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Abstract—Wireless fingerprinting refers to a device identifi-
cation method leveraging hardware imperfections and wireless
channel variations as signatures. Beyond physical layer charac-
teristics, recent studies demonstrated that user behaviours could
be identified through network traffic, e.g., packet length, without
decryption of the payload. Inspired by these results, we propose
a multi-layer fingerprinting framework that jointly considers the
multi-layer signatures for improved identification performance.
In contrast to previous works, by leveraging the recent multi-
view machine learning paradigm, i.e., data with multiple forms,
our method can cluster the device information shared among
the multi-layer features without supervision. Our information-
theoretic approach can be extended to supervised and semi-
supervised settings with straightforward derivations. In solving
the formulated problem, we obtain a tight surrogate bound using
variational inference for efficient optimization. In extracting
the shared device information, we develop an algorithm based
on the Wyner common information method, enjoying reduced
computation complexity as compared to existing approaches. The
algorithm can be applied to data distributions belonging to the
exponential family class. Empirically, we evaluate the algorithm
in a synthetic dataset with real-world video traffic and simulated
physical layer characteristics. Our empirical results show that
the proposed method outperforms the state-of-the-art baselines
in both supervised and unsupervised settings.

Index Terms—Cross layer design, Wireless fingerprinting,
Supervised learning, Unsupervised learning, Deep learning.

I. INTRODUCTION

Wireless Fingerprinting refers to a device identification
method that can uniquely identify the transmitter. Usually,
this involves leveraging the effects of imperfections in the
electronic devices used to construct the transmitter circuit
which imparts measurable features in the physical layer, e.g.,
carrier frequency offsets, inphase/quadrature imbalance, out
of band energy, etc. Hardware-specific techniques have been
further extended to features beyond hardware imperfections,
e.g., in the physical layer, the response of the medium
along the transmit-receive path provides location-specific, fre-
quency selective information [1]. Recent works have also
demonstrated that modern machine learning techniques can
effectively discriminate subtle differences in characteristics
from exemplar data and achieve improved device identification
accuracy over conventional approaches [2]–[4].

In the quest to improve wireless fingerprinting, several
works have proposed combining physical and higher-layer
features to defend against security attacks [5]–[12]. Such
multi-layer wireless fingerprinting techniques significantly in-

crease the difficulty of spoofing for an adversary and enhance
identification accuracy to prevent privacy leakage. Nonetheless
there is a need for theoretically sound, computationally effi-
cient approaches in integrating multi-layer features, as most
prior research have either adopted heuristic objectives, relied
on specific technologies and protocols, or offered limited
scalability as the number of available features increases [13],
[14]. Furthermore, most machine learning-based approaches
require labeled training samples, which can be prohibitively
expensive to obtain in practice [15]. Instead of relying on
simulation-based data that simplifies the time-varying nature of
wireless communications [16], we provide a theoretic-founded
unsupervised learning framework for multi-layer wireless fin-
gerprinting.

One of the challenges in multi-layer wireless fingerprinting
is the extraction of the common information shared among
the multi-layer signatures. This goal is closely related to
multi-view learning, where data in multiple forms come in
pairs, sharing a common randomness across the multi-view
observations [17], [18].

Recently, there has been a notable body of work adopting
information-theoretic formulations for multi-view learning.
The aim is to characterize the complexity-performance trade-
off and develop efficient algorithms based on the derived
insights [19]–[25]. Among these, significant contributions have
been made in supervised settings. However, fewer results
have been reported for the unsupervised counterpart. For
information-theoretic unsupervised multi-view learning, the
Wyner’s common information framework focuses on charac-
terizing the common randomness from two correlated random
variables [26]. The framework has been applied to two cor-
related multi-view observations without labels [27]. Beyond
two correlated sources, the characterization is further extended
to Gaussian random variables with an arbitrary number of
views and random vector settings [28]–[30]. For more gen-
eral cases, variants of Wyner’s formulation are introduced in
literature where a computational challenge is identified due
to the non-convex feasible set of the formulated optimization
problem [27], [31]. Nonetheless, in addressing the challenges,
previous works either resort to heuristics methods [24], are
limited to special cases [30] or provide fewer insights for large-
scale cases [27].

In contrast to previous works, we formulate the multi-
layer wireless fingerprinting into a multi-view learning frame-



work where each layer-feature mapped to a source of view
observations. This allows for improved device identification
performance with increased source layer-features. Moreover,
with multi-layer features the proposed framework can iden-
tify devices without supervision, enabled by extracting the
shared information among the multi-layer features. In ex-
tracting the shared information, we adopt an information-
theoretic approach that extends the framework to supervised
and semi-supervised settings with straightforward derivations.
We address the intractability of the formulated problem with
variational inference techniques, arriving at a tight surrogate
bound that can be optimized efficiently. Leveraging the Wyner
common information, we develop an algorithm that can extract
the shared device information whose computation complexity
scales linearly with respect to the number of multi-layer
features. The algorithm applies to data statistics that can be
modelled as any member of the exponential family. Moreover,
it is robust to the imbalance of the dimensionality of the
multi-layer features. Empirically, we evaluate the proposed
approach on a synthetic two-layer dataset consisting of real-
world video traffic and simulated CSI data samples. Our
reported results show that our method outperforms the state-
of-the-art approaches in both supervised and unsupervised
settings. Overall, we not only demonstrate the feasibility of
improving device identification performance with multi-layer
features, but also provide a method to achieve efficient multi-
layer device identification.

