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Abstract

The vast majority of commonly accessible photovoltaics (PV) generation and load con-

sumption datasets have low temporal resolutions, leading to inaccuracies in the mod-

elling and optimisation of PV-integrated battery systems. This study addresses this

problem by proposing an interpolation model based on a super resolution generative

adversarial network (SRGAN) that generates 5-minute PV and load power data from

30-minute/hourly temporal resolutions. The proposed approach is validated by two

different datasets including large amounts of residential data and compared to an al-

ternative predictive model. The results indicate that the model can adequately capture

the targeted data distributions and temporal characteristics with negligible statistical

differences from the measured high resolution data. Moreover, it performs consistently

across different types of PV/load profiles and on average it results in 0.32% and 0.28%

normalised root mean squared errors (NRMSEs) in daily totals of 5-minute PV and

load power values when using hourly data as inputs. Under a time-of-use (ToU) tariff,

the interpolated 5-minute data leads to 44.7% and 41.7% error reductions compared

to using hourly data for estimating electricity costs and battery saving potentials of a

PV battery system. Hence, the proposed model can be potentially applied in a bat-

tery sizing tool to obtain more accurate sizing results when only low resolution data is

available.
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Nomenclature

β1 The momentum value of an

Adam optimiser

η The median of a group of samples

λ The weighting factor applied for

the adversarial loss

E Expected value operator

θD The discriminator’s parameters

θG The generator’s parameters

θ∗G The optimal parameters of G

which minimises its loss function

ŷn A secondary value quantitatively

computed using one/multiple in-

terpolated high resolution daily

power profiles in the test set

D A discriminator

F(x) Residual mapping using the

stacked layers of a residual neural

network

G A generating function that inter-

polates input low resolution data,

which is also referred as a gener-

ator

G(z) The generator’s output given the

input latent noise z

G(XLR)t The interpolated power at a

given timestamp t

GθG A generating function parame-

terised by θG, which interpolates

input low resolution data

H(x) Output mapping in a residual neu-

ral network

I The number of training iterations

JA The adversarial loss component

JD The discriminator’s cost function

JG The generator’s cost function

JMS E The mean squared error (MSE)

loss

m The number of average power

values in a low resolution profile

Nbatch The size of a mini-batch

Ntest The number of test set daily pro-

files used to compute NRMSE.

Ntrain The total number of power pro-

files in the training set

P The probability distribution of the

measured data

pz A prior data distribution

pHR The data distribution of high res-

olution power profiles
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pLR The data distribution of high res-

olution power profiles

Q The probability distribution of the

interpolated data

S A probability space

s A possible outcome from S

t A timestamp

u The upsampling factor for inter-

polation

V(D,G) The value function of GANs

x The input to a residual block

XHR A high resolution power profile

XHR
t The measured power at a given

timestamp t

XLR A low resolution power profile

XHR
n The nth high resolution power

profile in the training set

XLR
n The nth low resolution power pro-

file in the training set

ymax The maximum value of yn

ymin The minimum value of yn

yn A secondary value quantitatively

computed using one/multiple

measured high resolution daily

power profiles in the test set

M The number of upsampling

blocks in the generator

N The number of residual blocks in

the generator

1. Introduction

There has been an ongoing global trend of smart meter rollouts, driven by the power

industry’s transition towards smart grids. As a component of the Advanced Meter-

ing Infrastructure (AMI), smart meters can monitor and transfer data more frequently

and efficiently compared to traditional interval meters [1]. Moreover, with two-way

communication between the consumers and utilities, smart metering technology en-

ables and enhances capabilities such as demand response programs, generation and

consumption forecasting, optimisation of battery integrated distributed generation and

time-varying tariffs [1].

PV generation and load consumption energy/power data, especially in the residen-

tial sector, is highly stochastic due to system location, local weather, socio-economic
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factors and occupant behaviours. The large amount of high-resolution PV and load data

collected by smart meters could be used to enhance the accuracy of data-driven load

forecasts [2] and PV forecasts [3] by enabling improved data-derived models. How-

ever, high resolution data collection imposes additional costs on the storage, transfer

and management of the collected datasets. Moreover, it introduces privacy concerns.

As a result, the standard temporal resolutions of smart meter data are still 15-minute

or greater [4]. Accessing smart meter data with a finer granularity is still difficult for

end-consumers, and most open access smart meter datasets are at 30-minute or hourly

temporal resolution [2].

