
 
Rui Tang 

Impacts of Temporal Resolution and System Efficiency on PV Battery 
System Optimisation 

  
Rui Tang1, 4, Khalid Abdulla2, Philip H.W. Leong1, Anthony Vassallo3 and Jonathon Dore4 

 
1Computer Engineering Laboratory, University of Sydney, Sydney NSW 2006, Australia 

2School of Engineering, University of Melbourne, Melbourne VIC 3010, Australia  
3Centre for Sustainable Energy Development, University of Sydney, Sydney NSW 2006, 

Australia 
4Solar Analytics Pty Ltd, Sydney NSW 2016, Australia 

E-mail: rui.tang@sydney.edu.au  
Abstract 

Power scheduling optimisation is crucial to the economic profitability of a battery integrated 
solar system. Despite the growing number of PV battery scheduling optimisation studies, 
most literature uses relatively low temporal resolution in their optimisation cost functions 
which is different from the real-time scenario where realised costs are derived 
instantaneously. It is unclear how accurate these estimations are and how they can impact the 
conclusions of an optimisation model. Furthermore, most studies use quite rough estimations 
of battery system efficiency which could potentially lead to inaccurate estimations of state-of-
charge and optimised costs. In this work, we assess the impacts of applying various temporal 
resolutions and efficiency settings on optimised costs and savings in a rule-based and a linear 
programming PV battery optimisation model. It is shown that using input data with hourly 
temporal resolution and a rule-based model could respectively lead to 2.9% and 12.6% 
underestimations of optimised costs and savings to a battery owner with flat tariff. A temporal 
resolution equal to or finer than 5-minute is proven to minimise the errors related to lower 
temporal precisions. Significant cost and saving errors are found with constant efficiency 
settings by comparing the results derived by using real-time data from Australian residential 
battery consumers with our simulation results.  

1. Introduction 
As of April 2017, more than 1.66 million PV systems have been installed in Australia, with a 
total capacity of over 5.92 GW (APVI, 2017). Most of the installed systems are residential, 
and as the generous solar feed-in tariffs have expired for most Australian residential 
customers, energy storage is being considered as an option to increase the economic 
profitability of PV systems through functionalities including maximising self-consumption, 
peak shaving and price arbitrage. As a result, 6750 battery systems were installed in 2016, a 
significant uptake compared to 500 in 2015 (Sunwiz, 2017).  
Optimising the charging/discharging activities of batteries is crucial to realise the full 
potential benefit of a PV-battery system. Many studies have sought to solve this sequential 
stochastic optimisation problem using various optimisation techniques such as linear 
programming, quadratic programming, dynamic programming and model predictive control. 



 
Moreover, due to the intrinsic intermittency of solar energy and large variations in demand 
profiles, forecasts of solar generation and electricity consumption are often integrated in these 
optimisation frameworks to facilitate predictive optimisation. 

1.1. Problem Statement 

1.1.1. Temporal Resolution in PV Battery Scheduling Optimisation 
Currently there are no PV and consumption benchmark datasets for PV battery power 
scheduling optimisation. As a result, different PV and load datasets are used in optimisation 
studies and their temporal resolutions are dependent on the applied sampling rates of 
electricity meters and weather stations.  
For most optimisation studies related to PV battery power scheduling, the granularity of input 
PV and consumption data will determine the temporal resolution of an optimisation cost 
function. This is because most models have a single fixed-length horizon with constant 
resolution and formulation of the optimisation problem is more straight-forward when the 
input data to an optimisation model has the same granularity as the output control signals. 

As indicated in Table 1, which provides a summary of applied temporal resolutions for the 
optimisation models used in our reviewed PV battery scheduling literature, most studies use 
PV and consumption data at a relatively low resolution. 

Table 1: Temporal resolution applied in PV battery scheduling optimisation studies 

Temporal 
Resolution 

References 

1 minute (Venayagamoorthy et al. 2016) 

4 – 5 minutes (Koohi-Kamali et al. 2014; Wang et al. 2014) 

10 minutes (Bennett et al. 2015; Riffonneau et al. 2011) 

15 minutes (Braam et al. 2015; Hanna et al. 2014; Keerthisinghe et al. 2014; Li & 
Danzer 2014; Nottrott et al. 2013; Olaszi & Ladanyi 2017; Syed & 
Raahemifar 2016) 

30 minutes (Abdulla et al. 2016; Abdulla et al. 2017; Keerthisinghe et al. 2016; 
Ratnam et al. 2015a; Ratnam et al. 2015b; Zhang et al. 2015) 

1 hour (Aghajani et al. 2015; Chang et al. 2013; Fuselli et al. 2013; Liu et al. 
2015; Lorenzi & Silva 2016; Lu & Shahidehpour 2005; Luna et al. 2016; 
Ming et al. 2017; Nunez-Reyes et al. 2017; Pezeshki et al. 2014; 
Ranaweera & Midtgård 2016; Shang et al. 2016; Su et al. 2014; Teng et 
al. 2013; Wu et al. 2014; Zhang & Jia 2015) 

The use of low temporal resolution in an optimisation’s objective function may lead to errors 
in estimated costs as realised costs are derived instantaneously in a real-time scenario. A few 
approaches in the literature have compared various granularities used in Distributed 
Generation (DG) optimisations and some explorations have been conducted to evaluate the 
impacts of applying input data with various resolutions.  

In Hawkes & Leach’s analysis on the impacts of temporal resolution on combined production 