II. PROBLEM FORMULATION

We propose using multi-layer characteristics to improve the
device identification performance. Define the ith multi-layer
feature as Xi, and assume that there are V available features.
The goal is to identify the discrete device information Z that
generates the V layer features. Note that since Z is hidden,
only {Xi}Vi=1 are accessible. The task is modelled as an
unsupervised multi-view clustering problem [17], [18], where
{Xi}Vi=1 represents the multi-view observations.

Then to extract the view-shared common features Z (the
device information), we adopt the Wyner’s common informa-
tion framework [26], aiming to construct a stochastic common
information encoder P (Z|XV ), XV := (X1, · · · , XV ) from
the following information-theoretic optimization problem:

minimize
P (Z|XV )

I(XV ;Z),

subject toXS → Z → XSc , ∀S ⊂ [V ], (1)

where S denotes a partition of the multi-layer features XV ,
i.e., S ⊂ [V ], S ∩ Sc = ∅, S ∪ Sc = [V ]. [V ] := {1, · · · , V };
XS → Z → XSc represents a Markov chain relation (condi-
tional independence) for all partitions S ⊂ [V ]; I(XV ;Z) the
mutual information defined as:

I(XV ;Z) := EXV ,Z

[
log

P (XV , Z)

P (XV )P (Z)

]
,

where E[·] is the expectation operator. I(XS ;XSc |Z) is
the conditional mutual information of the random variables
XS , XSc conditioned on Z [32]:

I(XS ;XSc |Z) := EXV ,Z

[
log

P (XS , XSc |Z)

P (XS |Z)P (XSc |Z)

]
.

Observe that in problem (1), since the variable to optimize
with is the conditional probability P (Z|XV ), the dimensions
of the variable scales exponentially O(|X|V ) with respect to
the number of the multi-layer features V [30]. To avoid the
“curse of dimensionality” [33]–[35], we focus on a relaxed
version of (1), where Z is restricted to be discrete:

minimize
θ∈Θ

H(Z),

subject toDKL[P (XV ) ∥ Pθ(X
V )] ≤ η (2)

where η > 0; H(Z) the Shannon entropy of Z and the
Kullback-Leibler (KL) divergence between two measures µ, ν
is denoted as DKL[µ ∥ ν]:

DKL[µ ∥ ν] := Eµ

[
log

µ

ν

]
, (3)

with µ, ν defined over a proper support [32]; The parameter
space Θ = {θ|Pθ(Z) ∈ ΩZ , Pθ(Xi|Z) ∈ Ωi,∀i ∈ [V ]} with
ΩZ denotes the probability simplex and Ωi the compound
probability simplex for the ith feature. The relaxation is due to
the discrete Z, hence the conditional entropy H(Z|XV ) ≥ 0
and that I(XV ;Z) = H(Z) − H(Z|XV ). Different from
(1), the parameters to optimize with in the relaxed problem
(2) are the marginal and conditional probabilities Pθ(Z) and
{Pθ(Xi|Z)}Vi=1). Additionally, the common information en-
coder is computed through marginalization of the probabilities:

Pθ(Z|XV ) =
Pθ(Z)

∏V
i=1 Pθ(Xi|Z)∑

z′∈Z Pθ(z′)
∏V

j=1 Pθ(Xj |z′)
. (4)

Another observation is that compared to (1), the relaxed
problem (2) allows the divergence between the joint distribu-
tion of the multi-layer observations P (XV ) and the marginal
of the parameterized joint distribution Pθ(X

V ) to be less
than a certain threshold η > 0. This can be seen from the
unconstrained relaxation of (2) using a Lagrange multiplier. To
illustrate this, consider a case where there is only two multi-
layer features V = 2:

Lθ := H(Z) + γ {DKL[P (X1, X2) ∥ Pθ(X1, X2)]− η} , (5)

where the scalar γ > 0 is a multiplier. Then for discrete
entropy it is well-known that H(Z) ≤ log |Z|. Therefore,
for a fixed cardinality |Z|, minimizing the Lagrangian (5)
reduces to minimizing the KL divergence between the joint
distribution of the multi-layer observations P (X1, X2) and
the parameterized counterpart Pθ(X1, X2). This insight can be
generalized to an arbitrary number of V , which results in the
formation (2). The difficulty in solving the problem (2) is that
the joint distribution of the multi-layer observations P (XV )
is intractable [36]. While P (XV ) can be estimated through
counting the available samples in small-scale discrete settings,



for large-scale cases, the complexity grows exponentially
and hence is infeasible. To address the intractability, a tight
surrogate upper bound of the KL divergence in (2) can be
derived through the variational inference [36]–[39]:

DKL

[
P (XV ) ∥ Pθ(X

V )
]

≤ −H(XV )− EXV ,Qz

[
log

Pθ(Z)
∏V

i=1 Pθ(Xi|Z)

Qθ(Z|XV )

]
. (6)

This follows from the derivation:

DKL[P (XV ) ∥ Pθ(X
V )]

= DKL

[
P (XV ) ∥

∑
z∈Z

Pθ(z)

V∏
i=1

Pθ(Xi|z)
]

= −H(XV )

−EXV

[
log
∑
z∈Z

Pθ(z)

V∏
i=1

Pθ(Xi|z)
Qθ(z|XV )

Qθ(z|XV )

]

≤ −H(XV )− EXV ,Qz

[
log

Pθ(Z)
∏V

i=1 Pθ(Xi|Z)

Qθ(Z|XV )

]
, (7)

where the last line of (7) follows by the Jensen’s inequal-
ity [32]. Qθ(Z|XV ) is the variational encoder to be designed
and the bound is tight when Qθ(Z|XV ) = Pθ(Z|XV )
(defined in (4)).

The upper bound (6) is a multi-view version of the varia-
tional autoencoder (VAE) [36]. We therefore name the pro-
posed method as the Wyner Variational AutoEncoder (W-
VAE). But we contrast the major differences to the VAE here.
First, the VAE did not consider the Wyner common infor-
mation condition for multi-layer features, i.e., P (XV |Z) =∏V

i=1 P (Xi|Z). Second, we obtain the variational distribution
Qθ through marginalization (10) and predict the cluster dis-
tribution directly while the VAE reparameterizes a Gaussian
representation and requires additional parameters to map the
representations to prediction or reconstruction. Lastly, because
of the marginalization W-VAE can cluster multi-layer features
without supervision, but cluster labels or additional clustering
algorithms applied on the representation are required when
using VAE for clustering [40], [41].

Minimizing the surrogate upper bound (6) is equivalent to
maximizing the likelihood function:

Rθ := EXV ,Qz

[
log

Pθ(Z)
∏V

i=1 Pθ(Xi|Z)

Qθ(Z|XV )

]
. (8)

Base on the derivation, our overall objective is to maximizing
the reward Rθ through judiciously chosen parameterized dis-
tributions Pθ(Z), Pθ(Xi|Z),∀i ∈ [V ], and obtain the common
information encoder Pθ(Z|XV ) through marginalization (4).

III. LOG-LIKELIHOOD PARAMETERIZATION

To simplify the problem, in the following we restrict the
Wyner representation Z to be uniformly discrete, i.e., the
marginal distribution Pθ(Z) = 1/|Z| and denote it as P (Z)

for convenience of expression. Substituting these restrictions
into (8), the reward function can be rewritten as:

R′
θ = EXV

[
hQ(X

V )
]
+

V∑
i=1

EXi,Qz
[logPθ(Xi|Z)] , (9)

where in (9) the function hQ(X
V ) is defined as hQ(x

v) :=
−EQz

[logQ(Z|xv)]. Operationally, given the multi-layer fea-
tures XV , (9) implies that the variational parameters corre-
sponding to the individual layer-feature should be optimized
through the maximum log-likelihood principle whereas the
joint common information encoder is optimized from the
maximum conditional entropy criterion [42].

The implementation of the objective function (9) can be
divided into two parts. The first part is the variational encoder
Qθ(Z|XV ). From the derivation (7), the surrogate upper
bound is tight when Qθ(Z|XV ) = Pθ(Z|XV ), therefore it
is desirable that the encoder satisfies the relation (4). The
key observation is that it can be computed through a softmax
function with the log-likelihoods as the inputs:

Qθ(Z|XV ) = Softmax({logPθ(Xi|Z)}Vi=1)

=
e
∑V

i=1 logPθ(Xi|Z)∑
z′∈Z e

∑V
i=1 logPθ(Xi|z′)

, (10)

where the last equality of (10) follows by the assumption
that P (Z) = 1/|Z|. As for the conditional log-likelihoods
logP (Xi|Z),∀i ∈ [V ], the implementation depends on the
prior knowledge of the multi-layer observations. We list three
practical and important classes of distributions as applications.