While this level of granularity could be sufficient for billing or deriving aggregated

generation or consumption patterns, it may not fully capture the weather transients or

consumption spikes. This point is illustrated in the power profiles of Figure 1, where

the actual dynamics are not observed with the lower sampling rate. Furthermore, this

may lead to inaccuracies in the modelling and optimisation of distributed generation

systems. The effects of adopting coarse datasets on distributed generation system op-

timisation have been investigated in several studies. The impacts of temporal reso-

lution on the optimisation results of micro combined hear and power (CHP) systems

are analysed in [5]. The authors found that hourly compared to 5-minute load energy

data resulted in up to: 100% overestimation in optimal power generation capacity;

40% overestimation in carbon dioxide emission reduction; and 8% underestimation in

lifetime costs. On the other hand, the results derived from 5-minute and 10-minute

resolutions have minimal differences (e.g. for half of the cases, the optimal power

generation capacities are identical when using 5-minute and 10-minute data). This led

to the conclusion that finer resolution than 10-minute provides no improvements and

much higher computational costs. Authors in [4] assessed the impacts of granulari-

ties of load and PV data on the self-consumption rate and sizing optimisation of PV

battery systems. They found that 15-minute resolution is sufficient to obtain a reliable

self-consumption rate. However, when estimating optimal battery inverter powers, the

relative errors of using 5-minute data are between 5% and 15% for various households,

and the errors significantly increased up to 50% when using hourly data. An analysis is

performed in [6], where the authors investigated the influences of input data granular-
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Figure 1: Comparisons between 5-minute and hourly resolutions for (a) a PV power profile on a cloudy day

and (b) a residential load power profile. The illustrated power profiles are chosen from the dataset used in

this study and described in Section 2.6.

ity on the estimations of saving potential of PV battery systems. The authors found an

average of 17% difference between datasets with 1-minute and 30-minute resolution.

A similar analysis in [7], evaluating the impacts of data granularity in PV battery op-

timisation results, found that on average under a flat tariff, the resulting discrepancies

between 5-second data and hourly data is 2.9% in estimated electricity costs and 12.6%

in battery savings. The authors recommended 5-minute resolution, which achieves a

satisfactory balance between accuracy and computational costs.

One potential solution to address the above-mentioned issues is to synthetically in-

terpolate higher resolution smart meter data from lower resolution data. In the existing

literature, very few studies have considered interpolating smart meter data. Regarding

PV power interpolation, the most relevant studies attempt to interpolate high resolution

solar irradiance data from low resolution measurements. In [8], a model was proposed

to generate 10-minute irradiance data from hourly measurements where the stochastic

component of the 10-minute data is reproduced by randomly generating fluctuations

from fitted beta distributions of various classified sky conditions. Some improvements

were made in [9], where the authors used the beam clearness index instead of nor-
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malised clearness index in [8] to classify sky condition. They also applied a different

approach to normalise the deviations of each sky condition and an iterative process to

match the daily irradiation of synthetic and measured data. As a result, compared to

the original model in [8], the improved model achieved a 40% reduction in relative root

mean squared difference between the measured and synthetic irradiance data for daily

and hourly irradiation. A similar study [10], made improvements on [8] by using clear

sky index instead of normalised clearness index to derive sky conditions with a finer

level of categorisation, and applied bootstrapping instead of fitting beta distributions.

The study reduced the normalised root mean squared error (NRMSE) from 15% to 1.4-

3.0% for hourly sums and from 2-4% to 0.7-1.5% for daily sums of irradiance data.

A model is proposed in [11] which can generate 1-minute irradiance data from hourly

measurements. The model transforms the high resolution irradiance daily curves to

time-normalised daily clearness index series with one year of data used as the training

set for each location. Then the model takes in the hourly irradiance data for a day,

finds another day with the closest Euclidean distances in the training data and uses its

high resolution time-normalised clearness index data and the extraterrestrial horizontal

irradiance data of the input day to generate high resolution irradiance data. As a result,

the NRMSE in monthly irradiance is 6.2% on average for each location. A study to

interpolate 2-minute wind speed data from hourly measured data is proposed in [12].