 
of heat and power (CHP) modelling (2005), they found using coarse demand data has a 
noticeable impact on the optimal capacity, carbon dioxide emission reduction and lifetime 
costs of a CHP system. An analysis was done to explore the effects of data granularity on the 
imports and exports of a DG system, the study concluded that low resolution data leads to 
underestimations of imports and exports (Wright & Firth 2007). Hoevenaars & Crawford 
(2012) investigated impacts of data resolution on the optimal sizes of components such as PV, 
wind, battery and diesel in a renewable system, they found the impacts are strongly related to 
system configuration and it is difficult to make a simple granularity recommendation. A study 
completed by Ried et al. (2015) explored effects of applying low resolution data on the 
modelling of residential PV battery system, the results showed coarse load data could cause 
overestimations of battery lifetime and underestimations of a battery’s contribution to PV self 
consumption. The impact of data granularity on DG capacity and estimated losses were 
investagted by Kools & Phillipson (2016), they recommended a resolution finer than 1 hour is 
not necessary as differences in results are negligible when using high resolution data.  Beck et 
al. (2016) conducted an analysis on the influence of PV and load data granularity on self-
consumption and sizing of a PV battery system. They found temporal precision of load data is 
more critical to the estimation of self-consumption rate and for a system with a relatively low 
and stable demand profile, 15-minute data is sufficient for determination of self-consumption 
rate. Moreover, their study concluded that 1 hour resolution is sufficient for sizing of PV 
battery systems. Abdulla et al. (2017) demonstrates that for a residential PV storage system, 
the estimations of storage value can be influnced by the temporal resolution of input PV and 
load data. An average of 17% difference was found between using 1 minute and 30 minute 
data for a simulated site configuration in which the battery is controlled by a rule-based 
algorithm designed to maximise self consumption of PV. 
From the literature, it remains unclear how low temporal precision could impact the optimised 
costs of objective functions in a PV battery power scheduling model. Moreover, a resolution 
finer than 1 minute has not yet been explored by DG optimisation analysis. Therefore, it is 
worthwhile to look more closely at temporal resolution, to understand how the optimised 
costs are affected.  

1.1.2. Storage Efficiency Settings in PV Battery Scheduling Optimisation 
Storage efficiency plays an important role in the system setup of a PV battery power 
scheduling optimisation problem as it not only affects the system energy losses but can also 
influnence the State of Charge (SOC) constraints in the optimisation formulation. 
Most studies in power scheduling optimisation of PV and battery systems tend to assume the 
battery conversion loss is linear to the energy flows of a battery. Battery efficiency settings 
used by reviewed literature can be categrised into three main types, as shown in Table 2. 

Table 2: Battery Efficiency Settings applied in existing PV battery scheduling 
optimisation studies 

Storage Efficiency Setting References 

Perfect Conversion 
Efficiency 

(Hubert & Grijalva 2012; Leo et al. 2014; Luna et al. 2016; 
Luna et al. 2017; Miyazato et al. 2016; Nottrott et al. 2013; 
Pezeshki et al. 2014; Ratnam et al. 2015a; Ratnam et al. 
2015b; Suzuki 2012; Venayagamoorthy et al. 2016; Zhang 



 
& Jia 2015; Zhu & Hug 2014) 

Constant 
Charging/Discharging 
Efficiency 

(Abdulla et al. 2016; Abdulla, Steer, Wirth, De Hoog, et al. 
2017; Aghajani et al. 2015; Barnes et al. 2015; Bennett et 
al. 2015; Braam et al. 2015; Chang et al. 2013; Fuselli et 
al. 2013; Georges et al. 2017; Gitizadeh & Fakharzadegan 
2013; Hanna et al. 2014; Hoevenaars & Crawford 2012; 
Hoke et al. 2013; Hong & Lin 2013; Koohi-Kamali et al. 
2014; Kusakana 2016; Li & Danzer 2014; Liu et al. 2015; 
Lorenzi & Silva 2016; Lu & Shahidehpour 2005; Mahanty 
& Gupta 2004; Ming et al. 2017; Olaszi & Ladanyi 2017; 
Ranaweera & Midtgård 2016; Ranaweera et al. 2017; 
Reddy 2016; Ren et al. 2016; Schibuola et al. 2017; Su et 
al. 2014; Syed & Raahemifar 2016; Teng et al. 2013; 
Torreglosa et al. 2015; Wang et al. 2014; Wu et al. 2014; 
Zhang et al. 2015) 

Efficiency derived from 
quadratic curves 

(Keerthisinghe et al. 2014; Keerthisinghe et al. 2016; 
Riffonneau et al. 2011; Tischer & Verbic 2011) 

From Table 2, we can see several studies assume perfect battery conversions (i.e. the 
efficiency is assumed to be 100%). The majority of approaches incorporate a constant 
charging/discharging efficiency. Several studies have adopted a quadratic battery efficiency 
curve where the battery charging/discharging efficiency is dependent on the input/output 
power. 

To the best of the authors’ knowledge, there is no published research looking at evaluating the 
impacts of various battery efficiency settings in a PV battery optimisation model. 
Furthermore, there is a need to investigate the data from real PV battery systems to assess 
whether a linear battery efficiency model is sufficient. 

1.2. Contributions and Structure of the paper 
In this study, we aim to conduct a sensitivity study to investigate the impacts of temporal 
resolution and battery efficiency settings on the optimised costs of PV battery scheduling 
models using high resolution real site data collected from Australian residential PV and 
battery systems. The contributions are to: 

• Investigate the errors related to various granularities in optimised costs of a rule-based 
battery scheduling algorithm and a linear programming (LP) optimisation model 
designed to minimise household electricity costs. 

• Using real-time high resolution PV battery site data, evaluate the errors in estimated 
optimised costs for a rule based optimisation model with linear battery efficiency 
settings. 

• Propose a linear regression model to track state of charge (SOC) in a rule-based 
optimisation model. Investigate whether a linear regression model is sufficient to 
achieve an adequate accuracy for estimating SOCs and optimised costs. 



 
2. Methodology 

2.1. Data 
Three main datasets collected from Solar Analytics’ residential customers are used in this 
work: (1) One year of 5 second PV and consumption data collected from 45 Australian 
residential customers. (2) Up to one year of 30 second PV, consumption and battery energy 
data collected from 36 Australian residential battery customers who all have the same battery 
model. (3) Up to one year of 30-minute battery application programming interface (API) data 
collected from the 36 residential battery customers mentioned above. The API data is directly 
provided by the battery’s manufacturer and it includes information such as the maximum 
usable capacity, 30-minute SOC, charge and discharge. 

