VLSI IMPLEMENTATION OF NEURAL NETWORKS WITH
APPLICATION TO SIGNAL PROCESSING

JABRI M. PICKARD S. LEONG P. RIGBY G. JIANG J. FLOWER B. HENDERSON P.

University of Sydney, School of Electrical Engineering, Systems
Engineering and Design Automation Laboratory

ABSTRACT

Analog sub-threshold MOS techniques offer so-
lutions to Application Specific Integrated Circuit
where power consumption is a strict constraint af-
fecting architectural and circuit design decisions.
Mapping a functional neural network model to
analog sub-threshold is a challenging task, and re-
quires careful architectural, system level and cir-
cuit level consideration, with respect to the con-
straints inherent in this technology. This paper
presents our experience in this mapping process.
A multi-layer learning algorithm suitable for ana-
log sub-threshold implementation is presented. We
also discuss system level issues and describe cir-
cuits of neurons and synapses that have been de-
signed, and present fabrication results.

1. INTRODUCTION

Analog sub-threshold MOS technology offers solutions to
the design and implementation of artificial neural net-
works where power consumption is a strict constraint. Al-
though many researchers have reported circuits operating
in sub-threshold mode, very little has been reported on
the implementation of systems.

The artificial neural network (ANN) systems addressed
in this paper are programmable ones, in contrast with
sensory-like circuits described by Carver Mead [1], so fa-
cilitating learning either on or off chip. This paper consid-
ers multi-layer feedforward networks (MLFN), although
the techniques can be easily adapted to recurrent net-
works.

2. MAPPING LEARNING INTO SILICON

Although back-propagation is an efficient algorithm for
training MLFN, it is not a “silicon-wise” learning algo-
rithm, such as Madaline Rule III [2] (node perturbation),
because:

e The need for a backward pass through the hardware
means the hardware has to be bidirectional.

e The requirement of hardware to compute the back-
propagated errors (multiplication by derivatives, etc)

e The need to compute a derivative function.

If learning is performed off-chip then the output of
each neuron has to be made available, which can mean a
serious pinout problem.

The advantages of MRIII over back-propagation are:

e No backward pass is required, so hardware need not
to be bidirectional.

e Derivative of neuron output with respect to input is
not needed.

So, the backward pass of back-propagation is replaced
by an evaluation of the gradient of the error with respect
to to the weights using “node perturbation”, that is, the
relationship 5610% ~ AAn_ftizf is used to make direct eval-
uation of the gradient. In this relation, net; = ¥ jwj;z;
and z; = f(net;) with f being the non-linear squashing
function.

This leads to a weight update rule of the form: Aw;; =
AE .
7 Anet; T3
Therefore the inclusion of the MR III learning rule
into an N neuron network in analog VLSI, additionally

requires:

o An addressing module and wires routed to select
and deliver the perturbation to each neuron.

e cither one or N multiplication hardware to compute
the term ﬁ_‘xj in addition to the multiplication
by the learning rate. If one multiplier is used then

additional multiplexing hardware is required.

¢ An addressing module and wires routed to select
and read the z; terms.

Note that if greater training flexibility is required in
the sense of off-chip access to the gradient values, then
the states of the neurons (z;) would need to be made
available, which would require a multiplexing scheme or

N chip pads.

CH 3006-4/91/0000 - 1275 $1.00 © IEEE

2.1 Weight Perturbation

An alternative approach to node perturbation is “weight
perturbation” where the gradient is approximated to a fi-
nite difference, and we show in this paper that gradient
evaluation using “weight perturbation” is a cheaper solu-
tion, in both hardware and complexity, and can equally
be used to train recurrent networks.

