
LUXOR: An FPGA Logic Cell Architecture for 
Efficient Compressor Tree Implementations

1 School of Electrical and Information Engineering, The University of Sydney, 
2 State Key Lab of ASIC and System, Fudan University

SeyedRamin Rasoulinezhad 1, Siddhartha 1, Hao Zhou 2, 
Lingli Wang 2, David Boland 1, and Philip H.W. Leong 1



Luxor Temple is an Ancient Egyptian temple complex located on the east bank of the Nile River



› Introduction
› LUXOR Architectural Modifications
› Results
› Conclusion

3

Overview



Background

› Parallel computer arithmetic and Compressor Trees
- A circuit that takes in a set of binary values (or dots) that represent multiple operands, 

and outputs the result as a sum and carry. 

- Final result involves an addition of binary numbers.

4



Primitives 1

› Generalized Parallel Counters
- Notation:  ( pn-1, ...,p1,p0 : qm-1, ...,q1,q0) where:

- pi is the number of input bits in the ith column

- qj is the number of output bits in the jth column.

5

(3:11)                                                   (6:111)                (25:121)             



Primitives 2

› Compressors
- Connected in a carry-save manner (Cout is not connected to Cin). 

- (4:2) compressor is the only Xilinx FPGA-friendly Kumm et al. [11]

- For brevity, we describe adders/compressors/GPCs with a simplified notation (which 
doesn’t distinguish whether it has carry in and out):

- GPC (6:1,1,1) as C6:111, 

- Compressor (4:2) as C4:2

6



Motivation

› FPGA lookup table (LUT) based architectures are not particularly efficient for 
implementation of compressor trees.

› We observe that a small number of GPCs proposed by Preußer [22] are 
sufficient: C6:111, C25:121 -> improving these will improve performance

7[22] Thomas B. Preußer. Generic and universal parallel matrix summation with a flexible compression goal for Xilinx FPGAs. FPL 2017



Aim

› Enhance FPGA logic elements for better performance and 
utilization 

1. Vendor-agnostic:   LUXOR
2. Vendor-specific:    I-LUXOR+   and   X-LUXOR+

8



› Introduction
› LUXOR Architectural Modifications
› Results
› Conclusion

9

Overview



LUXOR

› Adding 6-input XOR gate in parallel to each 6-input LUT (shared inputs)
- Natively support C6:111 in 2x LEs (2x quarter slice or 2x ALM)

- Cost of C6:111:    3LEs è 2 LEs

10

Xilinx Quarter Slice                                                        Intel ALM



Benefit of LUXOR - BNNs

11

Supports three-pair input XnorPopcount (binary MAC) in 1 LE



X-LUXOR+ Atoms

› Preußer [22]: slice-based GPCs based on three atoms -06-, -14-, and -22-
- Each atom maps to two LEs

- Atoms can be combined to make arbitrary slice based GPCs

12[22] Thomas B. Preußer. Generic and universal parallel matrix summation with a flexible compression goal for Xilinx FPGAs. FPL 2017

XOR6

Atom -06- Atom -22-Atom -14-



X-LUXOR+

› New Atom -06- maps to a quarter Slice

13

Strength S = # inputs / # outputs
Efficiency E = (# inputs - #outputs) / #LEs 



Xilinx vs. X-LUXOR vs. X-LUXOR+

14

3x -0606- + 1x C6:111 3x -0606- + 1x C6:111 2x -06060606-



I-LUXOR+

15

Native support for C25:121 (one LE rather than 2 LEs)



› Introduction
› LUXOR Architectural Modifications
› Results
› Conclusion

16

Overview



Overheads

› SMIC 65-nm technology standard cell by Synopsis Design Compiler 2013.12.
› Post synthesis results 

- Delay is critical path of a CLB/ALM

17



ILP-based Synthesizer

› Test cases mapped to LUXOR via CPLEX ILP which optimally solves 
compressor tree problem using a library of GPC and atom primitives

18



X-LUXOR(+) Performance on Micro Benchmarks

› Over 50+ microbenchmarks e.g. popcount, multi-operand addition, FIR, MAC etc
- Red dots: one less logic level 

19



I-LUXOR(+) Performance on Micro Benchmarks

› No logic level reduction (doesn’t implement atoms)

20



LUXOR(+) Performance for BNNs

21



› Introduction
› LUXOR Architectural Modifications
› Results
› Conclusion

22

Overview



Conclusion

› Described
- Two tiers of modifications to FPGA logic cell architectures

1. Vendor-agnostic:   LUXOR
2. Vendor-specific:    I-LUXOR+   and   X-LUXOR+

- A novel ILP-based compressor tree synthesizer 
github.com/raminrasoulinezhad/LUXOR_FPGA20

› Results: 
- LUXOR: with <0.5% area overhead offers up to 36% LUT reduction (average 12-19%) 

- LUXOR+: 5-6% silicon area overhead, on average 26-34% LUT reduction

- LUXOR+: up to 48% more area efficient (for XnorPopcount operation)

23



Spare Slides

24



Enhancement for I-LUXOR(+) GPCs

25



Primitives 3

› Adder
- Ripple-carry / Carry-save 

- Intel FPGAs:       3-input adders

- Xilinx FPGAs:     Flexible Ternary adders (proposed by Preußer [22])

26[22] Thomas B. Preußer. Generic and universal parallel matrix summation with a flexible compression goal for Xilinx FPGAs. FPL 2017



Flowchart of ILP-based Compressor tree synthesis

› Objective (minimize area)

› Constraints (match I/O req)

› GPC libraries (specs)
› Iteratively increase number of stages until we find a solution
› Microbenchmark (ours + others collected from a number of different sources)

- Popcount / Double Popcount / Multi-Add / Multi-MAC / FIR filters / XnorPopcount
27



FPGA Logic Elements - Xilinx

28

The Xilinx Configurable Logic Block (CLB)

[32] Xilinx. UG474 7 Series FPGAs Configurable Logic Block, 9 2016 



Xilinx – Quarter Slice

29



FPGA Logic Elements - Intel

30

Intel Adaptive Logic Modules 

[8] Intel. UG-S10LAB Intel®Stratix®10 Logic Array Blocks and Adaptive Logic Modules User Guide, 9 2018 