2.2. Optimisation Models 

2.2.1. Nomenclature 
Table 3: Variables 

Variable	 Definition Variable	 Definition 

!"#  PV energy output during interval t (kWh) !"!#$%&'(  Energy flow out of the battery (kWh) 

!"  Household load during interval t (kWh) !  Intercept for the linear regression model 

!"  Excess demand during interval t (kWh) !  Slope for the linear regression model 

!"#$%&'()*  Usable capacity during interval t (kWh) !"  30-minute ambient temperature (°C)  

!"#  Maximum charging/discharging rate (kW) !"  30-minute battery AC energy flow (kWh) 

!"#$  Energy transferred to battery during interval 
t (kWh) 

!"#$%&'"  Grid import during interval t (kWh) 

!"#   Energy transferred from the battery during 
interval t (kWh) 

!"#$%&'"  Grid export during interval t (kWh) 

!"#$  State of Charge at start of interval t (kWh) h Number of intervals in 24 hours 

!"#$%&' 	 Electricity Cost during interval t ($AUD) 
for a PV system with no battery 

m Number of intervals in one year 

!"#$%&'%% 	 Electricity Cost during interval t ($AUD) 
for a PV system with installed battery 

∆"#$%&'  30-minute capacity change (kWh)  

!"#$%&'" 	 Export Tariff during interval t ($AUD/kWh) !"!#$%&'  Energy flow into the battery (kWh) 

!"#$%&'" 	 Import Tariff during interval t ($AUD/kWh) 

Table 4: Model Parameters 

Parameter Definition Value used in 
granularity analysis 

Value used in efficiency 
analysis 

!"#"$%  Total Battery Size (kWh) Unique optimal size, 
one for each site 

8.4 

!"#$  Rated maximum charging/discharging power 
(kW) 

0.4×%&'&()  2.0 

!"#$%&  Minimum value for state of charge 20% Site specific value derived from 



 

2.2.2. Rule-based (RB) Model 
The rule based model used in this work is a simple control algorithm which aims to maximise 
PV self-consumption. It has been considered and implemented for some studies (e.g. in 
Abdulla et al. 2017) and is used in practice at many installed battery sites due to its simplicity 
and ease of implementation. Another reason to include this model is that all the real battery 
systems included in this study are controlled by this algorithm so adopting this model allows 
us to make an empirical sensitivity analysis on battery efficiency by comparing real and 
estimated optimised costs. A pseudo code of this algorithm is presented in Table 5.  

Table 5: Pseudo Code for the rule-based model 

 

2.2.3. Linear Programming Model 
Linear Programming (LP) has been applied by some researchers in this area as it can converge 
at a low computational cost and guarantee the solution is optimal if the optimisation problem 
is linear (Hanna et al. 2014; Hoke et al. 2013; Lorenzi & Silva 2016; Lu & Shahidehpour 

 API data, one for each site 

!"#$%!&  Degradation rate in total capacity 
(kWh/interval) 

0 Site specific value derived from 
API data 

!"#$%!&  Degradation rate in maximum 
charging/discharging power (kW/interval) 

0 Site specific value derived from 
API data 

!"#$%&'%  State-of-charge when we start our simulation 50% Site specific value collected 
from API data 

!"#  Charging efficiency 90% Site specific value derived from 
API and energy flow data 

!"  	 Discharging efficiency 90% Site specific value derived from 
API and energy flow data 

!"#$%&' 	 Single efficiency same for both charging & 
discharging 

90% Site specific value derived from 
API and energy flow data 



 
2005; Nottrott et al. 2013; Ratnam et al. 2015b; Wu et al. 2014). In this work we are running 
simulations at a high temporal resolution, therefore LP is favoured to minimise computational 
costs. Table 6 demonstrates the mathematical cost function and convex constraints used in our 
LP formulation.  

Table 6: Formulation of the LP model 
Objective Function 

!"#"$"%&	( = (+,-./01,×3,-./01,-+,56/01,×3,56/01,)
8

,9:
 
 

Variables !"#$ , !"& , '"()*+," , '"-.*+,"  
Equality constraints !"# + %#& + '#()*+,# = .# + %#/0 + '#12*+,#  

!"#$ = !"#$-' + )$*+×-*+-)$./-.  	
Inequality constraints !"#$ ≥ 0;	!") ≥ 0;	*"+,-./" ≥ 0;	*"01-./" ≥ 0  

!"#$ ≤ &"#; !"( ≤ &"#  
0 ≤ #$%& ≤ #$%&'()*+, 	

2.3. Sensitivity Analysis 

2.3.1. Analysis on Temporal Resolution 

2.3.1.1.    RB Approach 
5 second residential PV and consumption data is first resampled into a few other lower 
resolutions (30 second, 1 minute, 2 minute, 5 minute, 15 minute, 30 minute and 60 minute) 
and then are fed into the RB model mentioned in Section 2.2.2. The RB model outputs two 
values which are the year electricity cost without installing battery and the situation with 
installed battery, the yearly savings of operating the battery are found by subtracting 

!"#$%&'%%(
%)*   !"#$%&'(

%)* , !"#$%,-%%(
%)*    from !"#$%&'(

%)* 	  . Further, we estimate the error of savings 
which would be estimated if data were only available at lower temporal resolutions. We then 
use Equation (1) and Equation (2) to determine the relative errors to our finest resolution (i.e. 
5 second) by comparing costs and savings of 5 second data with other coarser temporal 
resolutions. 

!"#$%&'"	"))*)	&+	*,%&-&."/	0*.%. = 0*.%.	2*)	#*3")	)".*#4%&*+	-	0*.%.	2*)	ℎ&7ℎ".%	)".*#4%&*+
0*.%.	2*)	ℎ&7ℎ".%	)".*#4%&*+  

 
(1) 

!"#$%&'"	"))*)	&+	,$'&+-, = ,$'&+-,	/*)	#*0")	)",*#1%&*+	-	,$'&+-,	/*)	ℎ&-ℎ",%	)",*#1%&*+
,$'&+-,	/*)	ℎ&-ℎ",%	)",*#1%&*+  

 
(2) 

2.3.1.2.    LP Approach 
A similar simulation framework is implemented for our LP model however instead of 
inputting all the PV and load data for a year, we include an optimisation planning horizon of 
24 hours assuming perfect foresights of PV and consumption. Theoretically, the optimisation 
horizon of a PV battery system control problem is the lifetime of the system however this is 
not adopted in this study for two reasons: (1). Longer horizons will exponentially increase the 
computational cost for optimisation algorithms such as LP. (2). For optimisation models that 



 
require forecasts of PV and load, it is not feasible to get forecasted data with an adequate 
accuracy for a horizon equal to the lifetime of a system.  

