
Virtual Embedded Blocks:
A Methodology for Evaluating Embedded Elements in FPGAs

C.H. Ho, P.H.W. Leong and W. Luk
Department of Computing

Imperial College London, UK
{cho, phwl, wl}@doc.ic.ac.uk

S.J.E. Wilton
Department of Electrical and Computer Engineering

University of British Columbia, Canada
stevew@ece.ubc.ca

S. Lopez-Buedo
Escuela Politecnica Superior,

Universidad Autonoma de Madrid, Spain
sergio.lopez-buedo@uam.es

Abstract

Embedded elements, such as block multipliers, are increas-
ingly used in advanced field programmable gate array
(FPGA) devices to improve efficiency in speed, area and
power consumption. A methodology is described for as-
sessing the impact of such embedded elements on efficiency.
The methodology involves creating dummy elements, called
Virtual Embedded blocks (VEBs), in the FPGA to model
the size, position and delay of the embedded elements. The
standard design flow offered by FPGA and CAD vendors
can be used for mapping, placement, routing and retiming
of designs with VEBs. The speed and resource utilisation of
the resulting designs can then be inferred using the FPGA
vendor’s timing analysis tools. We illustrate the application
of this methodology to the evaluation of various schemes
of involving embedded elements that support floating-point
computations.

1. Introduction

As field programmable gate array (FPGA) technology
matures, a trend is to include coarse grained embedded ele-
ments such as memories, multipliers, digital signal process-
ing (DSP) blocks, microprocessors and networking compo-
nents as a means of improving performance and reducing
area and power consumption. This trend of including em-
bedded elements with dedicated functional units is becom-
ing a central issue in FPGA research [1].

Introducing embedded elements is a way to support
domain-specific customisation of the FPGA fabric, and it
involves a trade-off between flexibility and specialisation.
For example, while an embedded floating-point unit may
have the best possible speed and power consumption per-

formance, the silicon area is wasted if floating-point is not
required in the application. In contrast, lookup table (LUT)
based programmable logic has the highest flexibility, but an
equivalent design occupies much larger area and has sig-
nificantly reduced speed compared with an embedded very
large scale integration (VLSI) implementation.

In this work, we present a device and vendor indepen-
dent methodology for rapid assessment of the effects of
adding embedded elements to an existing FPGA architec-
ture. The key element of our methodology is to adopt vir-
tual embedded blocks (VEBs), created from the FPGA’s
logic resources, to model the placement and delay of the
embedded block to be included in the FPGA fabric. Using
this method, the benefits of incorporating embedded ele-
ments in improving application performance and reducing
area usage can be quickly evaluated, even if an actual im-
plementation of the element is not available.

To summarise, the main contributions of this paper are:

• A methodology which allows existing high and low-
level tools to be used to study the effects of embedded
elements in FPGAs.

• An illustration of this methodology based on a modifi-
able compiler and commercial tools to model embed-
ded elements using VEBs.

• An assessment of the accuracy of this framework by
modelling existing embedded elements in FPGAs over
various applications.

• An exploration of technology trends involving embed-
ded elements based on systematic variation of VEB
parameters in applications.

The remainder of the paper is organised as follows. Sec-
tion 2 covers background material and related work. Sec-

tion 3 describes the generic aspects of our methodology in-
volving VEBs as a means of modelling FPGA resources,
while section 4 explains how this methodology can be sup-
ported using vendor-specific tools such as those from Xil-
inx and Synplicity. Section 5 introduces the benchmarks
that we use. Section 6 discusses our experimental results,
and section 7 draws conclusions.

2. Background

There has been research on the effects of coarse grained
components in an FPGA fabric to form a heterogeneous de-
vice. However much of the reported work concerns major
architectural changes to the logic and routing blocks, rather
than introducing embedded blocks to existing devices.

Leijten-Nowak and van Meerbergen [2] proposed
mixed-level granularity logic blocks and compared their
benefits with a standard island-style FPGA using the Versa-
tile Place and Route tool (VPR) [3]. Ye, Rose and Lewis [4]
studied the effects of coarse grained logic cells and routing
resources for datapath circuits, also using VPR.

Beck revised VPR to explore the effects of introducing
hard macros [5], while Beauchamp et. al. augmented VPR
to assess the impact of embedding floating-point units in
FPGAs [6]. However, we are not aware of studies concern-
ing the effect of adding embedded blocks to existing com-
mercial FPGA devices, nor of methodologies to facilitate
such studies.

From the above description, it is clear that the VPR tool
has often been used in research concerning FPGA architec-
tures. VPR is open source software and has the associated
advantage that arbitrary modifications can be made to it.
Moreover, it is specifically designed for architectural ex-
ploration.

Compared with VPR, an approach that can use vendor’s
tools and devices offers the following benefits:

• Since our methodology involves advanced commer-
cial tools targeting a real FPGA device with the latest
technology, it enables a tighter integration between the
VEBs and the associated reconfigurable fabric than
VPR. This capability means that the modelled archi-
tecture can match very closely with that of existing de-
vices. In contrast, the island-style FPGA architectural
model in VPR is a relatively crude approximation to
existing commercial FPGAs. Moreover, it is difficult
to model logic and routing delays, particularly for the
latest FPGAs, due to the proprietary nature of com-
mercial FPGA architectures.

