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Abstract— Health status monitoring of flight-critical sensors is
crucial to the flight safety of unmanned aerial vehicles (UAVs).
While many flight data anomaly detection algorithms have
been proposed, most do not consider data source information
and cannot identify which data sources contribute most to the
anomaly, hindering proper fault mitigation. To address this
challenge, a structured sparse subspace learning (SSL) anomaly
detection (SSSLAD) algorithm, which reformulates anomaly
detection as a structured SSL problem, is proposed. A structured
norm is imposed on the projection coefficients matrix to achieve
structured sparsity and help identify anomaly sources. Utilizing
an efficient optimization method based on Nesterov’s method and
a subspace tracking approach considering temporal dependence,
the computation is efficient. Experiments on real UAV flight
data sets illustrate that the proposed SSSLAD algorithm can
accurately and quickly detect and identify anomalous sources in
flight data, outperforming state of art algorithms, both in terms
of accuracy and speed.

Index Terms— Anomaly detection, interpretability, structured
sparse, subspace learning, unmanned aerial vehicle (UAVs).
I. INTRODUCTION
NMANNED aerial vehicles (UAVs) are equipped with
flight-critical sensors to monitor the surrounding environ-
ment. Sensor readings are interpreted as beliefs upon which
the UAV decides how to act. Unfortunately, even with preflight
certification, sensor faults can cause the controlling software
to perceive the environment incorrectly, and in turn make
decisions leading to task failure [1]-[4]. For example, some
faults in the sensors of determining the aircraft’s altitude
might lead to a stall and then a crash [5]-[8]. Consequently,
there is an urgent need to continually monitor the health of
flight-critical sensors [1]-[9]. Upon detecting an issue, appro-
priate mitigation actions can be triggered in a timely manner.
Faults and failures in flight-critical sensors are expressed
as anomalies in the flight data. The challenge is to create an
accurate anomaly detection algorithm that can identify abnor-
mal behavior [10]. Furthermore, for successfully healthy status

Manuscript received April 5, 2017; revised July 31, 2017; accepted
August 4, 2017. Date of publication October 4, 2017; date of current
version December 7, 2017. This work was supported in part by the Aus-
tralian Research Councils Linkage Projects funding scheme under Project
LP130101034, in part by the National Natural Science Foundation of China
under Grant 61571160, and in part by Zomojo Pty Ltd. The Associate
Editor coordinating the review process was Dr. Lorenzo Ciani. (Corresponding
author: Shaojun Wang.)

Y. He, Y. Peng, S. Wang, and D. Liu are with the Department of Automatic
Test and Control, School of Electrical Engineering and Automation, Harbin
Institute of Technology, Harbin 10080, China (e-mail: wangsj@bhit.edu.cn).

P. H. W. Leong is with the School of Electrical and Information Engineering,
The University of Sydney, Sydney, NSW 2006, Australia.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIM.2017.2754698

monitoring, mere detection of anomalies is not sufficient.
Algorithms should be able to provide additional interpretable
information, such as the sources responsible for the anomaly.
In addition, anomaly sources in flight data are required to be
identified with minimal latency for usage in a control loop.

The properties of the data are crucial to the design
of an anomaly detection algorithm [4], [6], [10]-[15],
[19]-[23]. Flight data are received in a streaming fashion
and multidimensional. In practice, the cost of manually
identifying anomalies means that often, only a limited
amount of labeled flight data are available. This motivates
unsupervised operation in which labeled training data are
not required. On the other hand, the health of a sensor
cannot be established independently. In order to obtain
a reliable result, dependence information from other data
sources should be taken into account [1]-[3], [6], [7]. Existing
time-series anomaly detectors can be roughly divided into two
approaches: temporal and spatial [10], [11], [14]-[22], [24].

The temporal approach assumes that flight data streams
adjacent in time are more likely to be similar. These
would appear as linearly dependent columns in the flight
data stream matrix [3], [15]. Many temporal anomaly
detection algorithms have been proposed [10], [11], [14],
[20], [22]. Especially for flight data anomaly detection,
Khalastchi et al. [3] defines a distribution, which compares
the Mahalanobis distance between new n-dimensional flight
data to earlier data in terms of standard deviations. Outliers
are identified as those having large Mahalanobis distance from
previous data storing in a sliding window (SW). He et al. [15]
assume that subspace directions might extract most informa-
tion of flight data distribution. And the presence of anomalous
data will lead to the deviation of flight data subspace direc-
tions. Then, anomalies are determined according to the angle
variation in the angle of the resulting direction. The temporal-
oriented algorithms reviewed previously perform well for
detecting the overall change of real-time multidimensional
data at adjacent time stamps. However, to take appropriate
mitigation actions, rather than simply detecting overall change,
it is also of significance to provide additional interpretable
information (e.g., the sources that are most responsible for
anomaly) in an anomaly detection algorithm.

