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Abstract

Inference for state-of-the-art deep neural networks is
computationally expensive, making them difficult to deploy
on constrained hardware environments. An efficient way
to reduce this complexity is to quantize the weight pa-
rameters and/or activations during training by approximat-
ing their distributions with a limited entry codebook. For
very low-precisions, such as binary or ternary networks
with 1-8-bit activations, the information loss from quan-
tization leads to significant accuracy degradation due to
large gradient mismatches between the forward and back-
ward functions. In this paper, we introduce a quantization
method to reduce this loss by learning a symmetric code-
book for particular weight subgroups. These subgroups
are determined based on their locality in the weight ma-
trix, such that the hardware simplicity of the low-precision
representations is preserved. Empirically, we show that
symmetric quantization can substantially improve accu-
racy for networks with extremely low-precision weights
and activations. We also demonstrate that this representa-
tion imposes minimal or no hardware implications to more
coarse-grained approaches. Source code is available at
https://www.github.com/julianfaraone/SYQ.

1. Introduction

Deep Neural Networks (DNNs) have produced state-of-
the-art results in applications such as computer vision [[17],
natural language processing [4] and object detection [31].
As their size continues to grow to improve prediction ca-
pabilities, their memory and computational requirements
also scales, making them increasingly difficult to deploy
on embedded systems. For example, [17] achieved state-
of-art-results on the ImageNet challenge using AlexNet
which required 240MB of storage and 1.45 billion op-
erations to compute inference per image. Several meth-
ods of compression [12], quantization [3|] and dimension-
ality reduction [25] have been applied to reduce these de-
mands, with promising results. This demonstrates the over-
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parametrization and redundancies in DNNs and poses an
opportunity for utilizing regularization to make their repre-
sentations more amenable to hardware implementations.

In particular, low-precision neural networks reduce both
memory and computational requirements whilst achieving
accuracies comparable to floating point [10]. For extremely
low-precisions, such as binary and/or ternary weight repre-
sentations and 1-8 bits for activations, most of the multiply-
accumulate (MAC) operations can be replaced by simple
bitwise operations. This translates to massive reductions
in storage requirements and spatial complexity in hard-
ware. Additionally, large power savings and speed gains are
achieved when networks can fit in on-chip memory. The is-
sue is that a large reduction in precision, leads to large infor-
mation loss which incurs significant accuracy degradation,
especially for complex datasets such as ImageNet [26]. Ide-
ally, we can train networks which have both high prediction
capabilities and minimal computational complexity.

DNN training is an iterative process which has a feed-
forward path to compute the output and a backpropaga-
tion path to calculate gradients and update its parameters
for learning. Low-precision networks involve having a set
of full-precision weights which are quantized before com-
puting inference. As the quantization functions are piece-
wise and constant, the gradients of quantized weights are
calculated and applied to update their corresponding full-
precision weights. Similarly, derivatives of quantized acti-
vations are calculated by using a non-constant differentiable
approximation function. This type of training was first pro-
posed as the Straight Through Estimator (STE) [1l] which
suggested the use of a nonzero derivative approximation to
functions which are non-differentiable or have zero deriva-
tives everywhere. The problem is that without an accurate
estimator for weights and activations, there exists a signifi-
cant gradient mismatch which impinges on learning. Seem-
ingly, as discussed in [22], activations are more robust to
quantization than weights for image classification problems
due to weight reuse in Convolutional (CONV) layers affect-
ing multiple operations. To overcome this, methods such as
increasing the weight codebook by applying a scaling co-



efficient to all weights in a layer, provides better approxi-
mations for weight distributions and greater model capac-
ity [19]. This is computationally inexpensive and can be
represented as multiplying each weight layer’s matrix by a
diagonal scalar matrix which only requires storage of one
value. Applying fine-grained scaling coefficients has also
been shown to improve accuracy by increasing model ca-
pacity [21], [24]. The problem with all of these fine-grained
approaches is either large storage requirements for the scal-
ing coefficients or high computational complexity due to ir-
regular codebook indices. In this paper we present Learn-
ing Symmetric Quantization (SYQ), a method to design bi-
nary/ternary networks with fine-grained scaling coefficients
which preserve these complexities. We do this by learn-
ing a symmetric weight codebook via gradient-based op-
timizations which enables a minimally-sized square diag-
onal scalar matrix representation. To reduce the large in-
formation loss from CONV layer quantization, we use a
more fine-grained pixel/row-wise scaling approach, rather
than layer-wise scaling in Fully-Connected (FC) layers. In
the process, we significantly close the accuracy gap for
low-precision networks to their floating point counterpart,
whilst preserving their efficient computational structures.
Our work makes the following contributions:

e Our approach significantly improves the ability of con-
volutional weights to learn low-precision representa-
tions. This is useful as most layers in modern network
architectures consist of convolutions which are typi-
cally the least redundant layers.

The proposed method reduces the computational com-
plexity of traditional fine-grained low-precision scal-
ing and imposes minimal hardware costs to layer-wise
scaling.

On state-of-the-art networks such as AlexNet, ResNet
and VGG, our method is empirically shown to improve
accuracy for 1-2 bit weights and 2-8 bit activations.

2. Related Work

Most methods for training low-precision DNNs maintain
a set of full precision weights that are deterministically or
stochastically quantized during forward or backward prop-
agation. Gradient updates computed with the quantized
weights are then applied to the full precision weights [JS],
[L5], [20]. To produce state-of-the-art results on larger
models, [24] proposed scaling the quantized weights by the
expectation of real-valued weights to recover the dynamic
range of each layer. [19] also implemented a similar tech-
nique for ternary networks and optimised a non-zero quan-
tization threshold as a function of the weight expectation.
Other gradient-based optimization methods for the scaling
coefficient have been introduced [34]]. Other methods of
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quantization have also been implemented, i.e. re-training
networks using incremental weight subgrouping to produce
no accuracy loss for 5 bit weights [32]]. Multiple binariza-
tions and a scaling layer were described in [28] to improve
accuracy and binarize the last layer. Logarithmic data rep-
resentations were used to approximate the non-uniform dis-
tribution of the weights, activations and gradients down to
3-bits with negligible accuracy loss [22]. Activations quan-
tization has also been investigated with frameworks created
for varying activation bitwidths [33]] and both weights and
activations [23]]. Improving the network learnability un-
der low-precision weights and activations was analysed in
[2]. More fine-grained approaches of quantization have ef-
fectively clustered weights or grouped filters together and
quantize differently based on their statistical distributions
[6l], [21] . Increasing model capacity by applying scaling
coefficients to positive and negative values separately was
proposed in [34]. Furthermore, sparse representations were
used as regularization to make networks more amenable to
hardware [[7]. Also, many low-precision DNN hardware im-
plementations have been published [30], [[11]. For example,
FINN [8], [29] demonstrated the performance gains of be-
ing able to store all network weights in on-chip memory by
implementing binarized neural networks on FPGAs.

3. Low-Precision Networks

In this section we discuss the motivations behind our
work and fundamentals of low-precision neural networks.

3.1. Motivation

Each layer of a DNN computes dot products between
weight parameters and its input values. We can represent
the output of each hidden unit A, as:

h=g(w'x) (1)
where g is an element-wise nonlinear activation function,
x € R*“" ig the input vector, and w € R*™" provides
the weight vector of a linear transformation. This compu-
tation is repeated throughout the network, therefore overall
model complexity is dependant on its structure. As modern
networks continue to get deeper/wider, model complexity
becomes problematic for their applicability on constrained
hardware environments. A solution is to efficiently quan-
tize both weights and activations to very low-precisions (1-
8 bits) with negligible or no accuracy loss. In doing so,
the arithmetic operations are greatly simplified, reducing
both computational and resource complexity. In the bi-
nary/ternary weight case, MACs are replaced by bit oper-
ations. For example, Figure |1| shows average resource us-
age on Field Programmable Gate Array (FPGA) hardware
to implement a MAC operation under different precisions,
which scales quadratically with the multiplier size at O(k?)
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Figure 1. The average cost per MAC operation on an FPGA device
for different bitwidths (weight-activation)

where £ is the number of bitﬂ As shown, no high precision
multipliers (known as DSPs on an FPGA) are required for
precisions less than or equal to ternary weights and 8-bit ac-
tivations. Furthermore, the logic element (known as LUTs
on an FPGA) requirement reduces proportionally with both
weight and activation precisions. Additionally, the storage
requirements for both weights and activations is reduced by
8 — 32x. This significantly improves the network’s ability
to fit in on-chip memory and constrained hardware environ-
ments, and broadens the applicability of DNNs.