• Commercial quality synthesis tools such as Synplic-
ity’s Synplify can be used. In particular, advanced op-
timising features such as retiming are not available in

standard VPR based design flows. This feature is used
extensively in our study.

• The accuracy of our methodology can be evaluated by
comparing real embedded blocks (such as embedded
multipliers) and their corresponding VEB models. We
shall illustrate this evaluation in section 6.

Of course, there are various VPR experiments that are not
supported by the proposed approach. In particular, since
we are dealing with a real FPGA and the associated tools,
we cannot change the FPGA fabric such as: the architecture
of the lookup table in the FPGA cells, the number of cells,
or the amount of routing resources.

3. Methodology: Generic Aspects

In this section, the methodology is first described as a
generic approach which can be applied to any FPGA and
the associated design tools. The next section will cover the
actual vendor-specific design flow used in this study.

We shall first provide an overview of our methodology
that supports rapid generation of various benchmark ap-
plications to target reconfigurable architectures with VEB
models. A modifiable compiler, calledfly [7], is used so
that different wordlength and back-end operator instances
can easily be produced from a single algorithmic descrip-
tion. This allows both fixed- and floating-point implemen-
tations to be generated from the same description. We ap-
ply this methodology to a set of benchmark circuits gener-
ated in this fashion.

To measure the accuracy of this approach, block mul-
tipliers are modelled using VEBs and compared with FP-
GAs having this feature. A study of the benefits of double-
precision floating-point embedded blocks is also made. Us-
ing this approach, the speedup of an application as a func-
tion of the speed of the embedded block can be easily quan-
tified, and these studies are made for some of the bench-
marks. Power consumption is not considered in this study.

In the descriptions that follow, we use the term logic
cell (LC) for the smallest logic unit in the FPGA (usually
a lookup table plus a register) and configurable logic block
(CLB) for an array of LCs that are interconnected via the
connection and switch blocks in the FPGA.

The basic strategy employed is to use the logic resources
of a real FPGA to match the expected position, area and
delay of an application specific integrated circuit (ASIC)
implementation of an embedded block (EB). This could be
achieved using appropriate vendor’s tools or generic tools
such as VPR [3]. In order to estimate its performance, the
EB is modelled using logic cell resources in VEBs. Our
model of an FPGA with EBs is called a virtual FPGA as
illustrated in figure 1.

Distributed VEBs in a virtual FPGA
Embedded Block in ASIC

tpd

L

W

Equivalent VEB using LC

L'

W
'

WL ≈ W' L'
tpd ≈ tpd'

tpd'

Figure 1. Modelling embedded elements in FPGAs using Virtual Embedded Blocks.

To employ this methodology, an area and delay model
for the EB is required. The model should provide a high
level estimate of the area and delay of the block, extracted
from simulations of an existing design or come from mea-
surements of an actual ASIC. The area model is translated
into equivalent logic cell resources in the virtual FPGA. In
order to make this translation, an estimate of the area of a
logic cell in the FPGA is required. All area measures are
normalised by dividing the actual area by the square of the
feature size, making the area estimates independent of fea-
ture size. The VEB utilisation can then be computed as the
normalised area of the EB divided by the normalised area
of a logic cell. This value is in units of equivalent logic cells
and the mapping encourages thinking about EBs in terms
of FPGA resources. Table 1 shows a number of logic cell
area estimates. The area estimate of the embedded blocks
studied are given in section 6. We assume that there are
sufficient ports to allow interconnection of the EB to the
routing fabric. This may not be the case in some designs,
particularly those with small EBs.

In order to accurately model delay, both the logic and
wiring delay of the virtual FPGA must match that of the
FPGA. The logic delay can be matched by introducing de-
lays in the VEB which are similar to those of the EB. In the
case of very small EB/VEBs, it may not be possible to ac-
curately match the number of ports, area or logic delay and
some inaccuracies will result. A complex EB might have
many paths, each with different delays. It is possible to ei-
ther assume that all delays are equal to the longest one (i.e.
the critical path), or generate different delays for important
paths. In the latter case, shorter delays can be obtained by
taking intermediate points along the longest delay path.

Modelling wiring delays is more problematic, since the
placement of the virtual FPGA must be similar to that of
an FPGA with EBs so that their routing is similar. This
requires that:

• The absolute location of VEBs match the intended lo-
cations of REBs in the FPGA with EBs.

• The design tools be able to assign instantiations of
VEBs in the netlist to physical VEBs while minimis-
ing routing delays.

The first requirement is addressed by locating VEBs at pre-
defined absolute locations that match the floorplan of the
FPGA with EBs. The assignment of physical VEBs is cur-
rently made by manually specifying its placement. Auto-
mated methods will be the subject of a later study.

