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1. Introduction

Significant improvements in the performance, logic density,
and power efficiency of field-programmable gate arrays
(FPGAs) have made them useful for implementing nearly
any type of digital application. In early FPGAs, significant
improvements were made by optimizing the fine-grained
programmable logic and routing architecture of the FPGA.
Today, further improvements are being made by embedding
coarse-grained elements such as memories, multipliers, and
processors within the fine-grained programmable fabric of
the FPGA. Coarse-grained elements can implement a specific
function more efficiently than fine-grained programmable
logic. However, since they are not as flexible, they only benefit
applications which utilize them. This limits the types of
embedded blocks which are commercially viable in general-
purpose FPGAs to very common circuit elements such
as memories, adders, and multipliers. For domain-specific
FPGAs, however, additional embedded blocks may make
sense. For example, an FPGA that is built specifically to
implement applications containing a significant amount of
floating point computation would benefit from embedded

floating point units. This was explored in [1], in which
a domain-specific FPGA that incorporates coarse-grained
floating point units (FPUs) was described. The results in
[1] show that the embedded floating point units lead to an
18 times density improvement for a set of floating point
datapath circuits.

An important consideration when adding coarse-grained
embedded elements to an FPGA is the interface between the
coarse-grained and fine-grained resources. If this interface
is not flexible enough, the usefulness of the embedded
block will be reduced, since connections to and from the
block will be expensive. On the other hand, if the interface
is too flexible, it will require too much area and delay,
possibly negating the density and performance advantages of
including the embedded block, and resulting in unnecessary
overhead for applications that do not use the embedded
component.

In this paper, we examine this interface. We focus on
architectural issues, such as the location of the embedded ele-
ments, and the interconnect between the embedded elements
and the fine-grained fabric. Our approach is presented in
the context of the embedded floating point blocks described



2 International Journal of Reconfigurable Computing

in [1]. Specifically, the key contributions of this paper are the
following:

(i) a set of parameters that describes the interface
between coarse-grained and fine-grained program-
mable logic in FPGAs;

(ii) an empirical framework to model the impact of
coarse-grained architectural parameters in terms of
performance, density, and power consumption;

(iii) an empirical study that examines:

(1) where the coarse-grained FPUs should be
embedded within FPGAs;

(2) where the pins of the FPUs should be on the
periphery;

(3) how flexible the interconnect between the FPUs
and the fine-grained logic should be;

(4) what shape the FPU should have;

(iv) a study of a hybrid FPGA interface containing
embedded memories and FPUs including:

(1) where embedded memories used by the FPUs
should be located;

(2) how flexible the interconnect between the FPUs,
embedded memories and the fine-grained logic
should be.

Although this study focuses on FPGAs with embedded
FPUs, its findings may be applicable to other types of
embedded computational blocks.

A preliminary version of this work was presented in [2].
This paper further expands the study by considering hybrid
FPGAs with more than one type of coarse-grained block.
This is important because the different coarse-grained blocks
have different I/O density, area, and speed. The connection
of those blocks should affect the performance and routing
resources required in the hybrid FPGA.

This paper is organized as follows. Section 2 describes
related work. Section 3 illustrates the interface between
coarse- and fine-grained logic and presents corresponding
parameters to describe this interface. Section 4 then presents
the empirical framework used to evaluate different interface
schemes. Finally, Section 5 presents our results and analysis,
and Section 6 summarizes our conclusions.

2. Background

Conventional island-style FPGAs consist mainly of a fine-
grained programmable fabric that is made up of configurable
logic blocks (CLBs), programmable routing resources, and
programmable I/Os. The CLBs consist of one or more k-
input lookup tables (k-LUT) and fast local interconnect.
Each k-LUT can implement any single output function
with k inputs or less. The routing resources implement the
interconnect between the CLBs and the I/Os.

A significant number of studies have focused on opti-
mizing this type of FPGA architecture to minimize area,
critical-path delay, and power consumption. As an example,

the study described in [3] compares different aspects of
segmented routing architectures, such as wirelength distri-
bution, switch block implementation, and connection block
flexibility, with the goal of creating a fast and area-efficient
general-purpose FPGA architecture.