Flight data also present spatial dependencies, which
mean that similar evolutions often occur between spe-
cific flight parameters, making corresponding rows of flight
data stream matrix correlated. Considering spatially depen-
dent properties, data sources information can be preser-
ved [14], [16]-[19], [24]. In this manner, a number of
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interpretable algorithms have been presented, which identify
the sources that contribute most to the anomaly, such as
stochastic nearest neighbor-based [16], graph-based [17], and
joint sparsity-based [18]. Unfortunately, most algorithms are
not designed for online UAV applications, which have highly
dynamic data stream and stringent real-time constraints. For
instance, Ide et al. [16] propose a neighborhood graph where
each node corresponds to a time series, and each edge is
weighted by the (dis)similarity between a pair of time series.
The anomaly score of the ith source is determined by the
change in the k-neighborhood graph around the ith node.
However, as UAV flight data have a complex distributions
(e.g., multiclustered structure), the k-neighborhood graph will
result in determining improper neighbors; thus, anomaly
sources cannot be correctly identified. Besides, the neigh-
borhood graph of each source must be constructed at each
time interval, making real-time implementations challenging.
Therefore, those interpretable algorithms take much more
computation time to get anomaly sources, making it less
suitable for real-time UAV applications.

In summary, to enhance the interpretability of flight data
anomaly detection, identifying the sources that are most
responsible for anomaly is still a challenge. Besides, the
anomaly detection of flight data needs to be done in real time,
and latency is critical when used in a control loop. Taking
spatio-temporal dependencies into account, multidimensional
flight data can be approximated in a lower dimensional sub-
space. Thus, subspace learning-based methods are favored
their reduced computational requirements [10], [25]-[29]. One
major disadvantage of traditional subspace learning methods
is that the learned subspace projection matrix is a linear
combination of all the original features [25]-[30]. This mixed
nature of subspace makes it hard to identify the responsible
anomaly sources.

In this paper, to provide additional interpretable information
and identify the sources that are responsible for the observed
flight data anomaly, a structured sparse subspace learning
anomaly detection (SSSLAD) algorithm is proposed. The
main contributions are as follows. First, utilizing spatial
dependence among different flight data and predefined
structured sparsity-inducing norms, the SSSLAD preserves
data source information and reformulates anomaly detection to
a structured SSL problem. Second, the predefined structured
norm induces the projection coefficient matrix (PCM) to
belong to a prespecified sparsity pattern, which improves
mixed nature of subspace. Based on the structured sparsity
subspace, anomaly sources are identified correctly. Third, an
efficient optimization method based on Nesterov’s method
is proposed to accelerate the convergence of the structured
SSL  problem. And considering temporal dependence
that subspaces in nearby time interval share similarity, a
subspace tracking approach is presented to reduce time
consumption.

The remainder of this paper is organized as follows.
In Section II, we discuss the challenge of applying subspace
learning to provide interpretable information in anomaly detec-
tion. The SSL is also introduced. In Section III, we introduce
the formulation of the SSSLAD algorithm and the related

optimization method. We present our experimental study in
Section IV and conclude in Section V.

Notations: Throughout this paper, we denote vectors with
bold lower case letters and matrices with bold upper case ones.
Variables are in the italic.

II. SUBSPACE LEARNING BASED ANOMALY DETECTION
AND SPARSE SUBSPACE LEARNING

A. Subspace Learning Based Anomaly Detection

The subspace learning problem [10], [25]-[29] is formally
defined as follows. Let y be a subset of the Euclidean unit
ball in R?, and let P be some unknown distribution over y.
The goal is to learn a subspace projection IT € RY*? using
a combination of original attributes, such that the expected
squared distance, E,ep[l|x — xII|[], is as small as possible.

Subspace learning [10], [25]-[29] is a widely applied
anomaly detection technique with applications in many
domains [15], [18]-[24]. The learned subspace captures the
variability of data. In such subspaces, the anomalous instances
can be easily detected. In contrast with other methods, these
techniques are suitable for multidimensional data sets and can
work in an unsupervised setting.

The input data stream can be viewed as a continuously
growing n x t matrix X, x; = [X1, X2, . ..X;] in R"*/, where n
is the number of data sources, ¢ is the measurement time
stamp, and x; is the measurement vector at ¢ over all the
data sources. At each time step, the column vector x; is
appended to X, x;. Temporal correlations appear in the data
stream matrix X, across different time stamps, and spatial
correlations appear across the different sources. The subspace
where the projected data have the largest variation is favored
for anomaly detection.