2.1.1 Gradient Evaluation using Weight Perturbation

The gradient with respect to the weight can simply be
evaluated by the (forward difference) approximation

OE B(wi; +perts;)— E(wi;
By Blatzra)=Bea) 1 O(pert;;)
The weight update rule then becomes:
.~ g Elwijtperti;)—E(wi;
Awu ~ n (W p:;‘t": =) (1)
where E() is the total mean square error produced at
the output of the network for a given pair of input and
training patterns and a given value of the weights.
The order of the error of the finite difference approxi-
mation can be made O(pert};) by using the central differ-
ence method, and the weight update rule becomes:

_nE(we:+ILTL)—E(we1—£CTzJL) (2)

g
Awij & pert;

However, the number of forward relaxations of the net-
work required is of the order N rather than N? for the
forward difference method. Thus either method can be
selected on the basis of a speed/accuracy trade-off.

Note that the weight update hardware involves the
evaluation of the error with perturbed and unperturbed
weights and then the multiplication by a constant. This
technique is ideal for analog VLSI implementation for the
following reasons:

1. No bidirectional circuits for back-propagation are
needed as the gradient 3%]— is approximated to gﬁ
(where Ape,sw;; is the perturbation applied at weight
w;j). i.e. the hardware used for the operation of the

network is used for the training.

2. Compared to node perturbation our technique does
not require the two neuron addressing modules, rout-
ing and extra multiplication listed above.

3. There are no overheads in routing and addressing
connections to every neuron as the same wires used
to access the weights are used to deliver weight per-
turbations. Furthermore, node perturbation requires
extra routing to access the output state of each neu-
ron and extra multiplication hardware is needed for
the -2E ¢ terms which is not the case with weight

Anet;
perturbation.

1276

Column shift registers
. Neurons
/ layer 1
Output weights
Neurons layer 0 | TMS Delta
/ Error
— Weight Update
Module
Input Weights S
Row shift registers

Figure 1. Implementation of Weight Perturbation

4. Finally, with weight perturbation, the approximated
gradient values can be made available if needed at
a rather low cost!.

3. ARCHITECTURES AND-SYSTEM LEVEL
DEsiGN

In the previous section we presented “weight perturba-
tion” (WP) and demonstrated it as cheaper for training
than either back-propagation or MRIIIL. A typical analog
sub-threshold architecture is shown in Figure 1. At the
time of writing a chip is being manufactured that contains
7 input neurons, five hidden layer neurons and 3 output
neurons (total of 50 synapses).

8.1 ANN State Representation

The architecture is based on a differential signals. The
differential current/differntial voltage scheme is attractive
because it offers:

¢ A reduction in the effects of corrolated noise on volt-
age and current levels.

¢ A direct interface to differential storage which offers
a better immunity to charge decay.

Capacitor weight storage is permanently stored in RAM
and periodically refreshed through a Digital to Analog

!1f the mean square error is required off-chip then only one single
extra pad is required. Otherwise, if approximated gradient values are
to be calculated off-chip, then no extra chip area or pads are required
as the output of the network would be accessible anyway.

Converter. Because we are not interested in true random
access to the weights, weight decoding is performed by
horizontal and vertical shift registers. Weight perturba-
tions are applied simply, either by rewriting a perturbated
digital value of the weight through the DAC or by direct
charge or discharge of the weight storage capacitors.

The WP perturbation algorithm is implemented as fol-
lows:

A: Reset Column and Row weight decoding shift regis-
ters. Reset Total (epoch) Error

B: Save error on Error-Capacitors. Add Error to Total

Error Capacitors.
Apply perturbation to current weight
Save Error-Change.
Update selected weight
Shift Row weight decoding shift register

: If Row shift register has overflow, then shift Column
weight decoding shift register. If Column weight
decoding shift register has overflow then: if Total
Error E convergence criteria then stop; else Goto

A:
H Goto to B:

A synapse is made up of a weight store (two MOS
gate capacitors), a multiplier, and a column/row select
decoding scheme. It has two pairs of differential input
voltages: one from a neuron and the other pair from the
weight voltage on the two capacitors. a synapse outputs a
differential current (I+ and I-) which facilitates summing
at a neuron input.

A neuron has two subblocks: an impedance input
stage and a squashing function as an output stage. The
input to the neuron is a differential current (the I+ and I-
from the synapse) and its output is a differential voltage.