4. Methodology: Vendor Specific Aspects

This section illustrates how a VEB can be used to model
a real embedded multiplier block in Virtex II device as a
case study. All of the results described in this work are
obtained using the Synplicity Synplify Pro 8.0 synthesis
tool, the Xilinx ISE 7.1i design tools, and the Xilinx Virtex
II XC2V6000-6-FF1152 FPGA device.

4.1. VEB Delay and Area model

While the ports for the VEB must be the same as those
of the real embedded block, the VEB logic delay is emu-
lated using a dummy circuit in the VEB implementation.
Although many methods are possible, in this study, delays
are inserted using adder carry chains for the following rea-
sons:

• Adder carry chains are common to most FPGA plat-
forms, enhancing the portability of the proposed
methodology.

• The adder carry chain can be specified as a be-
havioural description, hence a platform independent
delay block can be constructed.

Device LCs/CLB Area/CLB Feature Size Normalised LC area
L A (µm2) f (µm) (N = A/L f 2)

Apex 20K400E [8] 10 63161 0.18 195,000
Virtex E [8] 4 35462 0.18 267,000
Virtex II 3000 [9] 8 71,429×0.7 0.12 434,000
Virtex II 1000 [10] 8 72,782×0.7 0.12 442,000

Table 1. Estimates of logic cell area including configuration bit, buffer and interconnect overheads. The Virtex II value
of A is based on the estimate that 70% of the total die area is used for logic cells, the other area being for pads, block
memories, multipliers etc.

Delay name Description delay (ns)

Topcy F to COUT 0.665
Tbyp CIN to COUT 0.084
Tciny CIN to Y via XOR 0.940
Tmult Embedded Multiplier 4.66
Tmultck Registered embedded 3.000

multiplier
Tdyck Register setup and 0.293

hold time

Table 2. Delay parameters for Virtex II-6 devices.

• It is relatively easy to adjust an adder’s carry chain
delay by changing its length. This feature is used to
model different embedded blocks.

The combinatorial logic delay of an adder carry chain
can be modelled bytpd = Topcy+

N−4
2 ×Tbyp+Tciny, where

N is the length of the adder carry chain,Topcy is the com-
binatorial delay from the input to the COUT output,Tbyp

is the combinatorial delay from CIN to COUT, andTciny is
the combinatorial delay from CIN to the Y output via an
XOR gate. If the output is latched, the setup and hold time
of a register (Tdyck) should be added to this value. Typi-
cal values for these parameters in the Virtex II adder carry
chain and multiplier block are extracted from vendor’s tim-
ing analysis tool and given in table 2.

As an example, to model a registered multiplier block
with delay of 3ns, N = 30 gives a logic delay (including
setup and hold time) of 2.99 ns. In the Xilinx device, the
carry chains run along the columns. One issue to note is
that the carry chain only runs in a single direction in the de-
vice and breaking the carry chain introduces a long wiring
delay. In our current approach, a certain amount of trail-
and-error is required to achieve a given delay.

For the area model, the normalised LC area for the
Virtex-II 1000 in table 1 is used in this study.

4.2. Integration of VEB into toolchain

In order to produce a VEB, it is first synthesised from
a hardware description language (HDL) description. Fea-
tures in the synthesis tool for regular design flows such as
automatic I/O block insertion, pipelining and retiming are
disabled. The resulting netlist is placed and routed using
the vendor’s toolchain. Area constraints must be specified
to force the placement of the VEB in a rectangular block.
The “trim unconnected logic” option is disabled to ensure
that the VEB is not optimised away. After place and route,
another constraint file which contains the actual placement
information for each LC in the VEB is generated. The
placement information and the netlist of the VEB is com-
piled to create a relationally placed macro (RPM).

To employ the VEB in an application, its HDL de-
scription is modified to instantiate the corresponding VEB
block. Since the VEB is considered as a black box dur-
ing synthesis, timing information must also be specified to
allow the synthesis tool to take timing of the block into ac-
count during optimisation. This makes optimisations such
as retiming possible.

During place and route, the VEBs are placed in a regular
locations on the FPGA, modelling the expected locations of
the EBs. This is achieved using placement constraints. The
design is then placed and routed in the usual fashion. The
delays introduced in the VEB model the logic delay and
its placement means that realistic routing is required. The
vendor’s tools are used to obtain resource utilisation delay
information about the circuit.

5. Benchmark Circuits

To evaluate the effect of including VEBs in real ap-
plications, a set of datapath-intensive benchmark applica-
tions are used. Note that only fixed-point versions of the
unsigned multiplier and BGM benchmarks are available
since, for the former, it is not possible to combine floating-
point multipliers in the same way and, for the latter, the
design is only available in fixed-point form.

Benchmark Pipelined # adders # multipliers

dscg Y 2 4
ode N 3 2
mm3 N 2 3
fir4 Y 3 4
bfly Y 4 4
mul34∗ Y - 4
mul68∗ Y - 16
mul136∗ Y - 64
bgm∗ Y - 46

Table 3. Number of operators used in the benchmarking
circuits as well as their circuit type. Benchmarks with a ∗

superscript are fixed-point only.