The Gurobi Optimiser (Gurobi Optimization, Inc. 2016) is used in Python to solve the 24-
hour planning horizon, then the derived control signals are implemented in the next day. Due 
to the high computational demands on solving 5 second and 30 second, in this paper we only 
perform our analysis on data with 1-minute temporal resolution, and coarser. Moreover, we 
only consider the ToU tariff structure for the LP model due to the reason that under a flat 
tariff structure, it is not viable to charge from the grid at a lower rate or perform other types of 
price arbitrage so maximising self-consumption like what we do in the RB model is already 
the optimal control scheme. 
Same as the RB approach, the simulation framework produces yearly electricity costs with 
and without battery along with yearly savings. Relative errors are also computed using 
Equation 1 and Equation 2.  
2.3.1.3 Battery Size 

For the temporal resolution analysis, we determine an optimal battery size for each residential 
PV customer without battery by feeding their 5 minute PV and consumption data into a 
battery sizing model proposed by Tang et al. (2015).  

2.3.2.    Sensitivity Analysis on Battery Efficiency Settings 
2.3.2.1.    Single Efficiency and Dual Efficiency 

The first step of the battery efficiency analysis is to determine errors in estimated optimised 
costs and savings using a constant efficiency.  

Single efficiency is referred as the situation when we assume charging efficiency equal to 
discharging efficiency (i.e. !"# = !%   ) and dual efficiency is when !"# ≠ !%   . Both efficiency 
settings have been previously applied in the literature list summarised in Table 2. In this 
study, we examine both scenarios separately by following these steps:  
I. Apply a linear curve fit on the 30-minute battery AC energy flows and capacity changes and 
then derive a single charging/discharging efficiency (see Equation 3) and separate charging 
and discharging efficiencies (see Equation 4) for an individual battery customer.  

For single efficiency setting: 

∆"#$%&' = )*)+,-&'×/0&'123-)*)+,-567//0&'123   (3) 

For dual efficiency setting: 

∆"#$%&' = )*)+,-&'×/01-)*)+,-345//7   (4) 

II. Derive a linear capacity and charging/discharging power degradation rate (!"#$%!&   , 
!"#$%!&   ) for each battery site by fitting a linear curve on the time since a battery is installed 
and changes in the rated maximum usable capacity (!"#"$%   ) and charging/discharging power 
(!"#$   ).  
III. Determine the true electricity costs and savings in various resolutions by applying battery, 
PV and load data of 36 residential battery customers.  



 
IV. Feed PV and consumption data from 36 battery customers and the parameters listed in 
Table 4 into our RB model to determine our estimated costs and savings.  
2.3.2.2.    Linear Regression SOC Tracking Model  

A linear regression model formulated in Equation 5 is proposed to evaluate whether we could 
train a linear SOC tracking model using limited amount of SOC and battery energy data 
instead of using data from a whole year like what is done in Section 2.3.2.1. Another initiative 
for this approach is that we suspect other features such as temperature and previous SOCs 
could enhance our results. So instead of just doing a linear curve fit for all the data we have 
for one site, we add features including previous SOCs, 30-minute ambient temperature and 
AC battery energy flows for 90 days and then implement the trained linear regression model 
in our RB simulation model for the rest of the data period. Therefore, instead of updating our 
SOC with constant efficiencies, we use the trained linear regression model. Finally estimated 
optimised SOCs and optimised costs are compared against true costs and battery API SOCs to 
see if we could obtain a satisfactory level of accuracy in estimated SOCs, electricity costs and 
savings. 

!"#$ = & + (
!"#$)*
+$
,$
ℎ./0

 

 

(5) 

2.4. Tariff Structure  
A flat tariff and a time-of-use (ToU) have been considered for both temporal resolution and 
battery efficiency analyses. The adopted tariff rates are shown in Table 7. 

Table 7: Tariff Rates for Flat and ToU 
Flat Tariff 

($AUD/kWh) 
ToU Tariff ($AUD/kWh) 

Peak (3pm to 9pm 

on weekdays) 

Off-peak (10 pm to 7 am on 

weekdays & weekends) 

Shoulder (all other times) 

0.30 0.45 0.15 0.25 

3. Results and Discussion 

3.1. Impacts of Temporal Resolution on Optimised Costs and Savings 
Relative errors in optimised costs and savings which are illustrated in Figure 1 and Figure 2 
for various granularities, clearly show underestimations in both optimised costs and savings 
derived from lower resolutions for RB and LP models. At an hourly resolution, compared to 
results with 5 second time interval, approximately 3% mean relative error is found in 
optimised costs across all included sites for the three explored scenarios. The RB model with 
ToU tariff seems to be slightly more sensitive to temporal precision compared to the flat tariff 
scenario but overall it can be observed that the relative errors caused by coarser resolutions 
are consistent across both investigated optimisation models. 

On the other hand, the influence of granularity is much higher on the yearly electricity bill 
savings. As indicated in Figure 2, the mean relative errors in savings for 30-minute and 60-
minute temporal resolutions could be as high as 9.11% and 12.6% for the RB model with flat 



 
tariff. The savings computed from the LP model are less sensitive to data granularity 
compared to the results from our RB model. 

The results demonstrated in Figure 1 and Figure 2 give confidence in applying PV and 
consumption data of 5 minute or other finer temporal resolutions in PV battery scheduling 
optimisations. For our included residential sites, 5-minute data results in less than 1% and less 
than 4% underestimations in optimised costs and savings respectively. Given that 5-minute 
data will not exceed the bandwidth limits of most smart meters in the current market, we 
recommend that 5-minute sampling rate is a viable option for PV battery power scheduling 
optimisation models. 

3.2. Impacts of Constant Efficiency Settings on Optimised Costs and Savings 
Table 8 illustrates the errors relative to the “true” cost calculated from 30 second real battery 
site import and export data (more detailed boxplots are shown in Appendix A). Although the 
real-time costs are derived instantaneously instead of every 30 second, from the results shown 
above in Figure 1 and Figure 2, we believe the resulting costs and savings from 30 second 
data can still be quite close approximations to the real-time costs. Underestimations and 
overestimations can be observed respectively in estimated costs and savings computed from 
our RB simulation model for both single and double efficiency settings. A few pronounced 
points are summarised below: 

• Applying constant efficiency settings results in significant errors in estimated costs 
and savings across all temporal resolutions. 

• Underestimations in optimised costs are larger with coarser input data which is 
consistent to what we found in Figure 1 and Figure 2, however the overestimations in 
savings are interestingly lower when we apply data with longer time intervals. We 
think this trend is caused by underestimations due to lower temporal resolutions 
cancelling out the overestimations effects of using constant efficiencies.  