More recent work has focused on adding coarse-grained
blocks within the fine-grained fabric. Examples of this
include embedded arithmetic multipliers [4, 5] and embed-
ded processors [5]. Coarse-grained blocks improve area and
delay since they can implement specific functions more
efficiently than the fine-grained logic [6]. On the other hand,
coarse-grained blocks waste area when they are not used by
an application. FPGAs vendors must consider this tradeoff
to determine the type and number of coarse-grained blocks
that should be embedded within their devices.

In order to take further advantage of coarse-grained
blocks, domain-specific hybrid FPGAs target a specific
application domain. In doing so, greater area and delay
savings can be achieved for certain types of applications
since the amount of coarse-grained logic can be tailored
for those applications. A number of recent approaches have
been proposed in the literature. In [7], a coarse-grained
architecture with bus-based interconnect has been shown
to reduce area for datapath circuits. In [8], a tool that
generates a domain-specific reconfigurable fabric that is
tailored to a specified set of application has been proposed.
In [9], the QUKU architecture which merges coarse-grained
reconfigurable processing element array and FPGA archi-
tectures has been described. This two-level reconfigurable
architecture provides active support for fast and efficient
dynamic reconfiguration. Enzler et al. [10] has proposed a
framework for the cycle-accurate performance evaluation of
hybrid reconfigurable processors on the system level, which
is based on data-streaming applications. In [1], a domain-
specific hybrid FPGA architecture that targets floating point
arithmetic applications by incorporating floating point units
within a fine-grained programmable fabric has been pre-
sented; this architecture is shown to be 18 times more area-
efficient than a purely fine-grained architecture for floating
point arithmetic applications.

One of the key parts of an FPGA with embedded
coarse-grained blocks is the routing structure between the
embedded blocks and the fine-grained logic resources. If the
coarse-grained/fine-grained interface is not flexible enough,
many applications will be unroutable. On the other hand, if
the interface is overly flexible, the routing resources will be
slower and consume more area than is necessary. Although a
number of studies have proposed new coarse-grained blocks
and hybrid FPGA architectures, few have examined the
interface between the coarse-grained blocks and fine-grained
fabric in significant detail. In [11], the local routing resources
that connect CLBs to the FPGA routing resource are shared
with the embedded blocks to minimize the overall area
penalty when adding the embedded blocks. This technique,
called shadow clustering, is useful for embedded blocks with
similar I/O pin densities as the existing CLBs; however,
for embedded blocks which has higher I/O pin densities
than the existing routing resources are not sufficient. In
[12], the interface between embedded memory blocks and
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Figure 1: A configurable logic block and the basic logic element inside.

fine-grained programmable logic is examined. Memories are
quite different from computation blocks, and so we expect
that the interface presented in [12] would not be suitable for
our problem.

3. Coarse/Fine-Grained Interface

In this section, we describe the architecture of the blocks used
in this work. We first present our assumptions regarding the
fine and coarse-grained logic and then give a description of a
generic interface architecture with parameters that cover the
space of architectures considered.

3.1. Fine-Grained FPGA Assumptions

We assume that the fine-grained resources in the FPGA
consist of a grid of identical configurable logic blocks (CLBs),
each containing N basic logic elements (BLEs). Each BLE
contains a k-LUT and flip flop. The CLB also contains
support for carry chains, shift registers, internal multiplexers,
and XOR gates. Figure 1 shows the CLB and BLE modelled.

The CLBs are connected using horizontal and vertical
channels, as described in [3]. Each channel contains W
parallel routing tracks of length 1 and is connected to neigh-
bouring CLBs using a connection block, and intersecting
channels using a switch block. We use the subset switch
block (also known as disjoint) with Fcswitch = W , Fs = 3,
Fcoutput = 1, Fcinput = 1, and Fcpad = 1 [3].