For a CONV layer, all weights are typically represented
as a tensor W; € REXKEXIXN where K is the filter size,
I is the number of input feature maps and NV, the number
of output feature maps. In low-precision networks, each
weight layer [ can typically be represented by a diagonal
scalar matrix oy multiplied by quantized weight matrix Q,
and ideally W, o;Q;. Also, the activation function g
can be approximated using a piecewise constant activation
function G. In our proposed method, we observe that by en-
suring quantization levels for W are symmetric around zero,
we can construct efficient square diagonal matrix represen-
tations of o, which enable fine-grained quantization whilst
having minimal memory requirements (of size K or K?2).
This translates to a reduction in overall model complex-
ity and high prediction capabilities. Although, we restrict
ourselves by structured matrices and low-precision weights
and activations, the network efficiently captures informa-
tion through our gradient-based symmetric quantizer which
learns the diagonal elements of oy during training.

~
~

3.2. Weight Quantization

For low-precision DNNs, the distribution of full preci-
sion weight matrices for each layer W; are approximated
by a function f, resulting in a quantized weight matrix Q;:

0

=fW)i; 2

(2%

IResults are obtained from instantiating MAC modules using Vivado
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for W,;, € Rand Q;,, € C. The codebook C
{cl, C2y ee cr} is a set of all possible values for 0, , where
¢; € Rand i € R represent each codebook value and in-
dex respectively. For example, binary and ternary weight
spaces have C = { — 1,+1} and C = { — 1,0, +1}
respectively. Efficient functions for binarizing and ternar-
izing weight parameters have been proposed as piecewise
constant functions in [19]], such that:

Q, = sign(W;) © M, 3)
with,
1 if W, | >
M, = W2 )
0 if —nm< Wi, <m

where M represents a masking matrix, 7 is the quantization
threshold hyperparameter. 17 = 0 for binary networks and in
our work we set 7 = 0.05 xmax(|W;|) for ternary networks
as in [34]. The issue with discretization of the weights, is
that it leads to the vanishing gradients problem [1]]. To over-
come this, an STE is defined to replace the zero derivatives
from the piecewise constant function in (3)), by a non-zero
surrogate derivative [[15]. During training Q; is used for
inference and backpropagation, and the corresponding ele-
ments in W, are updated based on these gradients. Hence
the STE is defined as:

oF

ow,
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_0E
00, .

2,7

®)

where E is the error function for a network without scal-
ing coefficients. After training, the full precision weights
are discarded and we require only the quantized weights for
deployment. Whilst these methods greatly reduce computa-
tional complexity by eliminating floating point MACs, they
increase the difficulty of learning.

3.3. Scaling

The introduction of scaling coefficients improves learn-
ing capabilities by providing greater model capacity and
compensating for the large information loss due to bi-
nary/ternary quantization. Scaling discrete weight repre-
sentations requires multiplying all @, = by positive scaling
coefficients o € R™. We want to find optimal scaling coef-
ficients for each layer, «;, which minimize our error func-
tion:

of = argmin E(a, Q) s.t. «a>0, 0,,€C (6
with F representing the error function with scaling coeffi-
cients. Finding the optimal oy is vital to reducing gradient
mismatches in the forward and backward functions. It was
proposed in [33] as the mean of absolute weight values for
each layer:
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where Z; is the total number of layer weights. The code-
book for each layer after scaling in ( Ii is symmetric: ¢ =
{ ay, —|—al} and the scalars become per-layer learning rate
multipliers. Additionally, the STE in (8) reduces the gra-
dient mismatch from (3)) by including information from the
full precision weights:
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Gradient-based optimizations for scaling coefficients were
also introduced in [34] which applied different scaling co-
efficients for positive and negative Q. . to improve model
capacity and accuracies. These are updated during back-
propagation using gradients