A. Gaussian Mixture

For multi-layer features that can be parameterized as a
Gaussian distribution X ∼ N (µZ ,ΣZ) when conditioned on
the common information Z, e.g., physical layer (PHY) channel
state information (CSI) and carrier phase offset, the log-
likelihood is straightforward to derive. Suppose the conditional
mean is µZ and the conditional covariance matrix is ΣZ , then
the log-likelihood is given by:

logP (X|Z) = −1

2
log (2π)d|ΣZ |

−1

2
(X − µZ)

TΣ−1
Z (X − µZ), (11)

where | · | denotes the determinant operator. For convenience
the multi-layer index (the subscript) of X is omitted without
loss of generality. Moreover, if the elements of the conditional
Gaussian random vector X are independent, then a simpler
form of the log-likelihood can be derived:

logP (X⊥|Z) = −d

2
log 2π − 1

2

d∑
j=1

[
log σ2

j;Z

+
(xj − µj;Z)

2

σ2
j;Z

]
, (12)

where µj;Z , σ
2
j;Z are the mean and variance corresponding

to the jth entry of the observation. Note that following
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Fig. 1. The architecture of the Wyner variational autoencoder algorithm.

the common practice where the mean and the log-variance
νj;Z := log σ2

j;Z are parameterized [36], [43] to facilitate
efficient optimization, we have another expression for (12):

logP (X⊥|Z) = −d

2
log 2π − 1

2

d∑
j=1

[νj;Z

+ (xj − µj;Z)
2 exp{−νj;Z}

]
. (13)

Using (11) and (12), for multi-layer observations that are
Gaussian mixture, the prediction of the common information
representation can be obtained through the softmax function as
shown in (10). Examples that can be applied to this Gaussian
mixture model include blind demodulation in additive white
Gaussian noise (AWGN) channel [44], and unsupervised im-
age clustering [20].

B. Bernoulli Mixture

For observations with binary outcomes, e.g., packet
arrival/departure and (negative-) acknowledgement
(ACK/NACK), one can parameterize them as conditional
Bernoulli distributions. For simplicity of expression, we
consider a d-dimensional binary vector X , where its elements
are independent Bernoulli random variables. In this case, the
log-likelihood has the following expression:

logP (X|Z) =

d∑
j=1

[1{xj = 1} log ηj

+1{xj = 0} log (1− ηj)] , (14)

where 1{A} denotes the indicator function of an argument
A, which outputs 1 if A is true and 0 otherwise; ηj is the
probability of positive outcome for the jth element of the
observation xj . In practice, a well-known trick to facilitate the
estimation of the parameters is to parameterize the logarithm
of the positive-to-negative probability ratio (the logit) instead.
This results in the following equivalent expression of (14):

logP (X|Z) =

d∑
j=1

xjξj − log (1 + eξj ), (15)

where the logit is defined as ξj := log ηj/(1− ηj); Note that
the last term of (15) is the negative softplus function, where
softplus(x) := log 1 + ex. Similar to the Gaussian mixture
case, once the Bernoulli distribution is parameterized, it can

be substituted into (10) to compute the common information
encoder.

C. Generalization to the Exponential Family

Following the previous discussions, the proposed method
can be extended to the exponential family class of distribu-
tions, which include the previous examples as members. The
family also includes important members in network quality of
service (QoS) analysis, such as the Poisson and exponential
distributions [45], [46]. To include these classic statistic mod-
els as multi-layer features, we show in the following that our
approach can be applied to the exponential family class of dis-
tributions. For convenience, we consider a vector observations
x ∈ Rd, with independent components xj , j ∈ [d]. For a single
element xj and a given z ∈ Z , we define the parameter vector
ηj;z ∈ Rkj , i.e., there are kj parameters corresponding to the
jth entry of x, conditioned on z. The resulting log-likelihood
function is:

logP (X|Z) :=

d∑
j=1

hj(xj) + ηT
j;ZT j(xj)−Aj(ηj;Z), (16)

where h(·) is a normalization function independent of the
parameters; T (·) denotes the sufficient statistic; A(·) the
cumulant function, and the subscript indicates the observation
entry. Note that the expression (16) focuses on a single multi-
layer feature, but it can be expanded to {Xi}Vi=1 similarly.

IV. THE WYNER VARIATIONAL AUTOENCODER

In the previous section, we provide details for the variables
to optimize with for the problem (2). This consists of the
parameterized conditional log-likelihoods for each multi-layer
feature, along with the common information encoder computed
from the softmax function (10). Then we proceed to develop
an algorithm to implement the loss (negative reward) function
to update the parameterized distributions efficiently.

A. Unsupervised Clustering

Given the multi-layer features {Xi}Vi=1 of V signatures as
the inputs, with a pre-determined cardinality of the common
representation Z, the output is the soft-predictions of the
conditional probability Pθ(Z|XV ), i.e., the distribution of the
clusters Z that a pair of multi-layer samples xV ∈ XV belongs
to. For each sample of the multi-layer observations xV ∈
XV , a set of |Z| parameterized conditional log-likelihoods



{logP (Xi|Z)}Vi=1 are prepared through a probing module. By
construction, the probing module should return the conditional
log-likelihoods such that the parameters {logP (Xi|Z)}Vi=1 are
independent across signatures, i.e., Xi ⊥ Xj given a z ∈ Z ,
for all i ̸= j ∈ [V ]. Within a single layer-feature Xi, a set of
|Z| parameterized conditional log-likelihoods is prepared by
the probing module for a given feature-specific observation
xi, then the resultant conditional log-likelihoods can be com-
puted {logP (Xi|Z)}Vi=1 according to the associated equations
(Gaussian, Bernoulli or other members of the exponential
family). Finally, the conditional log-likelihoods are used to
compute the common information encoder (10).