3.2. Coarse-Grained Block Assumptions

In general, FPGA-based floating point application circuits
can be divided into control and datapath circuits. The
datapath occupies most of the area in the form of FPUs.
The required processing mainly consists of addition, sub-
traction, and multiplication. We adopt the coarse-grained
floating point blocks described in [1]. The datapath circuit
is implemented in this floating point block. The float-
ing point multiplier block is a fixed-function block. The
floating point adder block can be configured for either
floating point addition or subtraction. Each block has
a reconfigurable registered output and associated control
input and status output signals. A wordblock contains N
identical bitblocks. Bitblock contains two 4-input LUTs
and a reconfigurable output register. Bitblocks within a
wordblock are all controlled by the same set of configuration
bits, so all bitblocks within a wordblock perform the
same function. A wordblock, which includes a register,
can efficiently implement operations such as addition and
multiplexing.

In our assumption, each coarse-grained block contains
two double precision floating point adders, two double
precision floating point multipliers, and five wordblocks
which can efficiently implement operations such as addition
and multiplexing as shown in Figure 2.

In addition to FPUs, we also consider embedded mem-
ories. Specially, we consider block-selected RAMs (BRAMs)
as described in [13]. The details of floating point blocks and
BRAMs are shown in Table 1.
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Table 1: Statistic of the coarse-grained blocks used.

BRAM Floating point unit

Number of input 90 286

Number of output 64 258

Area (no. of CLB) 8 182

Delay (nanoseconds) 2.1 9.2

3.3. Coarse-Grained Interface

Based on our detailed area model, we estimate that our
embedded FPU consumes roughly the same amount of area
as 182 tiles. Each tile represents a CLB and its associated
interconnect, buffer, and configuration bit. To embed an
FPU, we remove a 13 × 14 grid of CLBs, and replace them
with a single EB. Figure 3 shows an example of replacing 3×3
grid of CLBs by a single embedded block (EB). We assume
that the EB pins connect to the routing architecture through
connection blocks, similar to those used for CLBs. Although
other connection patterns are possible (see, e.g., [12]), this
pattern allows us to minimize the number of changes to the
existing FPGA routing architecture, so that we can leverage
the significant amount of previous work on FPGA routing
structures. We also assume that the gridded routing fabric
extends over the embedded block, as shown in Figure 3.
Given the large number of metal layers available in modern
CMOS processes, it is reasonable that tracks can easily be
placed on top of the embedded blocks. In Figure 3, the four
switch blocks required at the interface of the horizontal and
vertical channels must coexist with the embedded block; the
embedded block, which takes the same area as nine CLBs,
includes the area of these four switch blocks. Although it
would be possible to consider architectures in which the grid
is “broken” [14], it would require changes to the detailed
routing architecture. In addition to FPUs, the memories are
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Figure 3: Connection between coarse- and fine-grained units
through switch box (sb).

embedded in the hybrid FPGA under the same assumption.
However, the area and the delay of the memories are different
to FPUs, which is shown in Table 1. The size of BRAM is 2×4
tiles.

3.4. Interface Parameters—Single EB Type

In this paper, we consider a range of interface architectures.
First, we explore the single EB-type hybrid FPGA. To describe
the space of single EB-type architectures that we consider, we
define the following parameters.
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(1) Single EB Position

The embedded blocks can be placed in various places within
the FPGA. In this paper, we consider the positions as shown
in Figure 4.

(2) Single EB Pin Location

Figure 5 shows several strategies for positioning the pins of
each EB. Strategy (a) has the highest I/O density, but may
be suitable if signals from the I/O block are to be combined
using a small set of CLBs. Strategies (b), (c), and (d) have
lower I/O density, but may result in longer connections if
signals from more than one side of the EB are to be connected
to the same CLB(s).

(3) Single EB Channel Width

The width of the channels surrounding the EB has a
significant impact on the routability of the device. Since our
EB has a large number of pins, congestion around the EB may
happen so it is desirable to relieve this congestion by using
wider channels.

(4) Single EB Shape

Several layouts of each embedded block are possible. We
consider various aspect ratios.

3.5. Interface Parameters: Multiple EB Types

We also study the interface between multiple EB types
and the fine-grained fabric. In this case, connections exist
between the two types of EBs and also between EBs and
CLBs. The best interface architecture may be different from
the single type EB FPGA. Therefore, we investigate the
following parameters for the hybrid FPGAs with two types
of embedded blocks.