=2

aal Z 5 4
i,jE i,jES
where initially af[ﬂa}g = 1 and S; is the codebook in-

dices for each layer, ie. SV = {i,j|W,, > n} and
Sp = {i,j|W,,, < —n}. This allows each layer’s code-
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book values to be asymmetric around zero, such that (Cl
{ — af,+al'}. The codebook indices are then highly ir-
regular and unordered which increases computational com-
plexity as the matrices cannot be easily decomposed. Rather
we have to check the sign of every element before compu-
tation, leading to extra branching instructions for conven-
tional computing platforms such as CPUs/GPUs and addi-
tional logic for custom hardware. The difficulty of design-
ing low-precision networks which have both high learning
capabilities and computational efficiency can be solved by
learning a symmetric codebook during training and exploit-
ing structured matrix representations.

4. SYQ Structural Representations

We now propose matrix representations of SYQ by par-
titioning the quantization into weight subgroups. Diago-
nal matrix representations consist of mainly zeros and have
non-zero entries along the main diagonal. For a matrix D
to be diagonal, D = 0if D; ; = 0V 4 # j, and square
if D € R™*™. A square diagonal matrix consisting of all
equal main diagonal entries is a scalar matrix. A diagonal

matrix oy is defined by the vector oy = [of, ..., "]
al 0 0 0
. 0 o : 0
a = diag(a) = : : a1l
0 0 0 a™

Diagonal matrix multiplication is very computationally ef-
ficient as it can be easily decomposed and only the scalar
vector requires storage.
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4.1. Layers

CONV and FC layers have differing computational
requirements and sensitivities to network redundancies.
CONYV weights are reused many times across the input fea-
ture map whereas FC weights are used only once per image.
Hence, the quantization error of each weight in a CONV
layer impacts the dot products across the entire input feature
map volume rather than just once for FC weights. Thus, a
fine-grained approach to CONV layers is effective at com-
pensating for this error. Quantized CONV weights are rep-
resented as a tensor Q, € R? with Z = K x K x I x N.
As typically I, N > K, it is optimal to have a diagonal
scalar of size K x K oreven K2 x K? as only small scalar
vectors are required for storage. By reshaping the tensor
Q,, we form a matrix Q; € R? where Z = K? x (IN)
or Z = K x (INK) and represent our scalar matrix mul-
tiplication as dz’ag(al)QlT with the square diagonal matrix,
diag(ay) € RE"*E” or diag(ay) € RE*E respectively.
FC layers are represented as a matrix @, € REXH where H
is the number of hidden nodes and L the activation neurons.
As FC layers are more robust to quantization, one learnable
scaling coefficient (layer-wise) for the FC layer can suffi-
ciently approximate the distribution and also can be repre-
sented with scalar matrix computation. All elements in oy
are then equal and we only require storage of one value.

4.2. Subgroups

More fine-grained quantization can improve approxima-
tions of the statistical distributions of weights. We imple-
ment pixel-wise scaling for CONV layers which involves
grouping all spatially equivalent pixels along the I x N di-
mension. This results in different values for all the main
diagonal elements in diag(c) € RE *E”. With this rep-
resentation, we can still decompose the matrix computa-
tion along each pixel dimension and exploit the parallel
nature of convolutions as shown in Figure 2] We do this
by creating subgroups 1 < i < K? with codebook in-
dices S} = {j|Wy, , }. Other granularities such as row-wise
scaling involve grouping all pixels along a row or column
(I x N x K), resulting in S/ = S} U S;*'... U S/ where
1 < j < K (as illustrated in Figure 2) and also layer-wise
scaling: S; = Si U Si*1... U S/°. Different granularities
affect both accuracy and computation as further explored in
Sections 6 & 7.

5.SYQ Training

In this section, we now describe the methodology to ef-
ficiently train SYQ networks.