All other benchmarks are generated using a rapid proto-
typing approach with a modifiable compiler calledfly [7].
This tool is used to produce both fixed-point and floating-
point benchmarking circuit from a single description, facil-
itating the generation and debugging of benchmarks with
different arithmetic systems (fixed and floating-point) and
wordlengths (18-bit and 64-bit). In addition,fly’s dis-
tributed control scheme [11, 7] can be easily modified to
cope with operators having different latencies.

In this section, the benchmark circuits employed this
study are first described. This is followed by a description
of the IEEE 754 compliant double precision library used to
implement the operators for the benchmarks.

The floating-point benchmarks are generated by imple-
menting the applications using double precision floating-
point with round-to-nearest-even rounding mode and ex-
ception signals being ignored. The applications further as-
sume the input data comes from an off-chip memory. Ta-
ble 3 summarises the resource usage of the benchmarking
circuits and indicates whether the circuit is fully pipelined
(accepts an input and produces an output every cycle). If
a pipelined implementation is not possible due to depen-
dency or circuit size constraints, an iterative implementa-
tion is made. Note that for an non-pipelined implementa-
tion, pipelined operators require multiple cycles and hence
affect the total number of cycles required to complete the
benchmark.

5.1. Benchmark Descriptions

5.1.1. Digital Sine-Cosine Generator

The digital sine-cosine generator (dscg) [12] has a num-
ber of applications, such as the computation of the discrete
Fourier transform and in certain digital communication sys-
tems, such as in future Hiperlan systems for high perfor-

mance wireless communications. Lets1n and s2n denote
the two outputs of a digital sine-cosine generator, the out-
puts at the next sample can be computed using the follow-
ing formula:

[

s1n+1

s2n+1

]

=

[

cos(θ) cos(θ)+1
cos(θ)−1 cos(θ)

] [

s1n

s2n

]

(1)

5.1.2. Ordinary Differential Equation

Many scientific problems involve the solution of ordi-
nary differential equations (ODEs). An ODE solver (ode)
is implemented as part of the floating-point benchmarks.
The benchmark circuit solves the ODE [13]:

dy
dt
=

(t−y)
2

overt ∈ [0,3] with y(0)= 1 (2)

using the Euler method. The trajectory ofy is given by
the difference equationyk+1 = yk+h(tk−yk)

2 andtk+1 = tk+h,
whereh is the step size. The ODE solver takesh as an input
parameter and returns the value ofy. Due to dependencies,
this circuit cannot be fully pipelined and is hence imple-
mented in an iterative fashion. Pipelined operators are used
by waiting for the output so low latency has an advantage
for this benchmark.

5.1.3. Matrix Multiplication

Matrix multiplication is used frequently in many sig-
nal processing and scientific applications. A 3× 3 matrix
multiplication application benchmark (mm3) is developed.
The implementation sequentially computes 9 vector dot-
products and each dot-product is computed sequentially
with 3 multiplies and 2 additions.

5.1.4. FIR Filter

Digital filtering is another common application and
we have implemented a 4-tap finite impulse response fil-
ter (fir4), which implements the equationyi =

∑4
j=0 k j xi− j

wherexi is the input of the filter,ki is the filter window and
yi is the output.

5.1.5. Butterfly

The fast Fourier transform (FFT) is another important
signal processing primitive. The FFT is composed from
butterfly operations which computez= y+ x×w, wherex
andy are the inputs from previous stage andw is a twid-
dle factor. All values are complex numbers, therefore each
multiplication involves 4 multipliers and 2 adders (bfly). A
state machine is implemented to control the dataflow of the
circuits. Figure 2 illustrates the datapath of a single butter-
fly which is used as the benchmark circuit.

Re {x}

Im {x}

Im {w}

Re {w}

X

X

X

X

–

+ +

+

Re {y}

Im {y}

Re {z}

Im {z}

Figure 2. One butterfly stage in an FFT.

5.1.6. Unsigned Multiplier

Three parallel unsigned multipliers of size 34-bit
(mul34), 68-bit (mul68) and 136-bit (mul136) are imple-
mented by using 18× 18 fixed-point multipliers as build-
ing blocks, and summing their outputs appropriately. They
use 4, 16 and 34 18×18 embedded multipliers respectively.
These are used to test the modelling of embedded multipli-
ers and only used for fixed-point benchmarks.

5.1.7. BGM

The datapath of a design to compute Monte Carlo sim-
ulations of interest rate model derivatives priced under the
Brace, Ga̧tarek and Musiela (BGM) framework is used as
the final test circuit (bgm) [14, 15]. DenoteF(t, tn, tn+1)
as the forward interest rate observed at timet for a period
starting attn and ending attn+1. Suppose the time line
is segmented by the reset dates (T1,T2, ...,TN) (called the
standard reset dates) of actively trading caps on which the
BGM model is calibrated. In the BGM framework, the for-
ward rates{F(t,Tn,Tn+1)} are assumed to evolve according
to a log-normal distribution. WritingFn(t) as the shorthand
for F(t,Tn,Tn+1), the evolution follows the stochastic dif-
ferential equation (SDE) withd stochastic factors:

dFn(t)
Fn(t)