We implement the algorithm as a deep neural network
(DNN) where the pseudo-codes are described in Algorithm
1 and the block diagram is shown in Fig. 1 for completeness.
Due to the discrete restriction of Z, we use one-hot vectors
wz,∀z ∈ Z (a vector where only a single element is 1, and the
other elements are all 0s) as probing signals to prepare the pa-
rameterized conditional log-likelihoods, corresponding to each
realization of the common representation ∀z ∈ Z . The probing
module f : Z 7→ {R|Xi|}Vi=1 is implemented as a stack
of neurons, and then the same probing module is connected
to the individual parameterized conditional log-likelihoods
independently. The design can be expressed as a composite
function logP (Xi|z) := gi ◦ f(wz),∀i ∈ [V ], z ∈ Z . This
satisfies the conditional independent condition Pθ(X

V |Z) =∏V
i=1 Pθ(Xi|Z) which in turns allows for linear growth rate

of computation complexity O(V ), defined as the parameters
used w.r.t. the number of layer features V . We stress that the
above description requires no knowledge of cluster labels, i.e.,
the ground-truth Z∗.

Algorithm 1: The Wyner Variational Autoencoder
Input:Multi-layer dataset D with V sources of
observations (X1, · · · , XV ), cardinality of Z
Output:model weights θ∗

Initialize: Iteration counter k = 0, weights θv ∈ ΘV

while k ̸= maximum number of epochs do
zi ← onehot(i) for each i ∈ [|Z|]
for each v ∈ [V ] do
lv ← log-likelihoodv({zi}, xv; θv), computed from a
batch of {xv}Vv=1 ∈ D

end for
q̂
(k)
θ ← softmax(

∑V
v=1 lv)

Rk ← h
q̂
(k)
θ

(xV ) +
∑

z∈Z
∑V

v=1 q̂
(k)
θ ◦ lv , eq. (9)

update {θk+1
v }Vv=1 ← backpropagate(−Rk)

k ← k + 1
end while

B. Supervised and Semi-Supervised Classifiers

For the practical scenario where the dataset has a limited
number of labels but not fully labeled, the proposed algorithm
can leverage the available labels to improve the performance
without changing the architecture. Consider the other extreme

where the task is a fully supervised classification, i.e., each
sample of the multi-layer features xV ∈ XV has a cluster
label z∗ ∈ Z . Then we can substitute the variational common
information encoder with the ground-truth conditional proba-
bility Q(Z∗|XV ) at the last equality of (7), and arrive at the
label-assisted loss upper bound:

L′
θ,V

=−R′
θ + CZ

≤EP

{
DKL[Q

∗ ∥ Qθ]−
V∑
i=1

EQ∗ [logPθ(Xi|Z)]

}
, (17)

where Q∗ := Q(Z∗|XV ) denotes the ground-truth prediction
for a given multi-layer feature sample, Qθ := Qθ(Z|XV ); CZ
is a constant independent of the parameters θ ∈ Θ due to the
assumption P (Z) = 1/|Z| and the availability of the labels.
The first term in the upper bound (17) is the standard cross-
entropy (with Q∗ represents a one-hot vector), and the second
term consists of the conditional log-likelihood functions that
will be maximized for layer-feature specific estimators. The
derivation follows by substituting the following into (7):

−EP

[
log
∑
z∈Z

Pθ(X
V |Z)P (Z)

Q∗(Z|XV )

Q∗(Z|XV )

]

≤ EP

{
EQ∗

[
log

Q∗(Z|XV )

Pθ(XV |Z)P (Z)

]}
= EP

{
EQ∗

[
log

Q∗(Z|XV )

Qθ(Z|XV )

Qθ(Z|XV )

P (XV |Z)P (Z)

]}
≤ EP

{
DKL[Q

∗ ∥ Qθ] + EQ∗

[
log

Q∗(Z|XV )

P (Z)

]
+

V∑
i=1

EQ∗ [logP (Xi|Z)]

}
, (18)

where the first inequality follows Jensen’s inequality, and the
second inequality is due to the non-negativity of the KL
divergence. The bound is tight when the common information
encoder, the variational distribution, and the labels information
coincide, i.e., Pθ(Z|XV ) = Qθ(Z|XV ) = Q∗(Z|XV ),
with Pθ(Z|XV ) computed from the marginalization (4). Note
that the second term of the last line of (18) is a constant
independent of the parameters θ. Compared to the overall
objective function for the unsupervised learning counterpart
(9), the maximum conditional entropy principle for the param-
eter updates of the common information encoder is replaced
with the minimum cross-entropy loss with respect to the one-
hot labels, but the same maximum log-likelihood criterion is
imposed on the feature-specific estimators.