5.1. Symmetric Quantizer

When training low-precision inference networks, the aim
is to have the smallest possible codebook. Typically, as
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Figure 2. Computational structure of pixel-wise (Left) and row-wise (Right) subgrouping of a CONV layer (K, I = 3). The tensors represent
the weight layer structure during training and the matrices represent the matrix decomposition for deployment.

the codebook size increases, a network will approach full-
precision performance but increase hardware cost. How-
ever, there are certain codebook representations which are
significantly more hardware friendly than others and won’t
necessarily impose any hardware costs. Given a codebook
C, and the nonzero codebooks CP = {ci|ci > O} and
c" = {cj|cj < 0}, a quantizer is denoted as symmetric
if:

Ve; € CP, Flejl € C™ where  ¢; = |¢j (10)
Learning this type of codebook requires updating one scal-
ing coefficient during training for two bi-polar codebook
values. The gradient of each scaling coefficient for each

subgroup becomes:

Y

When computing binary/ternary weight representations fol-
lowed by a scale, it is ideal to have a codebook which is
symmetric around zero, as the codebook storage require-
ments are almost halved. This is because only the absolute
value of the two symmetric values needs to be stored. Ad-
ditionally, codebook indices become highly regular and or-
dered for the scalar multiply which greatly reduces compu-
tational complexity. The nature of symmetric quantization
enables the opportunity to implement fine-grained quanti-
zation (pixel/row-wise) whilst maintaining the scalar matrix
multiplication structure used in layer-wise scaling. This is
also advantageous as the scaling coefficients become fine-
grained adaptive learning rate multipliers for each pixel/row
in a CONV layer, i.e. the STE becomes:

OF
00,
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As the use of scaling coefficients can more accurately ap-
proximate subgroups and are gradient-based, the gradient
mismatch is significantly reduced for weight quantization
which enhances network learning.
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5.2. Initialization

The solution to non-convex optimizations such as gra-
dient descent depend heavily on parameter initialization to
avoid vanishing or exploding activations/gradients and en-
sure network convergence [9]]. For low-precision networks,
excessive gradient mismatches between the forward and
backward functions must be minimized, otherwise the gra-
dients will not propagate well. To deal with this concern, the
scaling coefficients coefficients are initialized as the mean
of full precision weights in it’s corresponding subgroup. For
example, the scaling coefficient in pixel-wise scaling is:

Z JjES) VVlJ |
IxN

Layer-wise scaling in FC layers has «;, as the mean of all
layer weights. By incorporating information from the full
precision weights, we aim to reduce the mismatch initially
and the scaling coefficients are then optimized during back-
propagation.

%

lo —

13)

5.3. Activations Quantization

Our forward path approximation to g in uniformly
quantizes a real number = € [0, M] to a k-bit number:
Ga) = o7 Floor(2)a + ) (14)

x) = — floor((27)x + =

2f 2
where floor represents the round down operation and M is
the upper bound. M itself is bounded by its arbitrary un-
signed two’s complement fixed point representation where
f is the number of fractional bits and M = 2F—/ — 2=/,
Uniform quantization translates to a reduction in hardware

implementation complexity. To achieve this, we use the fol-
lowing STE for the activations:

oF OF

dr  0G
Differences in the forward and backward activation func-
tions create a gradient mismatch which can result in un-
stable and inefficient learning. To minimize this issue, we
adjust M as a hyperparameter. The overall SYQ training
process is summarized in Algorithm 1]

5)



Algorithm 1 SYQ Training Summary For DNNS.

Initialize: Set subgrouping granularity for S} and set afo .
Inputs: Minibatch of inputs & targets (I, Y"), Error func-
tion E(Y,Y), current weights W; and learning rate, -,
Outputs: Updated Wy 1, oz+1 and yi41

SYQ Forward:
for 1=1to L do
Q, = sign(W,;) © M, with n, using (3) &
for ith subgroup in Ith layer do
Apply o} to S}
end for
end for
¥ =SYQForward (I,Y,Q,, o) using

S Y Q Backward:
56, = WeightBackward(Q,. . 2 using (12) & 4;
g—E = ScalarBackward( 2% 0, ,al, 2*5) using ||