On one hand, considering the temporal dependencies
between time ¢ — 1 and ¢, subspace learning-based methods
can operate on the column vectors X; = [x1,, X2, .. .x,,,,]T
and the learned subspace captures the structure of the
n-dimensional points [15], [20], [22]. Anomalies are
indicated by a change of the direction of low-dimensional
subspace. Similarly, on the other hand, in considering spatial
dependencies, each row of data matrix X, «x; can be treated as
a point in R’ [16]-[18], [24]. In this approach, the subspace
which is learned by subspace learning as shown in (1) can
be divided into two parts: a low-dimensional subspace and
high-dimensional subspace. In this case, the first subspace
vector uj in projection matrix U captures the strongest trend
common to all data X,,x;, the second subspace vector up
captures the next strongest, and so on

A 1
U= argminEHX—XUUTH% ey
U

where the goal is to minimize the residual between X
and XUUT, XUUT is the reconstructed data, and U is the
subspace PCM, and || - ||%E denotes the Frobenius norm. The
solution is U = [S, G]. Each row of the PCM corresponds
to a data source, while each column corresponds to a
dimension of the subspace. The low-dimensional subspace
is S = [uj,uy,...w], the high-dimensional subspace is
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G = [uw41,w42,...u,], n is the dimension of subspace,
and [ is the dimension of low-dimensional subspace.

The low-dimensional subspace spans the component
that is dominated by major trend in the data, and the
high-dimensional subspace captures the residual spikes,
i.e., the abnormal patterns. An anomaly is detected when
the magnitude of the projection onto the high-dimensional
subspace exceeds a given threshold. Thus, these techniques
exploit correlation properties across different data sources to
detect anomalies.

Recently, a subspace learning approach making use of
spatial dependencies was proposed to identify the responsible
anomaly sources. This is possible as data source information
is preserved [18]. It assumes that the anomalous data have
much more projection on the high-dimensional subspace and
hence the subspace PCM could be used for anomaly source
identification. However, one major disadvantage of traditional
subspace learning methods is that the learned subspace pro-
jection matrix is a linear combination of all the original data
sources. It is thus difficult to interpret the results [25]-[30].
To solve this mixed nature of subspace, SSL methods were
proposed.

B. Sparse Subspace Learning

A drawback of traditional subspace learning is that the
learned subspaces are typically nonzero [25]-[29]. This is
because the projection of the data on the subspace is a
combination of data from all the sources, making it difficult to
interpret the learned subspace and identify anomalous sources.
Recently, SSL methods have been proposed to address this
issue.

Sparse subspaces with very few nonzero elements can be
obtained by reformulating subspace learning as a regression-
type optimization problem and imposing the lasso (elastic net)
constraint £1-norm on the regression coefficients. However,
SSL is not directly applicable to anomaly identification prob-
lems in that sparsity (zero pattern) occurs randomly in the
PCM. In fact, each row of the subspace PCM corresponds to
a data source in the original data space. And, the data sources
can be selected out if nonzero pattern is shown in certain row
of the subspace PCM. But the randomness in the subspace
PCM leads to the selected data sources that are independent
and generally different for each dimension in the subspace.
As a result, it is hard to select data sources by SSL.

In order to select data sources with important features, those
rows of the PCM corresponding to unimportant features should
shrink toward zero. Thus, each nonzero row of the resulting
PCM corresponds to a data source in the original data space
with important features. Row sparsity (zero rows) [27] thus
facilitates feature selection and can be achieved by solving

R 1
U=argmingnx—XUU’u%+/1||U||2,1 2)
U

where || - [|2,1 is the {21-norm and A is the regularization
parameter. ||Ul[2,1 denote a regularization term, which penal-
izes U to achieve row sparsity.

In some cases [31], [32], the subspace is expected not only
to be sparse but also has a certain structure, i.e., specific block

Gs

"

Fig. 1. Example of induced nonzero pattern E (black region) and three
sparsity-inducing groups denoted by G, G, and G3 [31].

nonzero patterns in the subspace. The structured sparsity-
inducing norms Q in (3) sets entire horizontal and vertical
half-spaces of the grid to zero, inducing rectangular nonzero
patterns E [black region in Fig. 1 (left)]

Q(w) = [|d% o w2, 3)

where d¢= [dG, . ..de, .. .dg] is a p X p matrix,
G = {G1, G2, G3} is the predefined subset shape, such that
de =0if j € G and d% > 0 otherwise, w is in 2-D grid,
and o is the elementwise product. The nonzero pattern E is the
complement of the union of groups (G| U G, U G3). [31].

As shown in Fig. 1, the structured sparsity-inducing norms
regularization Q controls not only the sparsity but also the
structure of the supports of elements; whereas the sparsity
regularized by ¢j-norm is yielded by treating each variable
individually regardless of its position in the original data space.

