across blocks of N

minifloat numbers




e Fused Multiply-Add (FMA) with

Kulisch Accumulation

= Kulisch Accumulator: Fixed point accumulator wide enough
to compute error-free sum of floating-point products

= Integer-like hardware complexity for exponent <=4 bits

AxB + C

€ M, €, My me
— |
mul (x)
|5 kshift (<<)
=
KULISCH ADDEND
kadd (+) <
v

Cc
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= Three techniques to reduce data loss:
= Gradual underflow, Block Design, Hybrid Formats

= Simulate specialized BM hardware on GPU (with FP32)
= Apply Block Minifloat to all weights, acts, grads

= Qur Spectrum of Block Minifloats

BMS (ours) (2,5)/(4,3)
BM7 (ours) (2,4)/(4,2)
BMG6 (ours) (2,3)/(3,2)
BMS (ours) 12,2)/(3.1)
BM5-log (ours) (4,0)/(4,0)
BM4 (ours) (2,1)/(3,0)

BM4-log (ours) (3,0)/(3,0)
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End-to-end Training with BM

—_—— BM+Kul. FP32 BM BM+Kul. FP32 BM
X r} -|+ el+1 -[+
1 GEMM » X, j' GEMM ~» »> €
W\_, RF W P RF
t = t
(a) Fwd activation (b) Bwd activation grad.

BM | BM+Kul. FP32 | _BM
el+1+ GEMM > I+ < Wt+1
X > YW € w,

(c) Bwd weight grad. and update

1x floating point operation every N MACs
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" Training experiments: = — o

| BM8  — BM4

= Datasets: (ImageNet, VOC, PTB, ol — = s
IWSLT)
" Models: (ResNet, LSTM, TF base,
SSD-Lite, EfficientNet)

u RTL nfh i . Area Power

sy es SO Component (um?) (uW)

= Fysed mul’nply-add (FMA) FP32 4782 10051

. . T FP8 (w/ FP16 add) 829 1429

= 4x4 systolic matrix mutlipliers INTS (w/INT32 add) 417 1269

BMS 391 1141

BM6 200 624

INTS8 (4x4 systolic) 7005 20253
FP8 (4x4 systolic) 18201 56202
BMS (4x4 systolic) 6976 18765




Experiments and Results

®= Training experiments:
= Datasets: (ImageNet, VOC, PTB,
|WSLT) Training Accuracy
= Models: (ResNet, LSTM, TF base, WIth\BM = FR32
SSD-Lite, EfficientNet)

= RTL synthesis:

BM units are:

= Fused multiply-add (FMA) - Smaller
= 4x4 systolic matrix mutlipliers 5, 1 Consume less
Power

Similar in"area
and power to FP8
withcFP32acc
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Imagenet

{1 FP p
70 32 HFP8 BMS8 BM7
= 69 - 10 S2FP8 BM6
>
(&)
C
O 68
(&)
<
~ 5
a 67
o
|_
1 INT8
o e SWALP

0.000 0.001 0.002 0.003 0.004 0.005 0.006
Computational Density (1/um?)

Model: ResNet-18
Dataset: ImageNet
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Summary

= Block Minifloat sustains high training accuracy with lower
precision than previous techniques

= Faster Training is possible:
= Fewer bits — increases performance in memory-bound
= Narrow exponents — yield denser arithmetic units in
compute-bound

= This work may be particularly advantageous in moving
training into Edge devices

= github.com/sfox14 /block_minifloat
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Conclusion

» Itis well known that DNN hardware performance can be significantly
improved through precision optimisations

> We have demonstrated feasibility of

- Fully parallel, ternary single chip DNN implementations using adder trees,
throughput matching and incremental activations

- Training of wide variety of DNNs with single 8-bit precision format

» More research needed to make this technology useful for mainstream
applications

31



References

[1] Stephen Tridgell, David Boland, Philip HW Leong, Ryan Kastner, Alireza
Khodamoradi, and Siddhartha. Real-time automatic modulation
classification using RFSoC. In 2020 IEEE International Parallel and
Distributed Processing Symposium Workshops, IPDPSW 2020, New
Orleans, LA, USA, May 18-22, 2020, 82—-89. IEEE, 2020.

URL: amc_raw20.pdf, doi:10.1109 / IPDPSW50202.2020.00021.

[2] Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone, and David
Boland Philip H.W. Leong. A block minifloat representation for training deep
neural networks. In Proc. of The International Conference on Learning
Representations (ICLR). 2021. URL: bm_iclr21.pdf.

32


http://phwl.org/assets/papers/amc_raw20.pdf
https://doi.org/10.1109%20/%20IPDPSW50202.2020.00021
http://phwl.org/assets/papers/bm_iclr21.pdf

Philip Leong

% THE UNIVERSITY OF ili
R hilip.leon sydney.edu.au



mailto:philip.leong@sydney.edu.au