(1) Multiple EB Position

We arrange the different EB types in various ways as shown
in Figure 6. We consider three different arrangements. The
first type places the smaller EBs in columns next to the larger
EBs. The second type places the smaller EBs around a group
of larger EBs. The third type places the smaller EBs around
individual larger EBs.

(2) Multiple EB Channel Width

Embedding additional EBs may change the amount of
routing resources that are needed. The connections between
EBs are usually bus-based which require more routing
resources. It is because if the I/O density of the additional
EB is larger, more wires are needed to connect to another
EB within a certain area. And the congestion in this area
increases and may reduce the performance of the FPGA.

4. Methodology

We employ an empirical methodology to examine the impact
of the interface parameters described in the previous section.
This section describes the benchmark circuits, the CAD tools,
and the model that are used.

4.1. Domain-Specific Benchmark Circuits

First we use six double precision floating point benchmark
circuits [15] with only one kind of coarse-grained embedded
block. They are (1) bfly: the basic component of fast Fourier
transform: z = y + x∗w using complex numbers; (2) dscg:
a digital sine-cosine generator; (3) fir4: a 4-tap finite impulse
response filter; (4) mm3: a 3×3 matrix multiplication circuit,
(5) ode: an ordinary differential equation solver; (6) bgm: a
datapath to compute Monte Carlo simulations of interest rate
model derivatives priced under the Brace-Ga̧tarek-Musiela
(BGM) framework.

These benchmarks are chosen since they each involve
a significant amount of floating point computation. Since
bfly, dscg, fir4, ode, and mm3 contain a small number of
fine-grained units, each core is replicated four times and are
connected together. For example, a dscg benchmark contains
four dscg cores connected together. All circuits use a single
global clock. The amount of FPUs and CLBs used for each
benchmark circuit is shown in Table 2.

For the experiment involving embedded memories, we
add BRAMs to the benchmark circuits. It is more realistic
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to store the input and output data of the applications
in internal BRAMs rather than store the data in of-chip
memories. The BRAM data lines are connected to primary
input/output of the benchmark circuits. The BRAM address
lines are connected to counters which are also added
to the benchmark circuits. The adders do not affect the
performance because they are implemented using fast carry
chains, the delay of which is small compared to the delay
of the BRAM and the FPU. The benchmark circuits now
contain two different types of EB: (1) FPUs and (2) BRAMs.
The number of BRAMs used in each benchmark circuit is
shown in Table 2.

4.2. VPH: Versatile Place and Route for
Hybrid FPGAs

We use the evaluation tool VPH to explore our architectures.
VPH is a modified version of the VPR tool, with support
for embedded blocks, complex logic blocks, carry chains,
and constraint files [16]. The tool is available at [17]. In
the VPH design flow, shown in Figure 7, applications and
coarse-grained elements are written in a high-level hardware
description language (VHDL) and synthesized to a mapped

Table 2: Amount of FPU, CLB, and also BRAM used in each
benchmark circuit.

Benchmarks bgm dscg bfly ode mm3 fir4

No. of CLB 6433 649 884 430 876 282

No. of FPU 7 8 8 8 8 8

No. of BRAM 18 22 40 25 12 12

library netlist in VHDL format using Synplicity’s Synplify
Premier 8.5 tool. The library netlist contains the usage and
connection of simple units such as registers, LUTs, internal
multiplexors, and internal inverters. The basic logic block
packing tool, VPHpack, packs these units into basic logic
elements (BLEs). VPHpack clusters BLEs into CLBs.

A user constraint file (.ucf) is used to specify the FPGA
area and the absolute position of each embedded block. A
separate constraint file for each embedded block is used to
specify the area, the pin position, and the timing information
for the EB; the area and delay information for each block is
obtained using Synopsys Design Compiler V-2004.06. As in
VPR, an architecture file specifies the fine-grained FPGA’s
architectural parameters, such as timing delay of the LUT.
Using these files, the VPH tool performs placement, routing,
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and timing analysis to produce area and delay estimates for
each benchmark circuit.