= ~µn(t)dt+ ~σn(t) ·d~W(t) n=1 . . . N. (3)

In this equation,dFn is the change in the forward rate,Fn,
in the time intervaldt. The drift coefficient, ~µn, is given by

~µn(t) = ~σn(t) ·
n
∑

i=m(t)

τi Fi(t)~σi(t)
1+ τiFi(t)

(4)

wherem(t) is the index for the next reset date at timet and
t ≤ tm(t), τi = Ti+1−Ti andσn is thed-dimensional volatil-
ity vector. In the stochastic term (the second term on the
right hand side of Equation 3),d~W is the differential of a
d-dimensional uncorrelated Brownian motion~W, and each
component can be written asdWk(t) = ǫk

√
dt whereǫk is a

Gaussian random number drawn from a standardised nor-
mal distribution, i.e.ǫ ∼ φ(0,1.0).

exception

adder/multiplier

post-normalisation

pre-normalisation

A B
Rounding

mode

Result Ex Flags

add/sub

Figure 3. Simplified datapath for the floating-point
adder/multiplier.

5.2. Floating-Point Library

A library of floating-point operators is developed in the
Verilog HDL, based on a heavily modified open source
floating-point library [16]. Extra pipeline registers are
added to the original design to improve performance. Dif-
ferent floating-point operators are extracted as a single top-
level entity, where the original design is a single floating-
point unit (FPU) entity. Moreover, the library is modified
to support arbitrary size of exponent and significand, and
both single and double-precision libraries are verified us-
ing a common floating-point testbench generation scheme.
This library is fully-compliant with the IEEE754 [17] stan-
dard, supporting all 4 rounding modes, subnormal numbers
and exceptions.

5.2.1. Floating-Point Adder

A simplified block diagram of the floating-point adder
and multiplier is shown in figure 3. The dotted-lines
indicate the location of pipeline registers. In the pre-
normalisation stage, the inputs are registered and the expo-
nents compared. Inputs are swapped if necessary. The sig-
nificands are shifted right for alignment and a mode which
indicates the operation to be performed (either addition or
subtraction) is checked. The most expensive circuits in
the adder are two barrel shifters used in the pre and post-
normalisation blocks.

Special inputs such as subnormals, infinity and not a
number (NaN) are handled in the exception handling block.
Flags (subnormal, zero, infinity, NaN) are set according to
the combination of inputs. This circuit only requires sev-
eral comparators. The addition block takes the output from
the pre-normalisation block, in which the data has been
properly aligned and adds or subtracts the numbers accord-
ing to the operation mode.

The post-normalisation block is the most complicated

part of the adder. A priority encoder takes the addition
block output and determines the number of leading ze-
ros. The exponent is then adjusted and the significand left-
shifted. Different rounding schemes are enforced according
to the input to produce final result. Exception flags such as
inexact number, overflow, underflow are generated based
on the final result.

5.2.2. Floating-Point Multiplier

In the pre-normalisation stage, the intermediate expo-
nent is determined by adding the input exponents. Hidden
bits of the significands are recovered and attached to the
significands based on the exponent values.

The multiplication block takes the output from the pre-
normalisation block (including hidden bits) and the signif-
icands are multiplied. The result is then sent to the post-
normalisation block. The multiplier circuit consumes most
of the resources in this block.

The exception and post-normalisation blocks are similar
to those in the floating-point adder.

5.2.3. Floating-Point Verification

To verify that the floating-point operators are compliant
with the IEEE 754 standard, an open-source program called
TestFloat-2a[18] is employed. Tests are made up of simple
pattern tests intermixed with weighted random inputs for
the floating-point operators. The “level 1” test inTestFloat-
2a covers all 4 rounding modes, and all boundary cases of
given arithmetic, including underflows, overflows, invalid
operations, subnormal inputs, zeros (positive and negative),
infinities (positive and negative), and NaNs. Using this test
and ModelSim 5.7d, our library is simulated using more
than half a million test cases and no errors are found.

6. Results

6.1. Verification of the VEB Approach

In order to verify the results obtained using our method-
ology, we develop a VEB for an embedded 18×18 multi-
plier (EM). As such multipliers are found in Virtex II de-
vices, it is possible to compare the routing and logic delays
of benchmark circuits from the VEB approach with those
given by the actual EMs.

To estimate the normalised area of an EM in Virtex II,
we assume that they occupy a total of 2% of the die area
which, in turn, is reported to be 93mm2 [10]. This trans-
lates to a normalised LC area of approximately 2,751,000,
which is 6 LCs. The timing information is extracted from
the data sheet of the device; the relevant parameters are
shown in table 2.

The benchmark circuits are implemented both using the
EMs and the VEB multiplier. Table 4 summarises the re-
source utilisation and critical path delay for both imple-
mentations. Let us first compare the critical path delay,
which is usually the parameter of most interest to a designer
since it determines the maximum clock frequency at which
the circuit can be operated. As one can see from the table,
the difference between the two approaches is at most 11%.
For most of the circuits, the critical path would involve the
multiplier. In those cases where it is not, the longest delay
through the multiplier is very close to the critical path of
the circuit.