Combining the objective functions in both unsupervised and
supervised learning regimes, we obtained the semi-supervised
variant of the W-VAE algorithm. Consider a semi-supervised
scenario where the multi-feature dataset has V sources.
Among which, there are Nu unlabeled samples and Nl labeled
samples (N = Nu + Nl total number of samples). The



empirical estimate of the objective function can be expressed
as:

NL′
θ,V

≈−
V∑

v=1

EQ∗
θ
[logP (xv|Z)] +

∑
j∈Nl

Q∗
j log

Q∗
j

Qθ,j
Qθ,j

+
∑
k∈Nu

Qθ,k logQθ,k

=
∑
m∈N

{
−

V∑
v=1

EQ∗
θ,m

[logPθ(xv|Z)] + EQ∗
θ,m

[logQθ,m]

}

+
∑
j∈Nl

EQ∗
j

[
log

Q∗
j

Qθ,j

]
, (19)

where the notation Q∗
θ denotes the stack of predictions (each

is a Z dimensional vector) substituted the columns that have
labels with the ground-truth Q∗. Observe that in equation (19),
if there is any label information available in the dataset, the
cross-entropy (the last term) is used to include them into the
objective function, then the parameters are updated from the
backpropagation.

C. Weighting the Multi-Layer Log-likelihoods
In previous parts, an implicit assumption we made is that

each multi-layer feature has approximately the same reliability
(importance) for device identification. In practice, the reliabil-
ity of the multi-layer features might vary significantly, e.g.,
imbalanced number of features for each layer-feature. In these
cases, instead of treating the multi-layer features as equally
reliable, a weighting of the reliability of sources could provide
more robustness for the proposed algorithm to account for
imbalance or corruption of certain layer-features. Motivated
by this, we have the following variant of the log-likelihood
terms in the W-VAE algorithm:

EQ[log

V∏
i=1

PV αi(Xi|Z)] = V

V∑
i=1

αiEQ [logPθ(Xi|Z)] , (20)

where ∀i ∈ [V ], αi > 0,
∑V

i=1 αi = 1 denotes the weight for
the ith multi-layer feature. Note that when αi = 1/V , the
log-likelihood terms reduce to the standard form (9). Then,
the weighting will be applied to each multi-layer specific log-
likelihoods, resulting in a weighted softmax function:

Qθ(Z|XV ;α) = Softmax

(
V∑
i=1

αi logPθ(Xi|Z)

)
. (21)

This variant is in resemblance of the general guideline in
estimation theory, that is, when the prior probability for each
multi-layer feature {αi}Vi=1 is unknown, the Maximum (Log)-
Likelihood (ML) estimators are the optimal whereas the Max-
imum A Posteriori (MAP) estimators give better performance
from incorporating the knowledge of {αi}Vi=1. It is also well-
known that when the prior probability is uniform, {αi}Vi=1 =
1/V , the two estimators coincide [47]. The remarks follow
from the derivation of our theoretic formulation naturally and
is another strength of our approach.

V. EVALUATION

We evaluate the proposed W-VAE algorithm on a synthetic
multi-layer signature dataset. The synthetic dataset consists of
a real-world video traffic dataset [48] paired with a simulated
channel state information (CSI). A sample of the video traffic
dataset has 200 binary sequences of the uplink and downlink
packet lengths, and we pre-process them into traffic states
(0: idle, 1: non-zero packet lengths). As for the CSI dataset,
a sample has M = 72 complex values, each is computed
from the standard least-square estimators with WLAN short
preamble as the pilot signals (72 complex symbols) over a
simulated Rayleigh fading channel:

ĥ = (XHC−1X)−1XHC−1y, (22)

where X denotes the matrix form of the pilot signals (full
rank); y the received signal and ĥ the channel estimate; C
the noise covariance and we set C = I; The signal model is
y := Xh′ +w, wi ∼ N (0, σ2

w),∀i ∈ [M ]. The pilot signals
X has 10 dB signal-to-noise power ratio (SNR). For each class
(the video ID), we generate 72×2 standard normal distribution
samples, reshaped into 72 complex values as the mean vector
h of the CSI. Then, to account for the time-varying natural
of wireless channel, we manually add Gaussian noise with a
configurable variance σ2

h. In other words, h′ := h + ε, εi ∼
N (0, σ2

h),∀i ∈ [M ], and higher CSI variance σ2
h will degrade

the classification/clustering performance. To control the CSI
variation, we introduce the metric: CSI Perturbation-to-noise
ratio (PNR), PNR = σ2

h/σ
2
w in the following experiments.