Based on this property, the structured sparse dictionary
learning has been proposed, which improved the performance
of feature selection in the application of face recognition
and bioinformatics [32], whereas it focuses on controlling
the structure of the dictionary V that cannot be directly
applied for our purpose of anomaly source identification. In
addition, a subspace approach with joint sparsity to identify
anomaly source was proposed [18]. However, the joint sparsity
approximation of subspace has to be computed repeatedly at
each time interval, and the fast optimization technique to solve
the joint sparsity problem is also a major issue.

In fact, the automatic design of the sparsity-inducing norms
is able to adapt to target sparsity patterns. This idea inspires
us impose structure norms on the subspace PCM U and study
the induced effect on the identification of anomaly sources.

Capitalizing on these results, we aim in this paper to go
beyond SSL and propose SSSLAD algorithm. The SSSLAD
will be introduced in Section III, in which the sparsity patterns
of all subspace elements are structured and constrained to
belong to a prespecified set of shapes. Benefiting from a con-
trol of the structure across subspace elements, the performance
of anomaly identification can be improved.

III. STRUCTURED SPARSE SUBSPACE LEARNING
ANOMALY DETECTION ALGORITHM

In this section, we describe a SSSLAD algorithm. Anomaly
detection is reformulated to a structured SSL problem using a
structured ¢, 1-norm on the PCM to achieve structured sparsity
to faciltate learning subspace and identifying anomaly sources
simultaneously. Related optimization method and subspace
tracking approach are presented to solve the problem and
reduce execution time.
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Fig. 2. Framework of the SSSLAD algorithm.

A. Framework of Model

Fig. 2 shows the framework. An SW is used to observe the
streaming flight data, which has five sources in this example.
Preprocessing methods, such as Z-score, are used to ensure
that rows have a zero mean, ensuring that subspace dimensions
capture true variance. X denotes the mean-centered flight data
stream matrix in an SW.

The first step involves constraining the subspace with pre-
defined structured sparsity (for instance, the orange subset G
in Fig. 2). In the second step, the resulting structured sparse
optimization problem is solved. A structured sparse-induced
subspace PCM (SSISPCM) is calculated in this step. The first
dimension of the SSISPCM accounts for the general trend of
data in the SW. Higher dimension (second—fifth dimension in
this example) captures abnormal behaviors. The benefit of the
achieved structured sparsity of the subspace is that some rows
of the high-dimensional SSISPCM are approximately all zero,
which corresponds to the normal data sources. Other rows
in the higher dimension of the SSISPCM with larger values
correspond to the anomaly data sources. Based on the higher
dimension of the SSISPCM, the last step is to calculate the
anomaly scores of each data source. A larger score indicates
that a larger possibility of the corresponding data source is
abnormal.

B. Construction of Structured Sparse Subspace Learning

It is observed that flight data have a certain structure.
Some parameters share common characteristics that can be
embedded into a subspace. Given a flight data matrix X, x; =
[X1, X2, ...X/] in R?* we aim to learn a projection matrix,
projecting the input flight data into an n-dimensional subspace,
while the learned subspaces projection matrix by the tradi-
tional subspace learning approach is a linear combination of

all the original data sources. This mixed nature of subspace
makes it often difficult to interpret the learned result and to
identify anomalous sources.

In order to identify anomalous sources and improve the
mixed nature of subspace, we want a specific set of structured
sparse patterns to be in subspace, such as nonzero patterns
in low-dimensional subspace and zero patterns in higher
dimensional subspace. We define an a priori structured sparse
constraint on the subspace. Under this constraint, a lower
dimension of subspace is as usual, while higher dimension of
subspace is enforced that different subspace coefficients share
exactly the same zero patterns. As a result, the anomalous
behaviors of data are significant in higher dimension of
subspace. Based on the structured sparsity subspace, we can
localize anomalies sources.

To construct a subspace with these expected sparse patterns,
we develop a new structured sparsity-inducing regularization
scheme and an SSSLAD algorithm as shown in

o 1
(A B) = argmin - ||X - XBA |2 + A[1dS o B2,
A,B

st. ATA =T, 4)
where XBA is the reconstructed version of original data X
based on B and A, B is the subspace PCM, Q = ||d® o B||2,1
is the structured sparsity-inducing regularization scheme,
d¢= [le, ... le, .. .dnG] is a n xn matrix, G is the predefined
zero subset shape in subspace, [ controls the dimension of
low-dimensional subspace, such that le = {0,...,0},{ if
[ € G and le ={1,..., 1},{ otherwise, o is the elementwise
product operator, and the regularization parameter A controls
the extent the SSISPCM B is regularized. s.t. denotes
subject to. 1 is a unit diagonal matrix. The resulting solution,
A and B, have structured sparsity.
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In the example of Fig. 2, the predefined zero subset
shape G is in orange. The structured sparse constraint will
try to continuously shrink the coefficients in predefined zero
subset G toward zero. However, coefficients that correspond
to abnormal sources will still keep a larger value, because
anomaly data have much more projection on the subspace.
This achieved structured sparse pattern will help to identify the
anomaly source. As a result, this paper formalizes flight data
anomaly identification via a structured sparse regularization
framework. However, an efficient convex optimization tech-
nique is required to find a solution [32]-[36].