• To examine our hypothesis on the cancelling effects, we recompute the relative errors 
shown in Table 9 (more detailed boxplots are shown in Appendix B) by comparing 
simulated costs and savings with the true results generated from real imports and 
exports aggregated to each tested temporal resolution. So instead of comparing all the 
results to 30 second true costs and savings, we generate 1, 2, 5, 15, 30 and 60 minute 
“true” costs and savings from real imports and exports at these temporal resolutions to 
allow comparisons within the same temporal resolution so that we could minimise the 
impacts of temporal resolution in our efficiency analysis. As demonstrated in Table 9, 
we are now observing higher relative errors in savings and lower errors in optimised 
costs for coarser temporal resolutions. 

• It can be observed that the two efficiency settings (single and dual) make small 
differences in terms of errors in optimised costs and savings. 

• The included ToU tariff produces larger underestimations in optimised costs and 
smaller overestimations in savings compared to the results with flat tariff.  

 



 

 
Figure 1: Percentage Relative Errors in Yearly Optimised Costs for RB model with Flat (left), ToU (middle) and LP Model 
with ToU (right) (numbers inside boxplots are the mean errors after excluding outliers). 

 
Figure 2: Percentage Relative Errors in Yearly Savings for RB model with Flat (left), ToU (middle) and LP Model with 
ToU (right) (numbers inside boxplots are the mean errors after excluding outliers).



 
Table 8: Mean Percentage Errors relative to True Yearly Costs & Savings 

Tariff Structure Flat ToU 

Efficiency Settings Single Efficiency Dual Efficiency Single Efficiency Dual Efficiency 

Mean percentage relative errors in optimised costs for various temporal resolutions (%) 

30 second -8.01 -8.88 -9.51 -8.47 

1 minute -8.24 -8.28 -10.04 -8.92 

2 minute -8.58 -8.58 -9.84 -9.54 

5 minute -9.23 -9.16 -11.05 -10.69 

15 minute -10.35 -10.2 -13.1 -13.79 

30 minute -11.29 -11.11 -14.98 -15.66 

60 minute -12.79 -12.56 -17.45 -18.11 

Mean percentage relative errors in savings for various temporal resolutions (%) 

30 second 19.06 20.46 14.27 15.31 

1 minute 18.9 20.32 14.38 15.42 

2 minute 18.64 20.08 14.5 15.57 

5 minute 17.97 19.48 14.55 15.68 

15 minute 16.48 18.03 14.19 13.92 

30 minute 15 16.52 13.06 13.42 

60 minute 12.64 14.12 10.88 11.86 

Table 9: Mean Percentage Errors relative to True Yearly Optimised Costs & Savings 
with corresponding resolutions 

Tariff Structure Flat ToU 

Efficiency Settings Single Efficiency Dual Efficiency Single Efficiency Dual Efficiency 

Mean percentage relative errors in optimised costs for various temporal resolutions (%) 

30 second -8.01 -8.88 -9.51 -8.47 

1 minute -8.05 -8.1 -9.76 -8.67 

2 minute -8.21 -8.24 -9.35 -9.08 

5 minute -8.64 -8.63 -10.31 -9.99 

15 minute -9.49 -9.41 -12.05 -12.74 

30 minute -10.2 -10.09 -13.66 -14.35 

60 minute -11.08 -10.92 -15.49 -16.15 

Mean percentage relative errors in savings for various temporal resolutions (%) 

30 second 19.06 20.46 14.27 15.31 

1 minute 19.06 20.5 14.5 15.57 

2 minute 19.46 20.92 15.16 16.24 

5 minute 20.7 22.16 16.79 17.85 



 
15 minute 23.36 25.94 19.82 20.87 

30 minute 25.9 28.53 22.63 23.7 

60 minute 29.57 32.25 26.32 28.4 

3.3. Evaluation of Linear Regression Model  
As illustrated in Table 10 (more detailed boxplots are shown in Appendix C), a few error 
metrics have been implemented to evaluate the accuracy of our proposed SOC tracking 
model. Based on the mean absolute error (MAE) and median absolute error (MDAE), overall 
the linear regression has a relatively satisfactory accuracy on tracking SOCs. On the other 
hand, the mean square error (MSE), root mean square error (RMSE) and r-squared value 
suggest the model makes a noticeable amount of predictions that are quite far from the SOC 
labels collected from API. Errors in optimised costs and savings are mostly comparable to 
what can be observed in Table 9 however large overestimations which average at 44.24% are 
found in estimated yearly savings with flat tariff so there are not any noticeable improvements 
of including more input features. 
Overall, there is still room for improvements in SOC tracking. It also appears that our model 
is performing quite well at low SOC values but fails to make accurate estimations of high 
SOCs. As a result, significant overestimations are found in estimated savings.  

Table 10: Error metrics for estimations of SOCs & errors in optimised costs and savings 
Error metrics for 

estimations of SOCs 
Mean 
Value 

Errors in optimised costs and savings Mean Error 
Percentage 

Mean absolute error 4.79 Error in yearly optimised costs with 
flat tariff 

-14 

Root mean square error 12.34 Error in percentage for yearly savings 
with flat tariff 

44.24 

Median absolute error 1.25 Error in percentage for yearly 
optimised costs with ToU tariff 

-16.98 

R squared value 0.82 Error in percentage for yearly savings 
with ToU tariff 

29.75 

Mean square error 126.31   

 

Conclusion and Future works 

In this paper we perform a sensitivity analysis on the influences of applying coarser 
PV/consumption data and constant battery efficiencies in a PV battery power scheduling 
optimisation model. We have shown that low temporal precisions can lead to noticeable 
underestimations in both optimised costs and savings for all optimisation scenarios explored 
in our approach. Then we conclude 5-minute temporal resolution is sufficient to compute 
results with a good level of accuracy. Furthermore, the sensitivity investigation on applying 
constant battery efficiencies demonstrates significant underestimations in estimated electricity 
costs and even larger overestimations in electricity bill savings. It should also be noted that a 
cancelling effect is found when implementing both coarser data and constant efficiencies, the 
resulting errors in savings are reduced. Furthermore, the linear regression model that includes 



 
more features such as temperature and previous SOCs did not make any noticeable 
improvements on reducing relative errors of optimised costs and savings.  