We combine the two datasets with the video traffic se-
quences as the first multi-layer feature and the CSI as the
second one. There are 10 videos traffic sequences collected
from YouTube as detailed in [48, Sec 3.2]. After pairing each
video sample with a simulated CSI, there are 2557 training
samples and 638 testing samples with each set uniformly
distributed across the 10 classes.

The two-layer dataset matches the following device identi-
fication task with the two-layer features. Consider a wireless
network where there are 10 devices streaming videos from a
platform over the same router. For simplicity, we assume that
all the devices are using the same streaming platform, and the
same wireless technology. The router serves all the devices,
and the proposed algorithm is implemented at the router’s
side, with access to the physical CSI of the devices and the
network layer traffic states. Through monitoring the streaming
traffic states and the wireless CSI, the proposed algorithm’s
goal is to identify the device that could potentially stream
malicious contents from the accessible features. The router
cannot examine the content directly since the network traffic
is typically encrypted and no decipher is available at the router,
but the packet lengths (traffic states) are accessible. Under this
setup, the task is equivalent to a supervised classification, or
an unsupervised multi-view clustering problem depending on
the availability of device labels. As for the feasibility of the
physical layer CSI, it can be estimated from feedback. The
feedback signals can be the uplink transmission, or the control



Fig. 2. Network architecture of the implementation of Algorithm 1. Implemented for the two-layer synthetic dataset. The Gaussian and Bernoulli log-likelihoods
(LL) follows (13) and (15)

channel signals in cellular networks, carrying the normal
payload or ACK/NACK in the multiple access (MAC) layer.

We implement Algorithm 1 on Tensorflow2. The architec-
ture follows the block diagram in Fig. 1 whose network design
details are provided in Fig. 2 for completeness. The probing
module is implemented as a stack of fully connected layers
with leaky rectified linear unit (Leaky ReLU) activation to
avoid vanishing gradients [49]. The common information Z is
enforced to be a discrete random variable serving the cluster
labels. Given a pre-determined number of clusters |Z|, the
hidden layer output of the networks is used to compute the
conditional log-likelihoods and obtain the prediction through
(10). The conditional log-likelihood for each layer-feature is
implemented as separate fully connected layers with linear
activation functions. For the traffic states X1, we model them
as a Bernoulli mixture where the re-parameterized probability
of positive outcomes ηθ is obtained from the hidden layer
output and used to calculate the log-likelihood lθ1 (15) with
X1. As for the CSI taps, we model them as Gaussian mixture
where the re-parameterized means µθ and log-variances log σ2

θ

are obtained from the hidden layer outputs and used to
calculate the log-likelihood lθ2 (11) with X2.

A. Supervised Device Identification

We first evaluate the proposed approach in a supervised
classification task. For simplicity, we assume knowledge of
the optimal number of clusters Z = 10 and a discussion
for relaxing this knowledge is deferred to Section V-C. The
total number of parameters is approximately 9.78× 104. The
loss function for the supervised variant of the W-VAE follows
(18) and we denote it as W-VAE (Supervised). We compared
the W-VAE (Supervised) with a baseline approach [48]. This
compared method implemented a deep neural network (DNN)-
based classifier and empirically demonstrated the state-of-the-
art classification accuracy with the video traffic dataset. This
baseline only uses traffic states as the inputs and is denoted
as Traffic Only baseline. The DNN consists of two fully
connected layers with dropout [50], the details are referred to
[48, Fig. 5]. We modify the number of neurons to 200→ 128,
resulting in approximately 1.07× 105 number of parameters.

For each method in the the evaluated approaches, 25 trials
are performed. Each trial runs the training dataset for 200
epochs, determined from cross-validation and the classification
accuracy is computed offline from the testing dataset. For the
W-VAE (supervised), 8 mini-batch size is used with a fixed
learning rate 10−3 for the standard ADAM optimizer [51].
As for the baseline, the configurations follow [48, Section
4.2.3]. We report the model with the maximum accuracy
from 25 trained ones. The results are shown in Fig. 3. In
Fig. 3a compared to the Traffic-Only baseline, the W-VAE
(Supervised) improves the classification accuracy significantly
over the range of PNR∈ [3, 14] dB. Moreover, when PNR < 9
dB, the W-VAE (Supervised) achieves > 99% accuracy.

For a fair comparison and to highlight the efficiency of
W-VAE, we further merge the traffic states and the CSI
estimates as the input. To keep the total number of parameters
at the same order, the hidden layer neurons are configured
to 150 → 150 (around 1.06 × 105 parameters). The mod-
ified baseline is denoted as Merge. In Fig. 3b, compared
to the Merge baseline, the W-VAE (Supervised) can also
attain slightly better performance over the simulated range
of PNR with the same order of the number of parameters
used. In Fig. 3, the weighting for the W-VAE (Supervised)
is αtraffic = 0.1(αcsi = 0.9). As detailed in Section IV-C, the
parameter search for αtraffic (αcsi) depends on the knowledge
of the prior distributions for the multi-layer features, and how
to estimate the feature priors is out of the scope of this
work. Here, we determine this hyperparameter empirically. We
run five possible choices αtraffic ∈ [0.1, 0.3, 0.5, 0.7, 0.9] and
select the best performing prior as the multi-layer feature prior
probability. The detailed results over the same range of PNR
in the first experiment are reported in Fig. 4.