5. Results and Discussion—Single EB Type

In this section, the impact of the interface parameters in
Section 3 on hybrid FPGAs is studied. In the experiments
conducted, the default architecture parameters are (1) CLB
with 2× 4-LUTs, (2) type 3 EB position (Figure 4) as it gives
the best performance for the first experiment, (3) channel
width 80; since the maximum I/O density of the EBs is
42 pins per slice width, we choose 80 to be the channel width
to facilitate routing, (4) size of the floating point unit is 13×
14 CLBs. We use higher routing effort than our preliminary
version of work in [2]; therefore, the experiments result can
achieve higher speed than our previous work.

5.1. Single EB Position Results

We first examine how the position of the EBs affects the
overall performance of the device. As shown in Figure 4, we
consider positioning the EBs both around the periphery of
the device, as well as in the centre. Intuitively, positioning
the EBs in the centre will lead to shorter wirelengths for
wires that connect multiple EBs. However, positioning the
EBs around the periphery may cause less congestion since the
EBs will be more spread out.

Figure 8 shows the results for each of the positioning
strategies described in Figure 4. The best strategy is type 3, in
which the EBs are in the centre of the device, surrounded by a
sea of CLBs. It achieves at most 14.4% in speed improvement
compared to other positioning strategies. The critical path of
our circuits tends to include nets that connect multiple EBs;
thus placing the EBs close to each other is beneficial.
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5.2. Single EB Pin Location Results

We next consider the effect of I/O pin position on the
periphery of each EB. As shown earlier, pins can be
distributed evenly around the EB, or can be concentrated on
one or more sides of the block. Intuitively, distributing the
pins evenly will lead to a lower I/O density, possibly reducing
congestion but may lead to longer wirelengths if pins from
more than one side of the EB are connected.

The results are shown in Tables 3 and 4. The critical
path of the circuit is slightly smaller if all pins are placed
on a single side of the embedded block. In several of our
benchmarks, the critical path includes a path from one
EB, through a register in a CLB, into another EB. These
connections are shorter if the pins are close together. On
the other hand, Table 4 shows that the routing demand in
each channel can be reduced by distributing the pins evenly
around each EB. Compared to the configuration in which all
pins are on one side of the block, evenly distributing the pins
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Table 3: Critical path delay in ns for different EB’s I/O positions as shown in Figure 5 for single EB-type FPGA. The percentage shows the
deviation from the 1 side result.

Circuits 1 side 2 sides 3 sides 4 sides

(42 wires/clb) (21 wires/clb) (14 wires/clb) (11 wires/clb)

bgm 12.01 (0%) 11.92 (−0.7%) 11.93 (−0.7%) 12.03 (0.2%)

dscg 12.12 (0%) 12.34 (1.8%) 12.13 (0.1%) 12.28 (1.3%)

bfly 12.42 (0%) 12.38 (−0.3%) 12.30 (−1.0%) 12.19 (−1.9%)

ode 13.02 (0%) 13.30 (2.2%) 12.79 (−1.8%) 13.06 (0.3%)

mm3 11.22 (0%) 11.53 (2.8%) 11.31 (0.8%) 11.29 (0.6%)

fir4 12.63 (0%) 12.79 (1.3%) 12.41 (−1.7%) 12.67 (0.3%)

Average 12.23 (0%) 12.37 (1.1%) 12.14 (−1.9%) 12.25 (0.9%)

Table 4: Minimum channel width (number of wires) for different I/O positions for single EB-type FPGA as shown in Figure 5. The
percentage shows the deviation from the 1 side result.

Circuits 1 side 2 sides 3 sides 4 sides

bgm 44 (0%) 44 (0%) 30 (−32%) 27 (−39%)

dscg 43 (0%) 44 (2%) 30 (−30%) 33 (−23%)

bfly 44 (0%) 44 (0%) 38 (−14%) 37 (−16%)

ode 43 (0%) 44 (2%) 35 (−19%) 33 (−23%)

mm3 45 (0%) 45 (0%) 29 (−36%) 30 (−33%)

fir4 42 (0%) 44 (5%) 32 (−24%) 29 (−31%)

Average 43.5 (0%) 44.2 (1.6%) 32.3 (−26%) 31.5 (−28%)

reduces the channel width by 39%. We conclude that this is
the best choice.