For future works, as we only include a RB and a LP model with a single objective of 
minimising electricity costs in our approach, it would be worthwhile to evaluate the impacts 
of temporal resolutions in other optimisation models such as dynamic programming, quadratic 
programming, mixed integer linear programming, evolutionary algorithms and reinforcement 
learning. Other optimisation objectives such as reducing peak demands, minimising battery 
degradation can also be considered for a more detailed granularity sensitivity study. In terms 
of battery efficiency and SOC tracking, we believe there is a need to extract more input 
features for our existing model or to develop more advanced non-linear models to improve 
efficiency and SOC estimations in a PV battery optimisation model. 

References: 
Abdulla, K. et al., 2016. Optimal Operation of Energy Storage Systems Considering Forecasts and Battery 
Degradation. IEEE Transactions on Smart Grid, PP(99), pp.1–11. 

Abdulla, K., Steer, K., Wirth, A., De Hoog, J., et al., 2017. Integrating data-driven forecasting and optimization 
to improve the operation of distributed energy storage. Proceedings - 18th IEEE International Conference on 
High Performance Computing and Communications, 14th IEEE International Conference on Smart City and 2nd 
IEEE International Conference on Data Science and Systems, HPCC/SmartCity/DSS 2016, pp.1365–1372. 

Abdulla, K., Steer, K., Wirth, A., Hoog, J. De, et al., 2017. The Importance of Temporal Resolution in 
Evaluating Residential Energy Storage. Ieee Pesgm 2017, p.7. Available at: 
https://www.researchgate.net/publication/313857976_The_Importance_of_Temporal_Resolution_in_Evaluating
_Residential_Energy_Storage. 

Aghajani, G.R., Shayanfar, H.A. & Shayeghi, H., 2015. Presenting a multi-objective generation scheduling 
model for pricing demand response rate in micro-grid energy management. Energy Conversion and 
Management, 106, pp.308–321. Available at: http://dx.doi.org/10.1016/j.enconman.2015.08.059. 

APVI, 2017. Australian PV Institute (APVI) Solar Map, funded by the Australian Renewable Energy Agency, 
accessed from pv-map.apvi.org.au on 1 August 2017. 

Barnes, A.K., Balda, J.C. & ..., 2015. A semi-Markov model for control of energy storage in utility grids and 
microgrids with PV generation. IEEE Transactions on …, 6(2), pp.546–556. Available at: 
http://ieeexplore.ieee.org/abstract/document/7045576/. 

Beck, T. et al., 2016. Assessing the influence of the temporal resolution of electrical load and PV generation 
profiles on self-consumption and sizing of PV-battery systems. Applied Energy, 173, pp.331–342. Available at: 
http://dx.doi.org/10.1016/j.apenergy.2016.04.050. 

Bennett, C.J., Stewart, R.A. & Lu, J.W., 2015. Development of a three-phase battery energy storage scheduling 
and operation system for low voltage distribution networks. Applied Energy, 146, pp.122–134. Available at: 
http://dx.doi.org/10.1016/j.apenergy.2015.02.012. 

Braam, F. et al., 2015. Peak shaving with photovoltaic-battery systems. IEEE PES Innovative Smart Grid 
Technologies Conference Europe, 2015–Janua(January), pp.1–5. 

Chang, W., Cheng, M. & Tsai, H., 2013. Optimization of a Grid-Tied Microgrid Configuration using Dual 
Storage Systems. , (Iccas), pp.1143–1148. 

Fuselli, D. et al., 2013. Action dependent heuristic dynamic programming for home energy resource scheduling. 
International Journal of Electrical Power and Energy Systems, 48(1), pp.148–160. Available at: 
http://dx.doi.org/10.1016/j.ijepes.2012.11.023. 

Georges, E., Braun, J.E. & Lemort, V., 2017. A general methodology for optimal load management with 
distributed renewable energy generation and storage in residential housing. Journal of Building Performance 



 
Simulation, 10(2), pp.224–241. Available at: 
https://www.tandfonline.com/doi/full/10.1080/19401493.2016.1211738. 

Gitizadeh, M. & Fakharzadegan, H., 2013. Effects of electricity tariffs on optimal battery energy storage sizing 
in residential PV/storage systems. 2013 International Conference on Energy Efficient Technologies for 
Sustainability, ICEETS 2013, pp.1072–1077. 

Gurobi Optimization, Inc., 2016. Gurobi Optimizer Reference Manual. Available at: http://www.gurobi.com. 

Hanna, R. et al., 2014. Energy dispatch schedule optimization for demand charge reduction using a photovoltaic-
battery storage system with solar forecasting. Solar Energy, 103, pp.269–287. Available at: 
http://dx.doi.org/10.1016/j.solener.2014.02.020. 

Hawkes, A. & Leach, M., 2005. Impacts of temporal precision in optimisation modelling of micro-combined 
heat and power. Energy, 30(10), pp.1759–1779. 

Hoevenaars, E.J. & Crawford, C.A., 2012. Implications of temporal resolution for modeling renewables-based 
power??systems. Renewable Energy, 41, pp.285–293. Available at: 
http://dx.doi.org/10.1016/j.renene.2011.11.013. 

Hoke, A. et al., 2013. Look-ahead economic dispatch of microgrids with energy storage, using linear 
programming. 2013 1st IEEE Conference on Technologies for Sustainability (SusTech), pp.154–161. 

Hong, Y.Y. & Lin, J.K., 2013. Interactive multi-objective active power scheduling considering uncertain 
renewable energies using adaptive chaos clonal evolutionary programming. Energy, 53, pp.212–220. Available 
at: http://dx.doi.org/10.1016/j.energy.2013.02.070. 

Hubert, T. & Grijalva, S., 2012. Modeling for residential electricity optimization in dynamic pricing 
environments. IEEE Transactions on Smart Grid, 3(4), pp.2224–2231. 

Keerthisinghe, C., Verbic, G. & Chapman, A.C., 2014. Evaluation of a multi-stage stochastic optimisation 
framework for energy management of residential PV-storage systems. 2014 Australasian Universities Power 
Engineering Conference, AUPEC 2014 - Proceedings, (September 2016). 

Keerthisinghe, C., Verbic, G. & Chapman, A.C., 2016. A Fast Technique for Smart Home Management: ADP 
with Temporal Difference Learning. IEEE Transactions on Smart Grid, 3053(c), pp.1–1. Available at: 
http://ieeexplore.ieee.org/document/7745930/. 