The model generates random values of the gust, ramp and noise components of wind

speed data from the uniform data distributions of these components. The measured

input data is used to set upper wind speed limits for the gust and ramp components,

respectively. The method led to 13.79%, 62% and 18.3% relative errors in the average,

maximum and minimum wind speeds. Regarding load data, the nearest related study

sought to improve load disaggregation accuracy by interpolating high frequency load

data (100/1000 Hz) from lower frequency load data (10/100 Hz) using a convolutional

neural network (CNN) trained with a mean squared error (MSE) loss function [13].

There are no existing studies that interpolate high resolution PV/load power or

energy data from commonly accessible (e.g. 30-minute/hourly) coarse smart meter data

to the best of the authors’ knowledge. Although some approaches have been developed

to interpolate irradiance, wind speed or high frequency load data, the practicability of
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these approaches are questionable for interpolating residential PV and load power data

due to four main reasons:

1. Approaches in [8–10] all require an indicator based on irradiance measurements

to classify sky conditions. As irradiance measurements are difficult to obtain,

especially for residential sites, it is challenging to apply these approaches in

real-time.

2. The method used in [11] requires a year of high resolution data of the same

location as the training set, which is not easy to obtain for most households.

3. Residential PV and load power profiles are highly stochastic and cannot be mod-

elled with a simple probability distribution such as the beta distribution used in

[8] or a uniform distribution applied in [12].

4. Interpolating data using mean squared error (MSE) as a loss function has been

proposed in the literature (e.g. in [13]). MSE has been reported to encourage

finding the averages of possible solutions [14]. This means the interpolation

model using MSE may generate the averages of power values instead of various

correct power trajectories, leading to overly smooth interpolated power curves.

Motivated by these facts, a deep learning model is proposed in this study to interpo-

late high resolution PV generation and load consumption power data from commonly

accessible smart meter measurements. The model is inspired by the super resolution

generative adversarial network (SRGAN) work proposed in [14], which sets a new

state-of-art for image super-resolution. The aims of this study are as follows.

1. Interpolate 5-minute PV/load power data visually and statistically akin to the

measured 5-minute power data from 30-minute/hourly resolution. The reasons

for setting the targeted temporal resolution to 5-minute are two-fold: 1. 5-

minute is sufficient for applications investigated in [4–6] and recommended in

[7], achieving a good balance between accuracy and computational costs for op-

timisation of a PV battery system; 2. Although the model can be easily adjusted

to generate data with higher resolution, the amount of higher resolution data re-

quired to fit the model is also larger and may not be easily accessible in practice.
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2. Evaluate the SRGAN model performance against various PV/load profiles, alter-

native approaches and different datasets.

3. Validate the interpolated data using an end-use application. The SRGAN inter-

polated data is adopted in a residential PV battery optimisation model to address

the inaccuracies in the optimised results caused by using coarse data.

To the best of the authors’ knowledge, the SRGAN model has not been applied

to interpolate time series data, and its applications have been focused on interpolating

high resolution images (e.g. medical image interpolation in [15] and food image in-

terpolation in [16]). The reasons for developing our approach based on the original

SRGAN work are three-fold:

1. A deep learning model uses stacked neural network layers. Hierarchical levels of

temporal dependencies can be captured from the input time series data without

any hand-crafted preprocessing steps such as separating the dataset into different

sky conditions [8–10]. Only the normalisation of the input data is required.

2. The original SRGAN work generates 16 pixels from a single input pixel [14].

This upsampling factor is similar to our applications, especially for interpolating

5-minute data from hourly measured data, making it a good candidate.

3. Generative adversarial networks (GAN), which forms the basis of the SRGAN

model, has already been applied for synthesising PV power data [17] and load

power data [18] from random noises. They have been reported to have superior

performances compared to alternative methods.

Hence, the contributions of this work are:

1. The first SRGAN based model to produce 5-minute average PV generation and

load power data from 30-minute/hourly average PV and load power measure-

ments. Several improvements to the original SRGAN model [14] are proposed

to make it more suitable for our application, which are described with details in

Section 2.3. This work also shows that using only MSE for the loss function
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makes the interpolated power profiles overly smooth, and it is necessary to op-

timise an adversarial loss component to make the interpolated data realistic. It

should be noted that the proposed model can also be used to generate 5-minute

PV/load energy data, which can be directly converted from 5-minute average

power.

2. The source code for the implementation, together with the trained parameters of

the proposed SRGAN model are available online at https://github.com/tomtrac/

SRGAN power data generation. This allows others to: easily apply our SRGAN

model to their own datasets; apply our trained network directly to generate 5-

minute data from 30-minute/hourly measurements; and to compare their results

with this work.