C. Optimization Method and Subspace Tracking

We present our optimization method to solve (4) based on
Nemirovski’s Line Search Scheme. This is inspired by [26],
although (4) is not jointly convex in A and B, but rather convex
for A and B individually. Thus, the method solves A and B
iteratively to achieve a local optimum.

A given B: If B is fixed, we obtain the optimal A ana-
Iytically. Ignoring the regularization part, (4) is simplified to
minimize ||X — XBAT||2 st ATA = I,%p. The solution is
obtained by a reduced rank form of the Procrustes rotation.
We compute the SVD

X'X)B = UDV’
A=uv’ )
B given A: If A is fixed, the optimization problem becomes

i 1 T2 G
B:argmmEHX—XBA 17 + Alld~ o B|2,1. (6)
B

As mentioned previously, one appealing feature of the
{,1-norm regularization is that it encourages multiple predic-
tors to share similar sparsity patterns. However, the result-
ing optimization problem is challenging to solve due to
the nonsmoothness of the £> 1-norm regularization [33]—[35].
Lower complexity bound for smooth convex optimization is
significantly better than that of nonsmooth convex optimiza-
tion. [35] shows that the nonsmoothness of the £> j-norm can
be reformulated as equivalent smooth convex optimization
problems, and Nesterov’s method can be used to solve the
problem because it is an optimal first-order black-box method
for smooth convex optimization.

Due to the superior convergence rate of the smooth
convex optimization over the nonsmooth one, we propose
to reformulate the nonsmooth {7 i-norm regularized prob-
lem as its equivalent constrained smooth convex optimiza-
tion problem. Inspired by [35], we introduce an additional
variable t = [t1, ..f;.., t,]7, where #; acts as the upper bound
of [|d;% o Bj]|. Equation (6) can be rewritten as

A 1 T 5 "
B = arg min = |[X — XBA [|74p D 1
(t.B)eD 2 P

t=[r1,. 1., 0] (7

where D = {(t, B)|||d;® oB;|| <1;,Vi=1,2,...,n} is closed
and convex.

We propose to employ Nesterov’s method [33] for
solving (7). The reason is that Nesterov’s method has a much

TABLE I

NEMIROVSKI’S LINE SEARCH SCHEME
FOR THE SOLUTION OF B IN THE SW

Algorithm 1

Input: I, X, A, p

Output: B

1: fork=0to...do

2: B=(0—2 — 1)/ 041, S = B + B (Br — Bi—1),
¢ (S =X XS, — X XA

3: while 1 do

4: Byi1, 1] = 7 (Sk — &' (Si) /Lis k — /L, 1)
5:if g(Bi+1) < g(Sk) + (&' (Sk), Brr1—Sk)

Lk (| Brei 1 =Sk P+ [t 1 —t] ) /2

6: then go to Step 9

7 else Ly= 2Ly

8: end while

9: set o= (144/1+40 |)/2

10: If convergence criterion of objective function in eq.(7)
is satisfied then B;=B; and terminate the algorithm

11: end if

12: end for

faster convergence rate than the traditional methods, such as
subgradient descent and gradient descent [33]. Nemirovski’s
Line Search Scheme for the solution of B in the SW is
described in Table I.

A key building block in Nemirovski’s Line Search Scheme
is the Euclidean projection. Referring to step 4 in Table I, the
approximate solution [Byy1, ty+1] is computed as a “gradient”
step of [Bi4, ty] by the Euclidean projection. The Euclidean
projection 7 p (v, U) of a given point (v, U) onto the set D is
defined in [34], [35]

(v, U)—arg min ~|IB — U4l —vIP.  (®
bR )= g(t,B)eD 2 ) '
_Finally, the SSISPCM is B = [S,G], where G =

[Ui+1, U2, ... Uyl

Considering temporal dependence, we can store the value of
the SSISPCM B;_; at j — 1th SW to initialize the SSISPCM
B; at jth SW before optimization. This is because the solution
corresponding to B;_ lies in the feasible domain of B;.

As a result, we keep tracking the value of B along the
time direction incrementally updating the subspace. This
accelerates the convergence of optimization and reduces time
consumption.