Koohi-Kamali, S., Rahim, N.A. & Mokhlis, H., 2014. Smart power management algorithm in microgrid 
consisting of photovoltaic, diesel, and battery storage plants considering variations in sunlight, temperature, and 
load. Energy Conversion and Management, 84, pp.562–582. Available at: 
http://dx.doi.org/10.1016/j.enconman.2014.04.072. 

Kools, L. & Phillipson, F., 2016. Data granularity and the optimal planning of distributed generation. Energy, 
112, pp.342–352. Available at: http://dx.doi.org/10.1016/j.energy.2016.06.089. 

Kusakana, K., 2016. Daily operation cost minimization of photovoltaic-diesel-battery hybrid systems using 
different control strategies. IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, 
pp.3609–3613. 

Leo, R., Milton, R.S. & Sibi, S., 2014. Reinforcement learning for optimal energy management of a solar 
microgrid. 2014 IEEE Global Humanitarian Technology Conference - South Asia Satellite (GHTC-SAS), 
pp.183–8. Available at: http://dx.doi.org/10.1109/GHTC-SAS.2014.6967580. 

Li, J. & Danzer, M.A., 2014. Optimal charge control strategies for stationary photovoltaic battery systems. 
Journal of Power Sources, 258, pp.365–373. Available at: http://dx.doi.org/10.1016/j.jpowsour.2014.02.066. 

Liu, B. et al., 2015. A MPC operation method for a photovoltaic system with batteries. IFAC-PapersOnLine, 
28(8), pp.807–812. Available at: http://dx.doi.org/10.1016/j.ifacol.2015.09.068. 

Lorenzi, G. & Silva, C.A.S., 2016. Comparing demand response and battery storage to optimize self-
consumption in PV systems. Applied Energy, 180, pp.524–535. Available at: 
http://dx.doi.org/10.1016/j.apenergy.2016.07.103. 



 
Lu, B. & Shahidehpour, M., 2005. Short-term scheduling of battery in a grid-connected PV/battery system. IEEE 
Transactions on Power Systems, 20(2), pp.1053–1061. 

Luna, A. et al., 2016. Optimal power scheduling for a grid-connected hybrid PV-wind-battery microgrid system. 
Conference Proceedings - IEEE Applied Power Electronics Conference and Exposition - APEC, 2016–May, 
pp.1227–1234. 

Luna, A.C. et al., 2017. Mixed-Integer-Linear-Programming-Based Energy Management System for Hybrid PV-
Wind-Battery Experimental Verification. IEEE Transactions on Power Electronics, 32(4), pp.2769–2783. 

Mahanty, R. & Gupta, P., 2004. Short-term real-power scheduling considering fuzzy factors in an autonomous 
system using genetic algorithms. IEE Proceedings-Generation, Transmission and …, 151(3), pp.201–212. 
Available at: http://digital-library.theiet.org/content/journals/10.1049/ip-gtd_20040098. 

Ming, M. et al., 2017. Multi-Objective Optimization of Hybrid Renewable Energy System Using an Enhanced 
Multi-Objective Evolutionary Algorithm. Energies, 10(5), pp.5–9. 

Miyazato, Y. et al., 2016. Multi-Objective Optimization for Smart House Applied Real Time Pricing Systems. 
Sustainability, 8(12), p.1273. Available at: http://www.mdpi.com/2071-1050/8/12/1273. 

Nottrott, A., Kleissl, J. & Washom, B., 2013. Energy dispatch schedule optimization and cost benefit analysis for 
grid-connected, photovoltaic-battery storage systems. Renewable Energy, 55, pp.230–240. Available at: 
http://dx.doi.org/10.1016/j.renene.2012.12.036. 

Nunez-Reyes, A. et al., 2017. Optimal scheduling of grid-connected PV plants with energy storage for 
integration in the electricity market. Solar Energy, 144, pp.502–516. 

Olaszi, B.D. & Ladanyi, J., 2017. Comparison of different discharge strategies of grid-connected residential PV 
systems with energy storage in perspective of optimal battery energy storage system sizing. Renewable and 
Sustainable Energy Reviews, 75(September 2016), pp.710–718. Available at: 
http://dx.doi.org/10.1016/j.rser.2016.11.046. 

Pezeshki, H. et al., 2014. A Model Predictive Approach for Community Battery Energy Storage System 
Optimization. PES General Meeting | Conference & Exposition, 2014 IEEE, pp.27–31. 

Ranaweera, I. & Midtgård, O.M., 2016. Optimization of operational cost for a grid-supporting PV system with 
battery storage. Renewable Energy, 88, pp.262–272. Available at: 
http://dx.doi.org/10.1016/j.renene.2015.11.044. 

Ranaweera, I., Midtgård, O.-M. & Korpås, M., 2017. Distributed control scheme for residential battery energy 
storage units coupled with PV systems. Renewable Energy, 113, pp.1099–1110. Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S0960148117305888. 

Ratnam, E.L., Weller, S.R. & Kellett, C.M., 2015a. An optimization-based approach to scheduling residential 
battery storage with solar PV: Assessing customer benefit. Renewable Energy, 75, pp.123–134. Available at: 
http://dx.doi.org/10.1016/j.renene.2014.09.008. 

Ratnam, E.L., Weller, S.R. & Kellett, C.M., 2015b. Scheduling residential battery storage with solar PV: 
Assessing the benefits of net metering. Applied Energy, 155, pp.881–891. Available at: 
http://dx.doi.org/10.1016/j.apenergy.2015.06.061. 

Reddy, S.S., 2016. Optimal power flow with renewable energy resources including storage. Electrical 
Engineering, 99(2), pp.1–11. 

Ren, H. et al., 2016. Optimal operation of a grid-connected hybrid PV/fuel cell/battery energy system for 
residential applications. Energy, 113, pp.702–712. Available at: http://dx.doi.org/10.1016/j.energy.2016.07.091. 

Ried, S., Jochem, P. & Fichtner, W., 2015. Profitability of photovoltaic battery systems considering temporal 
resolution. , pp.5–9. 

Riffonneau, Y. et al., 2011. Optimal Power Flow Management for Grid Connected PV Systems With Batteries. 
IEEE Transactions on Sustainable Energy, 2(3), pp.309–320. 



