Domain-specific FPGAs for Radio Frequency Machine Learning

Philip Leong (philip.leong@sydney.edu.au)

Domain

Source: https://sballiance.net.au

- Can we improve architectures for radio frequency machine learning?
- Applications include 6G, radio astronomy, cognitive radio

Spectral Correlation Function (SCF)

- Used as features for DNN
- SCF is correlation of downconverted narrowband spectral components at $f \pm A/2$
 - $A \neq 0$ are cycle frequencies

S3CA (fast algorithm)

Figure: Chad Spooner cyclostationary.blog

FPGA Features

- FPGAs equipped with high-speed converters
 - Enabling technology for
 - Quantum sensing & computing
 - \circ Test and measurement
 - o Radio applications
 - ML used to enhance all applications

Channel filter, DUC/DDC, Mixer, Crest Factor Reduction, DPD

Source: AMD

High Frequency Machine Learning Bottlenecks

- 1. Front-end Data rates
- 2. Power consumption

1. Data Rates - Compute hard block

- Data rates high (Gbps)
- Data is I/Q streams
- Clock frequency low
- Coarse-grained block
 - Higher level
 - Local memory
 - Streaming
 - Complex arithmetic
 - Word-based fabric
 - High frequency

1. Data Rates - Deep Neural Networks

- LUTnets/LogicNets can achieve high data rates & low-latency
- Accuracy compromised by sparsity
- Only for small networks
- Compute hard block with large fan-in
- Word-based fabric
- Higher level of abstraction
 - Programmable machine

High-speed Reduced Data Data High-speed Conventional Fabric Processing

2. Power Consumption

ADC/DAC Chiplet 64 Gsps

- Customisation options via chiplets
- Integration reduces data movement
- "High-speed Processing" built from custom IP + compute hard block

Intel Agilex® 9 FPGA Direct RF-Series Intel Agilex® 9 FPGA Direct RF-Series Intel Agilex® FPGA Fabric Intel Agilex® FPGA Fabric Source: Intel

	Full SCD ¹			Full SCD ²
	GPU [2]	GPU [2]	FPGA+GPU [2]	Optimized
Platform	Tegra K1	Tesla K20	ZedBoard+Tegra K1	ZCU111
Initiation Interval (ms)	111.61	8.98	50.95	0.164
Throughput (MS/s)	0.018	0.228	0.040	12.5
Speedup	1	12.3	2.1	677.6
Computational Performance (GOPS)	0.14	1.75	0.30	460
Power (W)	3.5	51	5	35(6.10) ⁵
Energy Efficiency (MOPS/W)	40	34	60	13,143
Signal-to-quantization noise ratio (dB)	-	-	-	73 ⁶

A DSP/DNN Hard Block

- Integrates large FFTs with neural network inference for DSP + DNN
- Software programmable
- Streaming interface

Example System for RF Scene Understanding

Combine real-time FPGA HW, cyclostationary analysis, ML and AR

- Always need more speed
- Domain-specific Architectures can improve high-speed processing
 - New hard blocks that move DSP to higher abstraction (programmable, local mem, arithmetic, word-based)
 - Streaming interfaces
 - Heterogeneous programming tools
- Questions?
 - Can blocks be generalized from RF to any application?
 - Should it be a hard block or chiplet?

Thank you!

philip.leong@sydney.edu.au