3. We demonstrate that additional categorical information regarding the daily power

profiles, such as the month of a solar profile or the clustering label of a load pro-

file, can further improve the interpolation results.

4. We validate the synthetically interpolated high temporal precision power data in

a PV integrated battery optimisation model, which for the first time, addresses

the issue of applying coarse PV and load data in modelling residential PV battery

systems. The optimisation results are evaluated by a large real-time dataset and

an alternative interpolation model.

The remainder of the paper is organised as follows: Section 2 presents the method-

ology in this work, including a problem formulation and the proposed model; Section

3 presents detailed evaluations of the interpolated data; Section 4 concludes the study

and proposes some future work.

2. Methodology

GAN was first proposed in [19] as a generative model and it is capable of generating

high quality synthetic data from random input noise. GANs have been responsible for

many state-of-art advances in data synthesis and forms the basis for SRGANs. In this

section, the problem formulation is first introduced. Then, the concept of GAN, the
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loss function, architecture and training process of the proposed SRGAN model are

described.

2.1. Problem Formulation

In the context of our work, interpolation aims to estimate a high temporal resolution

measured average power generation/consumption profile XHR from its lower resolution

version XLR. XLR is essentially a time series with m average power values. u is the

upsampling factor (i.e. u power values are interpolated from a single value in XLR). As

a result, XHR contains u × m time-indexed values.

Historical high resolution data collected from multiple sites are used in the training

set to train a generating function GθG parameterised by θG. The training task can be

defined as finding θ∗G in Eq. (1):

θ∗G = arg min
θG

1
Ntrain

Ntrain∑
n=1

JG(GθG (XLR
n ), XHR

n ), (1)

where θ∗G are the optimal parameters which minimise GθG ’s loss function JG described

in Section 2.4; XHR
n and XLR

n respectively denote a single high resolution and a low

resolution PV/load power profile in the training set; Ntrain is the total number of power

profiles in the training set and n = 1, ...,Ntrain.

2.2. Generative Adversarial Networks

GANs involve two artificial neural networks, a generator G and a discriminator D.

G takes in a random variable z sampled from a simple prior distribution pz (e.g. a

Gaussian distribution), and generates a synthetic sample (e.g. an image/a time series).

D is implemented as a classifier to distinguish whether the input image/time series is

synthetic or real data.

For the interpolation task considered in this study, the structure of the original GAN

is adjusted to a SRGAN shown in Figure 2. Instead of latent noise, low resolution

power profiles are input to the generator to generate high resolution power profiles;

then, the discriminator’s task is to distinguish synthetically interpolated power profiles

from real high resolution power profiles.
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Figure 2: The structure of the SRGAN, which shows the inputs and outputs of the discriminator and the

generator.

2.3. Improvements to the original SRGAN model

The original SRGAN model aims to interpolate high resolution images with good

perceptual quality. To make it capable of interpolating high resolution power data, the

following modifications are made:

1. The original model uses a content loss component for the generator, computed

using a pre-trained image classification model. The interpolated and real images

are fed into the pre-trained model, and the content loss is the Euclidean distance

between the extracted features of real and interpolated images. We do not have

a pre-trained model, nor do we aim for perceptual quality. Hence, we use MSE

as a replacement for content loss.

2. The original work upsamples the input data using sub-pixel convolutional layers

[20]. Unfortunately, this approach sometimes causes unrealistic artifacts in the

interpolated data [21]. Instead, we have adopted the resize convolution approach

proposed in [22].

3. Fewer convolutional layers are applied in the generator and discriminator, which

we found sufficient for interpolating power profiles with minimal computational

cost. The final activation function in the generator is changed from a hyperbolic

tangent function in [14] to a sigmoid, so the output normalised numerical range
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is between 0 and 1.

4. Some adjustments have been made to the hyper-parameters of model training to

make the approach more suitable for the intended applications. The details are

described in Section 2.6.

2.4. Loss Function

During the model training process, the discriminator aims to maximise the proba-

bility of assigning the correct labels to measured high resolution power profiles (XHR)

and interpolated profiles (G(XLR)). This is done by minimising the cross-entropy cost

JD(θD, θG) shown in Eq. (2):

JD(θD, θG) = −EXHR∼pHR [log D(XHR)] − EXLR∼pLR [log(1 − D(G(XLR)))] (2)

Where θD, θG are the parameters of the discriminator and generator, pHR and pLR rep-

resent the data distributions of the high and low resolution power profiles respectively

and E is the expected value operator. EXHR∼pHR [log D(XHR)] is the expected value over

all measured profiles of the discriminator’s estimated log probability that measured

data is real and EXLR∼pLR [log(1 − D(G(XLR)))] is the expected value of the discrimina-

tor’s estimated log probability that interpolated data is not real. Minus signs are added

to these two components to combine them into a cross-entropy cost.