4. CIRcUIT DESIGN

As a precursor to implementing a full network we had a
‘test run’ to check the operation of elemental neural net-
work functions and validate our cad tools. To keep design
costs to a minimum and for a reasonable turn-around time
the “Tiny Chip” design offered through Orbit’s Foresight
Programme was selected?. The sub-circuits implemented
were: Current divider; Current divider plus (p) mirror;
Wide range transconductance amplifier; Four quadrant

2The technology used was n-well, single poly, double metal, 1.2um

1277

graph_dct

1

L Lol

|

1 1 1 i
0.00 050 1.00 1.50

Vin

1
200
Figure 2. Synapse DC Transfer Function

Gilbert multiplier; Neuron(I) with current dividers on in-
put; Neuron(II) with multiplier on input; Weight stor-
age capacitors with buffered output. The number of sub-
circuits was limited by the number of pads, only a small
fraction of the available area being used.

The circuits were designed using Daisy’s Ace and Vlab
schematic capture and simulator software (using the Apex
engine); laid out with Magic, the UCB silicon mask editor.

5. SIMULATION AND TEST RESULTS

Due to limited space here, only the results for the synapse
can be shown with a brief summary of the remainder.

5.1 Synapse

This comprises weight storage and multiplier elements.
By using a drain-source shorted nfet whose gate is con-
nected to the input of a unity gain buffer (a wide range
amplifier with o/p connected to -ve i/p) the ability to
store a ‘weight’ voltage was realised. The dc transfer func-
tion of this element is shown in figure 2, and its hold up
time is plotted in figure 3. With a linear decay of only
3uV per second the prospect of a practical refresh period
in a realistic weight matrix is very good.

There are two differential voltage inputs to the mul-
tiplier: Va and Vb. The results are for Vb set to +50
and £150mV with Va swept from —200mV to +200mV.
There are two outputs from the multiplier: a current
source and a current sink. Figure 4 shows both the source
and sink current outputs and these are in good agreement
with the simulation results. For clarity simulations are

graph_hold

Vo

= T T T 3] graph_bold

Il | 1 |
50.00 100.00 150.00

secs

Figure 3. Synapse Decay Rate

graph_fqgm

Vb-1500sc

~{ Spicels0 T
N spiceS0 — ~

<

Figure 4. Four Quadrant Gilbert Multiplier

1278

only shown for Vb = +50and + 150mV. The difference
between simulation and measurement is again due to dif-
ference in threshold voltage. The current offsets at zero
differential input voltage are small and are likely due to
pad leakage.

It is intended that the input voltages to the multipliers
(from weights and neurons) lie within their linear range
(~ £100mV). This ensures that the only non-linearities
are the neuron squashing functions. As the results show,
the dynamic range is limited by the multiplier and current
work aims to improve this.

5.2 Discussion of Results

All the tests proved satisfactory in that all of the func-
tional elements operated correctly. The differences be-
tween predicted and measured performance seem to be
due mainly to the variation in threshold voltage, and also
pad current leakage in certain instances. The following
points should be noted:-

1. The ratios of the current dividers were greater than
expected but with very small offsets (14:1 instead of
11.2:1).

. The output currents from the multiplier were larger
than expected (approximately double}but again ex-
hibited very small offsets.

. Both neurons exhibited extreme sensitivity to gain
and bias voltages which makes them susceptable to
noise. More control over their operation is desirable
(a new design has been included on the next chip).

. The wide range trans-conductance amplifier exhibits
the expected tanh curve though again there is an
offset of about ten percent. Also the magnitude of
the differential output current is much smaller than
expected.

. The weight storage transfer function shows good lin-
earity over the range of interest (0.7 to 2 volts). The
voltage decay rate is very small which will assist in
the specification of any weight refresh circuitry.

REFERENCES

[1] C. Mead. Analog VLSI and Neural Systems. Addison-
Wesley Publishing Company, 1989.

[2] Bernard Widrow and Michael A. Lehr. 30 years
of adaptive neural networks: perceptron, madaline,

and backpropagation. Proceedings of the IEEE,
78(9):1415-1442, 1990.