The two results demonstrate that the proposed method can
successfully integrate the multi-layer features in an efficient
and theoretic-founded fashion for improved performance.

B. Unsupervised Device Identification

Then we evaluate the proposed method in unsupervised
clustering settings with the same dataset. In this case, the
models are trained without access to the labels. For the W-
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VAE, the same model architecture (same number of parame-
ters) is reused since only the loss (negative reward) function is
changed to (8). However, without label information the trained
model’s performance relies more on the initialization point.
Therefore, the number of trails in this setting is set to 40.
As in the last experiment setup, we assume knowledge of the
number of clusters of the dataset and set the number of training
epochs to 200. The best model is reported according to the
lowest total training loss value the model achieved. We report
the model with the lowest loss among the 40 trained models.
For testing performance, note that without supervision, the
predicted clusters do not necessarily match the indices of the
labels. Therefore, label matching is performed to obtain the
testing accuracy. This can be done either using exhaustive
search over all combination of label assignment which has
10! possibilities but no label is required or using a handful
of labels for one-shot learning as in unsupervised clustering
literature [52] which significantly reduces computation com-
plexity. Since the synthetic dataset we adopted has labels,
we follow the latter approach, but we stress that this label

information is used exclusively for label matching purposes
and is inaccessible during model training phase.

For the baseline, in unsupervised learning setting, the state-
of-the-art to the author’s knowledge is the K-means based
method [53]. We use an off-the-shelf K-means implemen-
tation [54], with input features formed from cascading the
200 × 2 bits traffic states and the 72 × 2 real value CSI
(real and imaginary number as two independent channels).
The configurations of the hyperparameters are set to the default
values as in [54, KMeans]. The evaluation of the testing phase
performance follows the same label matching procedures as
adopted in the W-VAE.

The results are shown in Fig. 5, where the testing accuracy
versus the range of PNR∈ [3, 12] dB is reported. Over the
range of PNR, the W-VAE outperforms the K-Means baseline
with significantly higher clustering accuracy. In this experi-
ment, we set the multi-layer weighting priors αtraffic = 0.3
(αcsi = 0.7), determined empirically in a separate experiment
(detailed in Fig. 6). Note that for the straightforward cascading
of the multi-layer features, as the K-Means baseline and the
case αtraffic = αcsi = 0.5 in Fig. 6, the clustering performance
is sub-optimal, and the W-VAE demonstrates the benefit of a
theoretic-founded and efficient approach to weight the multi-
layer features for improved clustering performance.

C. Detecting the Optimal Number of Clusters

In this part, we relax the assumption of knowing the number
of clusters of the dataset. This can be achieved through
comparing the achieved loss value over a collection of trained
models with different numbers of clusters. In practice, one
can start with a small value of the cardinality of Z, e.g.,
|Z| = 2, train the model and record the loss value, increase
the cardinality and repeat until reaching a sharp transition of
the loss value versus |Z| as shown in Fig. 7. The detection of
this transition can be done through a combination of change
point detection algorithms, and standard binary or linear search
solvers to identify the optimal cardinality of Z. Observe the
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results in Fig. 7, for two different settings of the CSI PNR, the
optimal number of clusters all located at a sharp transition of
the loss value versus |Z| and therefore can be detected. This
demonstrates that the W-VAE can also be applied to dataset
without a known number of clusters.

VI. CONCLUSION

We propose a multi-layer wireless fingerprinting method
leveraging signatures across layers which jointly improves the
device identification performance. Adopting the multi-view
machine learning paradigm allows for unsupervised clustering
of the shared device information among multi-layer features.
Our information-theoretic formulation can be extended to
supervised and semi-supervised settings with straightforward
derivations. In solving the intractability of the formulated
problem, we adopt variational inference techniques leading
to a tight surrogate bound. Then we propose extracting the
shared device information through Wyner common informa-
tion framework, leading to the development of the W-VAE
algorithm for efficient multi-layer feature clustering with linear
computation complexity as the number of layer features grows.
The generic W-VAE algorithm can be parameterized as any
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Fig. 7. W-VAE loss value versus the the number of clusters |Z|. The optimal
|Z∗| = 10 is detectable by increasing |Z| from a small value.

member of the exponential family class of distributions and
efficiently optimized with deep learning methods. The W-VAE
is evaluated on a multi-layer dataset with network layer traffic
and physical layer CSI. Our empirical results demonstrate that
in both supervised and unsupervised scenarios, the W-VAE
algorithm outperforms the state-of-the-art.
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