Wig = UpdateWeights(W,, 2 8Qz L )

a1 = UpdateScalars(oy, g—cﬁ, )
v¢++1 = UpdateLearningRate(v,, t)

6. Experiments

To demonstrate the versatility of SYQ, we applied it to
several state-of-the-art benchmark models, all with differ-
ent network topologies. We use binary/ternary weights and
varying activation bitwidths for classification of the large-
scale ImageNet dataset. The ILSVRC-2012 ImageNet is a
natural high resolution visual classification dataset consist-
ing of 1000 classes, 1.28 million training images and 50K
validation images. Inputs are resized to 256 x 256 before
being randomly cropped to 224 x 224. We report our single-
crop evaluation results using Top-1 and Top-5 accuracy.

6.1. Networks

We compare our results to the full precision baseline and
benchmark reference model accuracies in Table show-
ing that SYQ training achieves similar accuracy to floating
point. This suggests the noise induced from replacing float-
ing point weight layers with SYQ versions, provides effec-
tive regularization during training. An AlexNet [18]] vari-
ant is implemented which eliminates dropout and includes
batch normalization [[16]. A mini batch size of 64 is used,
L2 weight decay of 5e-6, and our learning rate is initially
le-4 with step decays of scale factor 0.2. For ResNet [13],
we test on the 18, 34 and 50 layer variations. Our batch
size is 128, learning rate is initially le-3 with step decay of

ob-
and

20ur ResNet and  AlexNet reference results are
tained from https://github.com/facebook/fb.resnet.torch
https://github.com/BVLC/caffe, respectively
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Table 1. Summary of Results for 8-bit activations and binary (1-8)
and ternary (2-8) weights

Model 1-8 | 2-8 | Baseline | Reference
MeNet | s | ma |08 | w02 | w02
YOS Irops|sve | wms | so1 |
RNCUIS | 105 | g | ars | 800 | 802
ResNet-34 ?gg:; g;g ;gg gé? ;?g
ResNet30 | o7 | o | on | 080 | 930

Table 2. AlexNet accuracy differences between using row/layer-
wise and pixel-wise symmetric quantization

Row-wise Layer-wise
Weights Act. | Top-1 Top-5 | Top-1 Top-5
1 2 -0.7 -0.5 -1.4 2.2
1 8 -0.1 -0.3 -0.4 2.2
2 2 +0.1 -0.0 -1.3 -1.5
2 8 -0.1 -0.1 -1.9 -1.7

factor 0.2. We also test on a variant of VGG-16 [27]], using
model-A in [[14] with the spp layer replaced by a max pool
and only 3 CONV layers rather than 5 for input size blocks
of 56, 28 and 14, as in [2]]. Batch sizes are set to 32 and our
learning rate is initially le-4 with a step decay of factor 0.2.
The VGG and ResNet models were initialized from floating
point baseline weights. Full-precision weights are used for
the first and last layer. All other CONV layers are quan-
tized with SYQ pixel-wise scaling, FC layers with layer-
wise scaling and the activations of all layers using (T4).

6.2. Changing Granularity Via Weight Subgroups

Weight subgroups can be arbitrarily designed for a
given hardware application. Table [2] shows accuracy dif-
ferences between using row/layer-wise vs pixel-wise scal-
ing on AlexNet and suggests pixel-wise and row-wise are
marginally different, especially for higher precisions, but
both are considerably more accurate than layer-wise. This
demonstrates the effectiveness of fine-grained quantization
of CONV layers over layer-wise and promotes the explo-
ration for efficient representations of scalar computation. It
also shows the effectiveness of row-wise quantization as it
typically incurs a smaller memory requirement with a small
accuracy drop, for a significant gain in the potential paral-
lelism of the network.