For the bgm benchmark, table 4 shows that a speedup
of 1.2 is gained by retiming. In designs where the stages
are not as well balanced, as is often the case when a VEB
is introduced, more dramatic speedups are often observed.
The retiming feature is absent from most VPR based design
flows [3].

Table 5 shows the breakdown of the critical path into
logic and routing delays for the EM implementation. The
corresponding path in the VEB implementation is identi-
fied and shown in the same table. The sum of the logic
and routing delay for the EM should be equal to the cor-
responding value in table 4, but due to clock skew it is
slightly different. The logic delays between the two im-
plementations are very similar. The routing delays differ
greatly because the EM and VEB implementations often
have different placement, but since the nets are not on the
critical path in the VEB implementation, they do not af-
fect the maximum operating frequency of the circuit. It
would be possible to also match the routing delays by lock-
ing placement of all of the LCs in the design rather than
just the VEB, if closer matching of the routing delays is
desired.

For the bgm circuit with retiming enabled, there is no
corresponding path between the EM and VEB implemen-
tation because the registers are moved during this optimisa-
tion. The critical path of the VEB implementation is shown
in this case and the difference column left blank.

6.2. Faster Embedded Multipliers

The VEB approach can be used to (a) obtain a single
performance estimate for introducing embedded blocks,
(b) analyse performance/area trade-offs, and (c) determine
the EM speed required to meet a given system performance.
To illustrate this point, we measure the bgm performance
over a range of VEB delays. Retiming is used in such ex-
periments since, for pipelined designs, improving the per-
formance of one pipeline stage can create slack in another
stage, moving the bottleneck to a different stage of the
pipeline. A similar situation occurs in multicycle designs.

The results are shown in figure 4. An EM performance

Benchmark Size (slices) # of EMs EM delay (ns) VEB delay (ns) Difference (ns) Difference (%)

dscg 177 4 4.599 4.981 0.382 8%
fir4 193 4 4.616 4.704 0.088 2%
ode 204 2 4.402 4.539 0.137 3%
mm3 469 3 4.859 4.815 0.044 1%
bfly 629 4 5.668 5.224 0.444 8%
mul34 141 4 11.191 11.287 0.096 1%
mul68 604 16 12.553 14.099 1.546 11%
mul136 2426 64 14.632 13.248 1.384 10%
bgm 2315 46 14.055 13.866 0.189 1%
bgm∗ 2205 46 11.594 11.602 0.008 0%

Table 4. Summary of resource utilisation and critical path delay for embedded multiplier (MULT18X18) and VEB implementations.
A ∗ indicates that retiming is enabled during synthesis.

Benchmark EM delay Equivalent VEB path delay Difference
logic (ns) routing (ns) logic (ns) routing (ns) logic (ns) logic (%) routing (ns) routing (%)

dscg 3.449 1.15 3.445 1.536 0.004 0.116% 0.386 25%
fir4 3.449 1.167 3.445 0.815 0.004 0.116% 0.352 43%
ode 3.449 0.911 3.445 0.672 0.004 0.116% 0.239 36%
mm3 3.449 1.366 3.445 1.067 0.004 0.116% 0.299 28%
bfly 3.449 2.062 3.445 1.411 0.004 0.116% 0.651 46%
mul34 8.818 2.345 8.99 2.202 0.172 1.913% 0.143 6%
mul68 8.682 3.687 8.99 4.96 0.308 3.426% 1.273 26%
mul136 8.682 5.95 8.99 4.258 0.308 3.426% 1.692 40%
bgm 10.119 3.901 10.019 1.916 0.1 0.998% 1.985 104%
bgm∗ 8.439 3.155 7.631* 3.971* n/a n/a n/a n/a

Table 5. Breakdown of critical path delay for embedded multiplier and VEB implementations. A ∗ indicates that retiming is enabled
during synthesis.

of 1 is the same as the performance of the Xilinx EM, and a
normalised system performance of 1 corresponds to the ex-
ecution time of the bgm benchmark. From this figure, one
can determine the maximum speedup that can be achieved
in this application via faster EMs to be approximately 1.4,
which can be obtained by speeding up the block multiplier
in Virtex II devices by 2.2 times.

As an example of estimating system performance of a
design fabricated in a different process technology, con-
sider a 16× 16 bit combinational multiplier operating at
1 GHz with an area of 0.474mm2 at 1.3 V in 90 nm tech-
nology [19]. Assuming velocity saturated general scal-
ing of transistor lengths from 90nm to 0.13 µm (1/S =
0.13/0.09), the delay would scale by 1/S, i.e. from 1nsto
1.44ns[20]. The scaled area of the implementation would
be 132 LCs. Such an implementation is thus 1.44 times
faster but uses 3.6 times more area than the Xilinx EM, and
improves bgm performance by 15%.