 
Schibuola, L., Scarpa, M. & Tambani, C., 2017. Influence of charge control strategies on electricity 
import/export in battery-supported photovoltaic systems. Renewable Energy, 113, pp.312–328. Available at: 
http://linkinghub.elsevier.com/retrieve/pii/S0960148117304834. 

Shang, C., Srinivasan, D. & Reindl, T., 2016. Generation-scheduling-coupled battery sizing of stand-alone 
hybrid power systems. Energy, 114, pp.671–682. Available at: http://dx.doi.org/10.1016/j.energy.2016.07.123. 

Su, W., Wang, J. & Roh, J., 2014. Stochastic energy scheduling in microgrids with intermittent renewable 
energy resources. IEEE Transactions on Smart Grid, 5(4), pp.1876–1883. 

Sunwiz, 2017. Believe the Hype: Australia's Battery Market is set for eye-watering growth, accessed from 
http://sunwiz.com.au/index.php/2012-06-26-00-47-40/73-newsletter/420-battery-market-hotter-than-previously-
thought.html on 1 August 2017. 

Suzuki, R., 2012. Determination Method of Optimal Planning and Operation for Residential PV System and 
Storage Battery Based on Weather Forecast. , (December), pp.2–5. 

Syed, I.M. & Raahemifar, K., 2016. Predictive energy management and control system for PV system connected 
to power electric grid with periodic load shedding. Solar Energy, 136, pp.278–287. Available at: 
http://dx.doi.org/10.1016/j.solener.2016.07.011. 

Tang, R., Dore, J. & Laird, J., 2016. Site Specific Battery Simulation Model. APVI, (2015). Available at: 
http://apvi.org.au/solar-research-conference/wp-content/uploads/2015/12/R-Tang_Peer-Reviewed_FINAL.pdf. 

Teng, J.H. et al., 2013. Optimal charging/discharging scheduling of battery storage systems for distribution 
systems interconnected with sizeable PV generation systems. IEEE Transactions on Power Systems, 28(2), 
pp.1425–1433. 

Tischer, H. & Verbic, G., 2011. Towards a smart home energy management system - A dynamic programming 
approach. 2011 IEEE PES Innovative Smart Grid Technologies, pp.1–7. Available at: 
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6167090&contentType=Conference+Publication
s&searchField%3DSearch_All%26queryText%3Delectrical+car+battery+performance. 

Torreglosa, J.P. et al., 2015. Energy dispatching based on predictive controller of an off-grid wind 
turbine/photovoltaic/hydrogen/battery hybrid system. Renewable Energy, 74, pp.326–336. 

Venayagamoorthy, G.K. et al., 2016. Dynamic Energy Management System for a Smart Microgrid. IEEE 
Transactions on Neural Networks and Learning Systems, 27(8), pp.1643–1656. 

Wang, T., Kamath, H. & Willard, S., 2014. Control and optimization of grid-tied photovoltaic storage systems 
using model predictive control. IEEE Transactions on Smart Grid, 5(2), pp.1010–1017. 

Wright, A. & Firth, S., 2007. The nature of domestic electricity-loads and effects of time averaging on statistics 
and on-site generation calculations. Applied Energy, 84(4), pp.389–403. 

Wu, Z., Tazvinga, H. & Xia, X., 2014. Optimal Schedule of Photovoltaic-Battery Hybrid System at Demand 
Side. , 2014(December), pp.10–12. 

Zhang, Y. & Jia, Q.S., 2015. Optimal storage battery scheduling for energy-efficient buildings in a microgrid. 
Proceedings of the 2015 27th Chinese Control and Decision Conference, CCDC 2015, pp.5540–5545. 

Zhang, Y. et al., 2015. Optimal operation of a smart residential microgrid based on model predictive control by 
considering uncertainties and storage impacts. Solar Energy, 122, pp.1052–1065. Available at: 
http://dx.doi.org/10.1016/j.solener.2015.10.027. 

Zhu, D. & Hug, G., 2014. Decomposed stochastic model predictive control for optimal dispatch of storage and 
generation. IEEE Transactions on Smart Grid, 5(4), pp.2044–2053. 

 



 
Appendix A: Mean Percentage Errors relative to 30 Second True Yearly Optimised Costs & Savings (numbers inside boxplots are the means after excluding 
outliers).  
(a) relative errors in optimised costs with flat and single efficiency setting (numbers inside boxplots are the means after excluding outliers). (b) relative errors in optimised costs with flat and 
dual efficiency setting.  (c) relative errors in savings with flat and single efficiency setting. (d) relative errors in savings with flat and dual efficiency setting. (e) relative errors in optimised 
costs with ToU and single efficiency setting. (f) relative errors in optimised costs with ToU and dual efficiency setting.  (g) relative errors in savings with ToU and single efficiency setting. (h) 
relative errors in savings with ToU and dual efficiency setting. 

 



 
Appendix B: Mean Percentage Errors relative to True Yearly Optimised Costs & Savings with corresponding resolutions (numbers inside boxplots are the 
means after excluding outliers).  
(a) relative errors in optimised costs with flat and single efficiency setting (numbers inside boxplots are the means after excluding outliers). (b) relative errors in optimised costs with flat and 
dual efficiency setting.  (c) relative errors in savings with flat and single efficiency setting. (d) relative errors in savings with flat and dual efficiency setting. (e) relative errors in optimised 
costs with ToU and single efficiency setting. (f) relative errors in optimised costs with ToU and dual efficiency setting.  (g) relative errors in savings with ToU and single efficiency setting. (h) 
relative errors in savings with ToU and dual efficiency setting. 

 



 
Appendix C: Error metrics for estimations of SOCs, errors in optimised costs and savings relative to 30 minute true costs and savings (numbers inside boxplots 
are the means after excluding outliers 
(a) Mean Absolute Error of Estimated SOCs. (b) Root Mean Square Error of Estimated SOCs. (c) Median Absolute Error of Estimated SOCs. (d) R Squared Value of Estimated SOCs. (e) 
Mean Square Error of Estimated SOCs. (f) Relative Error in Percentage for Yearly Optimised Costs with Flat Tariff. (g) Relative Error in Percentage for Yearly Savings with Flat Tariff. (h) 
Relative Error in Percentage for Yearly Optimised Costs with ToU Tariff. (i) Relative Error in Percentage for Yearly Savings with ToU Tariff. 
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