5.3. Single EB Interconnect Flexibility

We next consider the width of the channels surrounding the
EBs. Intuitively, there is a high pin density on each side of
each EB; this may place additional demands on the routing
fabric near the EBs. If the fabric cannot provide the required
flexibility, circuitous routes may be required, leading to an
increased delay.

The results in Figure 9 show the effect of EB to CLB chan-
nel width on delay. For routable circuits, rather surprisingly,
the average variation is less than 3%. We believe that this
is due to critical paths being routed efficiently, so once the
circuit is routable, channel width does not affect delay.

5.4. Single EB Aspect Ratio

Finally, we consider how the aspect ratio of each EB affects
the overall performance of the FPGA. In this experiment, the
area of EB is fixed, but the aspect ratio is changed. Intuitively,
changing aspect ratio will change the distance between pins
on different EBs; this leads to a change in the delay of the nets
connecting these pins.

We modify the shape of the EBs from rectangular (2×91)
to square (13× 14); the width and height are counted in the
number of CLBs. The results in Figure 10 show that square
EBs are the most efficient for all applications and result in
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Figure 9: Delay against channel width for single EB-type FPGA.

a 14.4% speed improvement compared to the 2 × 91 shape.
Square EBs lead to a better worst-case delay between the EBs,
shortening the critical path in our benchmark circuits.

6. Results and Discussion: Multiple EB Types

After finding the best parameters for the single EB-type case,
we examine how embedding more than one type of EB affects
performance and routing demand. In our experiments, we
explore the EB position and the interconnect flexibility of this
system. The size of BRAM is 2×4 CLBs in these experiments.
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Figure 10: Delay against various EBs’ shape for single EB-type
FPGA.
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Figure 11: Delay against various EBs positions for multiple EB
types FPGA, as defined in Figure 6.

6.1. Multiple EB Position Results

We first explore the effect of the BRAMs position on
the floating point hybrid FPGA. Figure 11 shows the best
location between floating point units which corresponds to
type 3 in Figure 6. This configuration performs better than
the traditional column-based BRAM (type 1 in Figure 6)
used in Xilinx devices because the connections between
floating point units and BRAMs are reduced in this case. In
a similar way shown in Section 5.1, placing the embedded
blocks closer together reduces the length of the bus-based
connections between the embedded blocks which improves
performance and reduces congestion.

6.2. Multiple EB Interconnect Flexibility

Finally, we investigate routing resources for the multiple EB
system. Figure 12 shows delay for different channel widths.
The channel width is observed to be nearly constant which is
similar to the case discussed in Section 5.3. Table 5 shows the
increase in channel width required when embedded BRAM
is introduced. Since both FPUs and BRAMs have large I/O
requirements, an increase in channel width of 12% over the
case without embedded BRAM is required.
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Figure 12: Delay against channel width for multiple EB types
FPGA.

Table 5: Minimum channel width of multiple EB types FPGA.

Circuits Minimum channel width
Channel width increase
(%) (I/O pos.: 4 sides,

type 3 in Figure 4)

bgm 27 0

dscg 35 6.06

bfly 50 35.14

ode 36 9.09

mm3 32 6.66

fir4 33 13.79

Average 35.5 11.79

7. Conclusion

This paper investigates the architecture of the programmable
interconnect between coarse-grained blocks and the fine-
grained fabric in domain-specific FPGA with embedded
floating point blocks. Specifically, we first examine the
position of the embedded blocks (EBs) within the FPGA,
the placement of the pins on the periphery of the EB, the
width of the routing channels surrounding the EB, and the
aspect ratio of the EB for single EB type FPGA. After that
we explore the EBs position and the channel of multiple EB
types FPGA. We find that (a) the EBs should be positioned
close to each other in the middle of the chip, (b) the
EB’s pins should be distributed evenly around the EB, (c)
the width of the channels surrounding the EB have little
impact on circuit speed, (d) a square EB leads to the most
efficient implementations (e) smaller EBs should be located
between large EB to achieve higher speed, and (f) embedding
higher I/O density EB types leads to more routing resources
being consumed. Although our results are specific to the
architecture studied, we believe that they can be applied to
FPGAs containing other types of embedded blocks. Current
and future work includes extending our methodology to
cover other embedded blocks for different domain-specific
applications.
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