Operator size # of EMs Latency Delay
(LCs) (ns)

FP Adder 3554 0 5 7.465
FP Multiplier 4300 9 5 13.197
FPU (VEB) 570 0 1 7.151

Table 6. FPGA implementation results for floating-
point operators, where FPU(VEB) indicates the equiv-
alent ASIC implementation of FPU using VEB approach.
The FPU(VEB) is 6 times smaller than the floating-point
adder and has only one clock cycle latency.

6.3. Embedded Floating-Point Unit

An FPGA implementation of a double-precision FPU
is made by synthesising the floating-point library in sec-
tion 5.2 targeting Virtex II technology. The size and perfor-
mance of the adder and multiplier in this FPU are shown in
table 6.

The area and delay model of a VEB floating-point unit
(FPU) is made based on area and speed estimates of the
Blue Gene ASIC [21, 22]. This is a state-of-the art FPU
fabricated in a similar technology (0.13µm) to the Xilinx
Virtex II. It operates at a clock frequency of 700 MHz, with
an area estimated to be 4.26 mm2 [21] which translates to
570 LCs. The area estimate is very conservative, since this
FPU is much more sophisticated than the one used for the
FPGA implementation.

Since the Blue Gene 700 MHz FPU design has a much
smaller logic delay than the routing delay of the FPGA,
a better implementation can be obtained by reducing both
its latency and clock frequency by a factor of 5. Thus the
VEB FPU considered has a clock frequency of 140 MHz
with a one cycle latency. This essentially trades off clock
frequency for reduced latency.

The performance of the Virtex II FPGA is compared to
a virtual FPGA with embedded FPUs using the floating-
point benchmarks. A summary of the results is given in
table 7. As one can see, augmenting the FPGA with em-
bedded FPUs leads to a mean improvement in area and de-
lay by factors of 3.7 and 4.4 respectively. In contrast, a re-
cent investigation of embedding double-precision FPUs in
FPGAs based on VPR with a different set of benchmarks
results in estimates of average area savings of 55.0% and
average increase of 40.7% in clock rate over existing ar-
chitectures [6]. We attribute the differences to: different
benchmarks being used; CAD tools; FPU delay and la-
tency; FPGA model; and our use of retiming optimisations
during synthesis.

Note that, for instance in the case of the ode benchmark,
one can potentially support 3.8 times more dedicated FPUs
in the same area as FPUs from programmable resources,
meaning that more instances of the design can operate in
parallel. Hence in the limit, the system throughput can be
improved by up to 40 times if we include both improvement
in speed and in parallelism due to area reduction.

Dedicated FPUs are wasted resources for designs that
do not make use of them; however, each FPU occupies ap-
proximately the same area as 72 CLBs, which translates to
0.9% of the chip area of an XC2V6000 device.

6.4. Impact of Embedded Block Performance

Experiments are conducted, similar to those in sec-
tion 6.2, to assess the impact of embedded block perfor-
mance on system performance. Specifically, we study the
speedup of the bfly benchmark as a function of the FPU
performance (figure 5), normalised to the speed of the Blue
Gene model described in section 6.3. It can be seen that a
modest improvement in FPU speed can lead to a large im-
provement in the bfly benchmark: for instance improving
the FPU performance by 30% improves bfly performance

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.00 1.50 2.00 2.50 3.00

Normalised EM Performance

N
or

m
al

is
ed

 S
ys

te
m

 P
er

fo
rm

an
ce

Figure 4. Performance of fixed-point bgm benchmark for
different VEB delays, with retiming.

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1 1.5 2 2.5 3

Normalised FPU Performance

N
or

m
al

is
ed

 S
ys

te
m

 P
er

fo
rm

an
ce

Figure 5. Performance of floating-point bfly benchmark
for different FPU delays, with retiming.

by 40%. Beyond a factor of 1.4, the speedup of the bench-
mark increases rather more slowly. This type of informa-
tion can be used to determine the best option for ASIC im-
plementations of EBs in which the synthesis tools offer a
wide range of possible area/delay trade-offs.

7. Conclusion

We propose a methodology for estimating the effects of
introducing embedded blocks to existing FPGA devices.
The methodology is evaluated by modelling block multi-
pliers in Xilinx Virtex II devices, and we find that predic-
tion of critical paths to approximately 10% accuracy can be
achieved. The methodology is then applied to predict the
impact of embedded floating-point units, showing a pos-
sible reduction in area of 3.7 times and speedup of 4.4
times. Current and future work includes refining our VEB-
based tools to support, for instance, better modelling of
the interconnection between VEBs and the routing fabric;
VEB-aware technology mapping and power consumption
estimation; exploring ways of combining our methodology

FPGA VEB Reduction Factor
EMs throughput size delay FPUs throughput size delay Area Delay

(# of cycle) (LC) (ns) (# of cycle) (LC) (ns)

dscg 36 1 19006 22.711 6 1 3420+ 940 8.807 4.4 2.6
fir4 36 1 20590 23.545 7 1 3990+ 996 9.539 4.1 2.5
ode 18 20 13984 17.756 5 4 2850+ 870 8.525 3.8 10.4
mm3 27 225 17236 19.320 5 45 2850+ 2390 8.587 3.3 11.3
bfly 36 1 25640 20.245 8 1 4560+ 3424 8.821 3.2 2.3

Geometric Mean: 3.7 4.4

Table 7. FPGA implementation results for floating-point benchmark applications. The VEB size is given as the FPU
area (in equivalent LC resources) plus the LC resources needed to implement the rest of the circuit.

with related tools such as VPR to provide a comprehensive
framework for exploring and developing next-generation
FPGA architectures; and extending the set of benchmarks
for evaluating our approach.