6.3. Comparisons To Previous Work

We compare SYQ explicitly using AlexNet, ResNet-18
and ResNet-50 in Tables [3] 4] & [3] as they’ve been exten-
sively studied in the literature. Our ternary results with 8 bit
activations (2w-8act) improves on the state-of-the-art for all



Table 3. Comparison to previously published AlexNet results

Model Weights Act. Top-1 Top-5
DoReFa-Net [33] 1 2 49.8 -
QNN [15] 1 2 51.0 73.7
HWGQ [2] 1 2 52.7 76.3
SYQ 1 2 554 78.6
DoReFa-Net [33] 1 4 53.0 -
SYQ 1 4 56.2 794
BWN [24] 1 32 56.8 79.4
SYQ 1 8 56.6 794
SYQ 2 2 55.8 79.2
FGQ [21] 2 8 49.04 -
TTQ [34] 2 32 57.5 79.7
SYQ 2 8 58.1 80.8

Table 4. Comparison to previously published ResNet-18 results

Model Weights Act. Top-1 Top-5

BWN [24] 1 32 60.8 83.0
SYQ 1 8 62.9 84.6
TWN [19] 2 32 65.3 86.2
INQ [32] 2 32 66.0 87.1
TTQ[34] 2 32 66.6 87.2
SYQ 2 8 67.7 87.8
Table 5. Comparison to previously published ResNet-50 results
Model Weights Act. Top-1 Top-5

HWGQ [2] 1 2 64.6 85.9
SYQ 1 4 68.8 88.7
SYQ 1 8 70.6 89.6
FGQ [21] 2 4 68.4 -

SYQ 2 4 70.9 90.2
FGQ [21] 2 8 70.8 -

SYQ 2 8 72.3 90.9

three networks. Our 2w-4act for ResNet-50 also improves
on the state-of-the-art FGQ. This is also the case for binary
weights, such as 1w-8act ResNet-18 and AlexNet with 1w-
2/4act. For extremely low 1w-2act representations, SYQ
also has a 2.7% increase in Top-1 accuracy over the state-
of-the-art HWGQ. This demonstrates SYQ’s superiority for
producing high accuracy. Additionally, it shows that multi-
ple learnable scaling coefficients effectively reduce the gra-
dient mismatch in the forward and backward paths, trans-
lating to efficient learning under low-precision constraints.

6.4. Varying Activation Bitwidth

The most important result is that SYQ efficiently quan-
tizes networks with low-precisions for both weights and ac-
tivations. From Figure [3} we can see that lowering the pre-
cision of the activations does not severely alter the train-
ing curve, suggesting that the gradient information from
pixel-wise scaling coefficients in SYQ compensates well
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Figure 3. Top-1 training and validation error for binary AlexNet
with varying activation precisions

Table 6. Number of scaling coefficients and operations per layer,
for different techniques

Method Scalars Ops
Layer (DoReFa) 1 P
Row (SYQ) K P
Pixel (SYQ) K? P
Asymmetric (TTQ) 2 P+Z
Grouping (FGQ) K*N/4 P
Channel HWGQ/BWN) | N P

for the loss of information. However, when quantizing
down to 2-bits, the training error curve does become more
volatile, demonstrating instabilities in network learning. We
also report the classification accuracies for varying activa-
tions and bitwidths on AlexNet and ResNet-50 in Tables 3]
& [ which shows that there is minimal discrepancy from
the full-precision networks with as low as 4-bit activations.
These results are extremely promising and have strong im-
plications for specialized hardware implementations of low-
power DNNs.

7. Hardware Implications

In this section we discuss the computational implications
of different scaling operations and present a design for spe-
cialized hardware implementations.

7.1. Computational and Memory Complexity

Considering a CONV layer with Ops, P = K x K x I x
N x F x F', where F is the IFM dimension. The layer-wise
scaling, as in DoReFa-Net, requires one scaling coefficient
per P operations. For channel-wise scaling in HWGQ and
BWN, it requires N scaling coefficients as there is one per
output feature map, where typically N > 1. TTQ imple-
ments asymmetric layer-wise quantization which requires
two scaling coefficients per layer and P + Z operations as
we add a branching operation for each weight due to irregu-
lar codebook indices, as described in Section 3.3. FGQ uses
pixel-wise scaling for every 4 filters, whereas SYQ uses



pixel-wise scaling per N filters, hence it requires K2N/4
scaling coefficients and P operations. For pixel-wise SYQ
scaling, K? scaling coefficients and P operations are re-
quired, where K = 3 for most CONV layers in modern
networks. For row-wise SYQ scaling it requires K scaling
coefficients and P operations. These results are displayed
in Table [6] demonstrating the benefits of maintaining a di-
agonal representation for the scalar matrix multiplication of
each layer as we either improve computational or memory
complexity against all other fine-grained methods. Another
key benefit of SYQ is its amenability to highly parallel pro-
CEessors.

