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Computer Engineering Laboratory

› Focuses on how to use parallelism to solve demanding problems  
- Novel architectures, applications and design techniques using VLSI, FPGA and 

parallel computing technology 

› Research
- Machine learning

- Reconfigurable computing

- Nanoscale Interfaces

› Ex-students
- AMD/Xilinx, Intel, 

Waymo, Amazon, 

Qualcomm
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Introduction

› GPUs widely used for DNNs (optimized for 
throughput)

› FPGAs achieve better throughput, latency and 
power through (EPIC)
- Exploration –try different ideas to arrive at a good 

solution

- Parallelism – arrive at an answer faster

- Integration – so interfaces are not a bottleneck

- Customisation – problem-specific designs to 
improve efficiency (power, speed, density)

› This talk: describe our work in using FPGAs for 
DNN acceleration
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What is an FPGA?

› Dedicated blocks: memory, transceivers and MAC, PLLs, DSPs, ARM cores
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User-customisable integrated circuit

Routing

Xilinx FPGAs

Dedicated 
blocks

Input and
output blocks

Configurable 
logic blocks

* Clocking 
Resources

Source: Xilinx



Source: Xilinx

Xilinx RFSoc Device



Convolutional Neural Networks (CNNs)
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Inference

Training



Binarized Neural Networks (FPGA17 [1])
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Collaboration with Xilinx

OUR WORK

Ours is the most accurate and fastest reported 
FPGA-based CNN inference implementation 
CIFAR10: 90.9% acc, 122K fps (TRETS’19)



Block Minifloat for Training (ICLR21 [2])

§ Share exponent bias across blocks of NxN minifloat numbers

§ Dynamic range (with fewer bits)
§ Denser dot-products in 

hardware

§ Align wtih max exponent
§ Underflow is tolerated 
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Model: ResNet-18
Dataset: ImageNet

Imagenet Training using Block minifloat (ICLR21 [2])
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BM units are:
- Smaller
- Consume less 

Power



CNN Transfer Learning on FPGA (ICCAD23 [3])

› Applied block minifloat to transfer learning
› Implemented on FPGA using high-level synthesis

- Reduced backpropagation time (4x faster)

- Overall latency reduced (2x faster)



Conclusion

› Deep neural network acceleration is important for many real-time 
applications (self-driving cars, communications systems, radar)

› CPUs and GPUs can achieve good performance but latency usually high

› FPGAs allow everything to be integrated on a single device and achieve 
the lowest latency

› We are working on using the techniques developed for radio frequency 
machine learning
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Thank you!