D. Anomaly Source Scoring and Overall Steps
of SSSLAD Algorithm

To measure the degree of anomalies for each source, we
define the following anomaly source score:
n
Zj:H-l 18i,j1
Si=————— )
n—I
where g;; is the element in G. [ is the dimension of
low-dimensional subspace. n is the dimension of the subspace.
¢; is the anomaly source score for data source i.
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TABLE II
STEPS OF SSSLAD ALGORITHM

TABLE III
CHARACTERISTICS OF FLIGHT DATA SETS

-
kS

Algorithm 2 Data sets Thor Flight 107 Thor Flight 111
Input: flight data stream I Intervals (s) 0.02 0.02
Output: anomaly scores of data source ¢; Parameters 118 118
1: Get observed matrix X by sliding window and Length 14585 10328
pre-process. Index [10000,12700] [3900,8328]
2: Choose regulation parameter p and low dimension Size(SW) 100 100
subspace parameter / to constrain the subspace. Step(SW) 10 10
3: Obtain A and B iteratively. Obtain A by solving Number(SW) 261 433
eq. (5) , Obtain B by solving eq. (7) using Algorithm 1. Indices(AW) (119,139) (133,151), (298,316)
The output of this step is subspace projection coefficients Number(AW) 21 38
matrix B =[S, G].
4: Compute abnormal score ¢; for each source by the .,  Sourcet g  Source2 44  Source3
definition in eq. (9). . '
216 g 1 k / -E 13 P\
The overall steps of our SSSLAD algorithm is illustrated 15 0 1.2
. 0 50 100 0 50 100 "0 50 100
in Table II. Source 4 Source 5
1.7 16
IV. RESULTS = /\g
216 215
We have conducted extensive experiments with real-world & 3 /\
0

flight data sets to evaluate the performance of the SSSLAD
on anomaly identification in terms of both accuracy and time
consumption. Three state-of-the-art anomaly identification
methods: SSL [26], joint SSL (JSSL) [18], and K -nearest
neighborhood graph (KNN-G) [16] are implemented for
comparison. We implement all four methods with MATLAB
2015b and perform all experiments on a laptop computer
equipped with an Intel core 17-4710HQ at 2.50-GHz CPU
and 8 GB of memory.

A. Data Sets and Model Evaluation Metrics

We use two real-world flight data sets from UAV Labora-
tories at the University of Minnesota [37], [38]. In Table III,
we list the detailed information of flight data sets.

In the experiments, we only use part of flight data from
takeoff to landing. In real applications, flight data are in stream
fashion, so our approach process data by SW. The size and
step of SW are 100 and 10 in the experiment. For Thor
Flight 107 data set and Thor Flight 111 data set, the total
number of the SW is 261 and 433, respectively. Anomaly is
in the parameter of navalt. This kind of anomaly is in the
form of contextual anomaly over related time stamps, because
navalt shows the different trends compared with the other four
altitude-related parameters. For each data set, we single out
several abnormal windows (AWs) with anomalies. The index
and total number of AWs are also shown in Table III.

We use the standard receiver operating characteristic (ROC)
curves and area under ROC curve (AUC) to evaluate the anom-
aly identification performance. The ROC curve is a standard
technique for summarizing anomaly detection performance
over a range of tradeoffs between true positive rate (TPR) and
false positive rate (FPR). The AUC that measures the accuracy
and an AUC, which is close to 1, is optimal, while scores near
0.5 indicate a random decision boundary. We also measure the
time to identification (TTI) to evaluate execution speed.

1.5
0

=
o -
o

50 50 100

Fig. 3. Data in the 130th SW (altitude data of Thor 107).

B. Performance

There are two tunable parameters in SSL, JSSL, and our
proposed SSSLAD: p controls the sparsity, and / controls
the dimension of low-dimensional subspace. In the SSSLAD,
[ also controls the predefined zero subset shape G in subspace
as shown in (4). First, we set p = 8 and [ = 1 in
the experiment. Then, we compare the performance of the
SSSLAD with different p values. For the KNN method, we
need to select the number of neighbor n = 1.

1) Example of Anomaly Source Identification in a Sliding
Window: Fig. 3 shows the 130th SW in the detection process
of altitude data of the Thor 107 data set. Altitude parameters
have five sources, which are alt, navalt, h-filt, truealt, and
truenavealt, respectively. The data have an upward trend before
going downward. The parameter of navalt from source 2 is
the anomaly source, because navalt shows a different trend
compared with the other four parameters. The anomaly source
score of our SSSLAD for individual sources in the 130th SW
is shown in Fig. 4 [the score for each source is calculated
by (9)]. The larger the score, the greater the chance it could be
the anomaly source. Thus, making use of spatial dependence
among different data sources in stream flight data measure-
ments, our SSSLAD detects the anomaly source 2 (navalt)
correctly.

2) ROC and AUC Evaluation: To further evaluate our
SSSLAD that is adequate for anomaly identification, we
calculate ROC curve and AUC. As shown in Figs. 5 and 6,
for the ROC curve in the data sets of Thor 107 and Thor 111,
we observe that the ROC curves of the SSSLAD generally
lie above those of the SSL, JSSL, and KNN-G approach.
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Evalutaiton of 130th sliding window by SSSLAD
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Fig. 4. Anomaly source score of the 130th SW (altitude data of Thor 107)
by SSSLAD.
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Fig. 5. Comparison of ROC curve and AUC values for Thor 107 altitude
data.
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Fig. 6. Comparison of ROC curve and AUC values for Thor 111 altitude
data.