References

[1] J. Rose, “Hard vs. soft: The central question of pre-
fabricated silicon,” in34th International Symposium on
Multiple-Valued Logic (ISMVL’04), May 2004, pp. 2–5.

[2] K. Leijten-Nowak and J. L. van Meerbergen, “An FPGA ar-
chitecture with enhanced datapath functionality,” inProc.
FPGA ’03, ACM Press, 2003, pp. 195–204.

[3] V. Betz, J. Rose, and A. Marquardt, Eds.,Architecture and
CAD for Deep-Submicron FPGAs. Kluwer Academic Pub-
lishers, 1999.

[4] A. Ye, J. Rose, and D. Lewis, “Architecture of datapath-
oriented coarse-grain logic and routing for FPGAs,” in
CICC ’03: Proceedings of the IEEE Custom Integrated Cir-
cuits Conference, 2003, pp. 61–64.

[5] L. Beck, A Place-and-Route Tool for Heterogeneous
FPGAs. Distributed Mentor Project Report, Cornell
University, 2004.

[6] M. Beauchamp, S. Hauck, K. Underwood, and K. Hem-
mert., “Embedded floating point units in FPGAs,” inProc.
FPGA ’06, ACM Press, 2006.

[7] C. Ho, P. Leong, K. H. Tsoi, R. Ludewig, P. Zipf, A. Ortiz,
and M. Glesner, “Fly - a modifiable hardware compiler,” in
Proc. FPL. LNCS 2438, Springer, 2002, pp. 381–390.

[8] K. Padalia, R. Fung, M. Bourgeault, A. Egier, and J. Rose,
“Automatic transistor and physical design of FPGA tiles
from an architectural specification,” inProc. FPGA ’03,
ACM Press, 2003, pp. 164–172.

[9] Saab Ericsson Space AB European Space Agency Con-
tract Report, Application-like Radiation Test of XTMR
and FTMR Mitigation Techniques for Xilinx Virtex-
II FPGA. https://escies.org/public/radiation/esa/database/-
ESA QCA0415SC.pdf, 2005.

[10] C. Yui, G. Swift, and C. Carmichael, “Single event upset
susceptibility testing of the Xilinx Virtex II FPGA,” in
Military and Aerospace Applications of Programmable
Logic Conference (MAPLD), 2002.

[11] I. Page and W. Luk,Compiling Occam into FPGAs.
Abingdon EE&CS Books, 1991, pp. 271–283.

[12] S. K. Mitra, Digital Signal Processing A Computer-Based
Approach International Editions 1998. McGraw-Hill,
1998, pp. 339–416.

[13] J. Mathews and K. Fink,Numerical Methods Using
MATLAB, 3rd ed. Prentice Hall, 1999, pp. 433–441.

[14] J. Hull, Options, futures and other derivatives, 5th ed.
Prentice-Hall, 2002.

[15] G. Zhang, P. Leong, C. H. Ho, K. H. Tsoi, C. Cheung,
D.-U. Lee, R. Cheung, and W. Luk, “Reconfigurable
acceleration for Monte Carlo based financial simulation,” in
Proc. ICFPT, 2005, pp. 215–222.

[16] R. Usselmann,Floating Point Unit.
http://www.opencores.org/project.cgi/web/fpu/overview,
2005.

[17] N. Y. ANSI/IEEE, IEEE Standard for Binary Floating-
Point Arithmetic, The Insittution of Electrical and Electronic
Engineering, Inc, Tech. Rep., 1985, IEEE Std 754-1985.

[18] J. Hauser,TestFloat Release 2a General Documentation.
http://www.jhauser.us/arithmeic/testfloat.txt, 1998.

[19] S. Hsu, S. Mathew, M. Anders, B. Zeydel, V. Oklobdzija,
R. Krishnamurthy, and S. Borkar, “A 110 GOPS/W 16-bit
multiplier and reconfigurable PLA loop in 90-nm CMOS,”
IEEE Journal of Solid State Circuits, pp. 256–264, 2006.

[20] J. Rabaey, A. Chandrakasan, and B. Nikolic,Digital
Integrated Circuits A Design Perspective. Prentice-Hall,
2002.

[21] A. Bright et. al., “Blue Gene/L compute chip: synthesis,
timing, and physical design,”IBM J. Res& Dev., vol. 49,
no. 2/3, pp. 277–287, March/May 2005.

[22] C. Wait, “IBM PowerPC 440 FPU with complex-arithmetic
extensions,” IBM J. Res& Dev., vol. 49, no. 2/3, pp.
249–254, March/May 2005.