7.2. Architectural Design

For the CONV layer, the operations are a sum of dot
products between the input and kernel filter. In order to
reduce compute complexity, we increase the number of op-
erations in each dot product, while significantly decreasing
the complexity of each operation. For example, the size of
the input vector, in the calculation of each dot product is:
L, = K?I. The number of operations is OpZ = = L, for
multiplies and OpL,, = L, — 1 for additions. Given that
we have a limited codebook for our weights, we can break it
into sub-dot products where we apply the scaling factor, o,
after we have computed the sub-dot product for that set of
symmetrically constrained weights. For pixel-wise quan-
tization, the total multiplies becomes Op? | = L, + K?
and the total adds become Op?,, = K*(L,/K? — 1) +
(K? — 1) = L, — 1. However, the first term in each of
these calculations can be done at significantly lower pre-
cision. For multiplies this means a binary or ternary mul-
tiple - which can often be implemented as a bit-flip. To
compute this in specialized hardware, for layer-wise scal-
ing, we have a parallel MAC tree which consists of a multi-
ply of an input and binary/ternary number (represented as
a dot) followed by an adder tree to sum up the outputs.
Outputs of these are fed into a multiplier to compute the
scale, followed by an accumulator to store the outputs be-
fore being fed into the activation function. This architec-
ture is shown in Figure[d] For every hardware block of this
type, our per-pixel/row scaling only requires one additional
ring counter which stores scaling coefficients and shifts the
input to the scaling multiplier through an index counter as
each row/pixel is finished computing which is computation-
ally inexpensive. As in the equivalent layer-wise scaling ar-
chitecture, we can still maintain one multiplier in hardware
and only increase memory slightly to store the scaling co-
efficients. Table [/| shows the resource and performance es-
timates provided by Vivado HLS of the described hardware
architecture for a target Xilinx ZU3 FPGA device at an esti-
mated clock frequency of over 300 MHz. The main design
is based on the MVTU described in FINN [29], with an
extension to 2-bit activations and pixel-wise and row-wise
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Figure 4. Hardware description of MAC for SYQ layers

Table 7. Resource Usage of a Matrix-Vector Processing Unit with
Layer-wise and Pixel-wise Quantization for target Xilinx ZU3

Config | SIMD PE BRAMs LUTs(k) DSPs
Layer 32 32 o4 29.8 4
Layer 64 32 o4 56.5 4
Layer 32 64 o4 58.9 4
SYQ(P) | 32 32 64 29.4 36
SYQ(P) | 64 32 o4 56.1 36
SYQ(P) | 32 64 o4 57.7 68
ZU3 - - 432 70.6 360

SYQ. The layer-wise baseline uses no multiplies, as these
can absorb into quantization thresholds for activations [29].
The MVTU was configured for a convolution layer with
I = 384, N = 256, K = 3, while scaling the size of the
MAC tree (SIMD) and the number of parallel processors
(PE). As shown, the BRAM (memory blocks on an FPGA
(18k)) and LUT usage is almost identical, while the DSP
usage increases proportionally with the number of parallel
output channels which are processed. The increase in DSPs
is not necessarily costly for the ZU3 as we are able to uti-
lize more of the total available resources. Resource usage is
only shown for pixel-wise SYQ, as row-wise only differed
in LUT usage by less than 2%.

8. Conclusions

The problem of efficiently training large DNN's with low-
precision weights and activations is considered. We pro-
pose learning symmetric quantization for DNNs in order
to maximize network learning whilst minimizing hardware
complexity. This was achieved by constraining the solu-
tion to low-precision representations and learning a diag-
onal scalar matrix using gradient-based optimizations for
efficient computation. As a result, we reduce the computa-
tional requirements of fine-grained quantization and achieve
state-of-the-art accuracies on modern benchmark networks.
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