We also find that the AUC values of our SSSLAD are 0.9881
and 0.9836, respectively, for the data sets of Thor 107 and
Thor 111, which are much higher compared with the results
of other approach ( the AUC around [0.7139,0.9395] for
Thor 107 and the AUC around [0.8143,0.9535] for Thor 111).
As a result, the SSSLAD clearly outperforms the other three
approaches in terms of the ROC and the AUC. Thus, our
SSSLAD shows better performance for flight data anomaly
source identification.

We also show the details of FPR at different TPRs
in Tables IV and V for these two data set. Especially, for
Thor 107 and Thor 111 data sets, the SSSLAD achieves the
TPR of 97% at the cost of the FPR of 3.8% and 1.0%,
respectively. Our SSSLAD shows low FPR to identify anomaly
source 2.

TABLE IV
COMPARISON OF FPR FOR THOR FLIGHT 107

FPR
TPR SSL JSSL KNN-G SSSLAD
8% T13.8% 59.1%  2.5% 2.9%
90% T1.9% 625%  6.3% 3.3%
97% 18.7% 66.2%  46.3% 3.8%
TABLE V

COMPARISON OF FPR FOR THOR FLIGHT 111

FPR
TPR SSL JSSL KNN-G SSSLAD
8% 29.0% 27.8%  9.8% 0.5%
90% 29.5% 52771% 12.2% 0.7%
97% 66.1% 61.0% 13.0% 1.0%

3) Comparison of Projection Coefficients Matrix : Com-
pared with SSL and JSSL, the SSSLAD improves the mixed
nature of data subspace by the structured sparse constraint in
the case of streaming flight data. The sparse subspace learned
by the SSL does not fit directly into anomaly identification
problems in that sparse subspace enforces sparsity randomly
in the subspaces. To illustrate this, we normalize and compare
the learned subspace PCM of the SSSLAD, the JSSL, and the
SSL for each SW. The size of the PCM is 5 x5 as altitude data
are with five sources. Each row of the PCM corresponds to a
data source, while each column corresponds to a dimension of
the subspace. The first dimension of the PCM with nonzero
entries corresponds to the general trend of the data in the SW.
While higher dimensions of the PCM (second—fifth dimension
in Figs. 7 and 8) capture abnormal behaviors of the data in
the SW. Based on the statics of higher dimensions of the PCM
by (9), anomaly scores of each data source can be calculated.
A larger score indicates higher possibility of the corresponding
data source being abnormal.

We show the PCM in Figs. 7 and 8, with a brighter element
indicating a larger value. We observe that for some anomaly
SWs (for example, the 130th SW of Thor 107 flight altitude
data in Fig. 7, the 307th SW of Thor 111 flight altitude data
in Fig. 8), both the SSSLAD and the JSSL perform better than
the SSL and achieve the expected sparse subspace (the row of
high-dimensional PCM corresponds to the normal data source
is dark, while the one corresponds to the anomaly data source
is much brighter) that help identify the anomaly source 2.
However, for some normal SWs (for example, the 30th SW
of Thor 107 flight altitude data in Fig. 7 and the 11th SW
of Thor 111 flight altitude data in Fig. 8), both the JSSL
and the SSL fail to achieve the right subspace sparse patterns
that the achieved subspace is hard to interpret. In the same
SWs, high-dimensional subspace PCM learned by SSSLAD
approximately shrink toward nearly all zero. Thus, using the
predefined structured norm Q = [1dS o B||2,1 on the PCM B
[as shown in (4)] to induce a specific set of structured-sparsity
patterns in the subspace, the SSSLAD controls not only the
sparsity but also helps to identify anomalous data sources.
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Fig. 8. PCM learned by SSSLAD, JSSL and SSL at the different SWs (altitude data of Thor 111).

This is the reason why our SSSLAD performed better com- Overall, our proposed SSSLAD achieves better performance
pared with the JSSL and the SSL. in identifying all anomaly sources.

