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Domain

High-speed

: Conventional Fabric
Processing

High-speed Reduced
Data Data

« Can we improve architectures for
radio frequency machine learning?

« Applications include 6G, radio
astronomy, cognitive radio

The University of Sydney

Source: https://sballiance.net.au



Spectral Correlation Function (SCF)

- Used as features for DNN §
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FPGA Features

» FPGAs equipped with high-speed converters Channel filter, DUC/DDC, Mixer,
= Enabling technology for Crest Factor Reduction, DPD
o Quantum sensing & computing
o Test and measurement
o Radio applications
= ML used to enhance all applications

Source: AMD

The University of Sydney



High Frequency Machine Learning Bottlenecks

1. Front-end Data rates
2. Power consumption

The University of Sydney



Source: AMD

1. Data Rates - Compute hard block

» Data rates high (Gbps)
= Data Is I/Q streams
= Clock frequency low
= Coarse-grained block
= Higher level
» Local memory
= Streaming
= Complex arithmetic
= \Word-based fabric
= High frequency

The University of Sydney



1. Data Rates - Deep Neural Networks

» LUTnets/LogicNets can achieve high
data rates & low-latency
= Accuracy compromised by sparsity
* Only for small networks
= Compute hard block with large fan-in
= \Word-based fabric
» Higher level of abstraction
* Programmable machine

The University of Sydney
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2. Power Consumption

Reduced

High-speed
Data High-speed Data . .
Processing Conventional Fabric

= Customisation options via chiplets
* Integration reduces data movement
» “High-speed Processing” built from custom IP + compute hard block

ADC/DAC Chiplet 64 Gsps

Source: Intel

The University of Sydney

Full SCD* Full SCD?

GPU[2] GPU[2] FPGA+GPU [2] Optimized

Platform TegraK1l TeslaK20 ZedBoard+Tegra K1 ZCU111

Initiation Interval (ms) 111.61 8.98 50.95 0.164

Throughput (MS/s) 0.018 0.228 0.040 12.5

Speedup 1 12.3 2.1 677.6

Computational Performance (GOPS) 0.14 1.75 0.30 460
Power (W) 3.5 51 5  35(6.10)°

Energy Efficiency (MOPS/W) 40 34 60 13,143
Signal-to-quantization noise ratio (dB) - - - 736




A DSP/DNN Hard Block

* Integrates large FFTs with neural
network inference for DSP + DNN

« Software programmable
 Streaming interface

The University of Sydney
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Example System for RF Scene Understanding

Combine real-time FPGA HW, cyclostationary analysis, ML and AR
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S High-speed Reduced
umimar Data High-speed Data . :
y Processing ¢ Conventional Fabric

» Always need more speed
» Domain-specific Architectures can improve high-speed processing
= New hard blocks that move DSP to higher abstraction (programmable,
local mem, arithmetic, word-based)
= Streaming interfaces
» Heterogeneous programming tools
= Questions?
= Can blocks be generalized from RF to any application?
= Should it be a hard block or chiplet?

The University of Sydney 11
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