The SSSLAD outperforms the KNN-G approach, because 4) Time to Identification Evaluation: In addition, we eval-
the SSSLAD identifies the anomaly source by the structured uate the time execution of theses four approaches to identify
sparse constraint of data subspace rather than constructing the anomaly source as we should detect them in flight data
neighborhood graph on the original data space for each source. as soon as possible in the UAV flight control loop. As
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TABLE VI
COMPARISON OF TTI FOR THOR FLIGHT 107 (261 WINDOWS)

List Time (ms)
s SSL. JSSL. KNN-G SSSLAD
Total 498 601 684 273
Per window 191 2.30 2.62 1.05
TABLE VII

COMPARISON OF TTI FOR THOR FLIGHT 111 (433 WINDOWS)

List Time (ms)
SSL  JSSL KNN-G SSSLAD
Total 725 847 1160 405
Per window 1.67 1.96 2.68 0.94
L S A4 'T«
L8 =0~AUC of SSSLAD on Thor 107 altitude data
-6-AUC of SSSLAD on Thor 111 altitude data
0.6 - i
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Fig. 9. AUC comparison of SSSLAD at different sparsity regularizing
parameters p on Thor 107 and Thor 111 altitude data.

shown in Tables VI and VII, the total number of SWs for
the data sets of Thor 107 and Thor 111 is 261 and 433,
respectively. For each window, the time execution of our
SSSLAD is 1.05 and 0.94 ms for Thor 107 and Thor 111 data,
respectively. Compared with the time execution of SSL, JSSL,
and KNN-G, our SSSLAD decreases the TTI by 45.2%,
54.6%, and 60.1%, respectively, for Thor 107. For Thor 111,
our SSSLAD decreases the TTI by 44.1%, 52.2%, and
65.1%, respectively. The reason is that by reformulating (4)
as equivalent smooth convex optimization problems in (7)
and making use of the proposed optimal first-order black-
box optimization technology based on Nesterov’s method
(as shown in Table I), we not only solve the subspace
learning problem, but also accelerate convergence. Moreover,
considering temporal dependencies where the subspace in
nearby time intervals share similarity, we keep tracking B in
time by incrementally updating the subspace, which acceler-
ates convergence of the optimization and reduce execution
time. This is advantageous for real-time UAV flight data
processing.

5) Parameter Evaluation: Next, we evaluate the AUC and
TTI for different regularization parameters p. p controls the
sparsity. A in (4) is relate to p. As shown in Fig. 9, our
SSSLAD keeps large and stable AUC value when choosing
different regularization parameters p around the range
of [1-32] on Thor 107 and Thor 111 data. Besides, the
time consumed at each SW also stays stable at different

log(p)

Fig. 10.  TTI comparison of SSSLAD at different sparsity regularizing
parameters p on Thor 107 and Thor 111 altitude data.
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Fig. 11. Convergence of SSSLAD for different SWs of Thor 107 and Thor
111 altitude data.

regularization parameters p as shown in Fig. 10. Therefore,
the performance of our SSSLAD is stable and not sensitive
to the different regularization parameters p around the range
of [1-32].

6) Convergence: Finally, we evaluate the convergence of
our SSSLAD in obtaining subspace PCM B (as shown
in Table I). We initiate the values of A and B as a unit
diagonal matrix and zero matrix, respectively, in the exper-
iment. As shown in Fig. 11, for normal flight data (30th SW
of Thor 107 and 11th SW of Thor 111 in this example), the
value of objective function in (7) decreases to nearly zero after
four iterations. For anomalous data (the 130th SW of Thor 107
and the 307th SW of Thor 111 in this example), the value of
the objective function in (7) decreases to a steady value after
five iterations. The SSSLAD thus achieves fast convergence
and reduces processing time requirements.

V. CONCLUSION

In this paper, we propose an SSSLAD considering spatially-
temporal oriented dependence. The technique can identify
anomalous sources in flight data accurately and in a timely,
online manner.

Using spatially dependence and predefined structured spar-
sity inducing norms, the SSSLAD reformulates anomaly detec-
tion to a structured SSL problem and preserves data sources
information. A structural norm is imposed on the PCM to
achieve structured-sparsity. Benefiting from the control of the
structure across subspace PCM, the performance of anomaly
sources identification is improved. The original nonsmooth
convex optimization is reformulated as equivalent smooth
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convex optimization problems based on Nesterov’s method
to accelerate convergence. Considering temporal dependence,
subspace tracking approach is presented to reduce time con-
sumption because the subspace in nearby time interval share
similarity.

The experiments on two real flight data sets validate that
the proposed SSSLAD can identify anomaly sources correctly
and efficiently. Compared with other approach, SSSLAD can
achieve good performance in terms of accuracy and speed.
The study has significant supports to provide interpretability
for flight data online anomaly detection.

There are three avenues for potential extensions and further
work. First, the trend of ever-increasing amounts of flight
data create significant challenges for real-time processing.
We will explore techniques to improve the scalability of
this approach in the context of big data. Secondly, we will
further evaluate the identification performance of SSSLAD on
flight data with multianomaly sources. Finally, the proposed
SSSLAD algorithm is evaluated on a personal laptop and
does not consider power consumption of real UAV onboard
application. Therefore, hardware acceleration techniques such
as acceleration on field-programmable gate arrays will be
used to accelerate the SSSLAD with parallelization strategies
and reduce power consumption to meet real UAV onboard
application requirements.
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