The loss function of the generator, on the other hand, has two main components:

one is the MSE between the interpolated and measured high resolution data (shown in

Eq. (3)) which shall be minimised to ensure the reconstructed power values are close to

the measured high resolution values; the other loss is the adversarial loss (JA shown in

Eq. (4)), where EXLR∼pLR [log(D(G(XLR)))] is the expected value of the discriminator’s

estimated log probability that interpolated data is real. A minus sign is added, which

makes this term an adversarial loss component to be minimised during training. The

reasons for including the adversarial loss component are two-fold: 1. minimising just

the MSE encourages finding the averages of the plausible interpolation solutions, and

this creates overly-smooth interpolation results that are not realistic [14]. This issue is

found in image super-resolution; 2. adding adversarial loss encourages the generator to
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capture high resolution uncertainties to make the interpolated profiles realistic enough

to fool the discriminator.

JMS E(θG) =
1

u × m

u×m∑
t=1

(XHR
t −G(XLR)t)2 (3)

Where JMS E is the MSE loss, t represents a timestamp, XHR
t and G(XLR)t are the corre-

sponding power values in the measured and interpolated high resolution power profile,

u is the upsampling factor and m the number of average power values in XLR.

JA(θD, θG) = −EXLR∼pLR [log(D(G(XLR)))] (4)

The combined loss JG of the generator is the weighted sum of JMS E and JA:

JG = JMS E + λ × JA (5)

Where λ is the weighting factor, which is an arbitrary constant applied for the adversar-

ial loss. As JG and JD are inversely correlated, they can combine and form a min-max

objective V for both functions:

min
G

max
D

V(D,G) =
1

u × m

u×m∑
t=1

(XHR
t −G(XLR)t)2+

λ × (EXHR∼pHR [log D(XHR)] + EXLR∼pLR [log(1 − D(G(XLR)))])

(6)

2.5. Model Architecture

The design of the proposed model architecture is inspired by the original SRGAN

work in [14], where both the generator and discriminator are implemented as a deep

convolutional neural network (CNN). In contrast to a traditional feedforward neural

network whose layers are all fully-connected (also referred to as dense) layers, a CNN

contains some convolutional layers. A layer in a neural network is a collection of

neurons, where each neuron receives some inputs, performs dot products on them using

a set of trainable weights and processes the weighted sum of the dot products through

the assigned activation function to add non-linearity to a neural network. Then the layer

outputs are transferred to other layers or considered as the final outputs of the neural

network if it is the output layer.
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In a dense layer, each neuron is independently connected to all the neurons in

the previous layer. On the other hand, a typical convolutional layer receives a three-

dimensional (3D) input, and its neurons are only connected to a small group of neurons

of the previous layer. The neurons in a convolutional layer are also arranged in a 3D

manner with dimensions defined as height, width and depth. The connected region is

referred to as a receptive field, and its corresponding array of weights is called a filter.

Figure 3 shows how a filter is applied in a convolutional layer with the depth set to 1

for a more accessible illustration in two dimensions (height, width). Some zeros are

added to the boundary of the input matrix to preserve the output sizes when multiple

convolutional layers are applied. Then the same filter is applied multiple times along

the height and width, which performs dot products and output a feature map. Gener-

ally multiple filters are used in a convolutional layer, resulting in multiple feature maps

stacked together to produce the output volume of the layer. The stride in Figure 3 indi-

cates the distance between two consecutive reception fields. It is one of the four main

hyper-parameters of a convolutional layer, along with the number of filters, filter size

and padding amount.

The partial connections of neurons in a convolutional layer have significantly re-

duced the number of parameters and computational costs in a neural network, so does

the risk of over-fitting. By applying multiple filters and stacked convolutional lay-

ers, hierarchical levels of temporal dependencies/features can be captured from the

input image/time series without requiring extra hand-crafted preprocessing steps other

than the normalisation of the input data. As a result, deep CNNs have achieved many

breakthroughs in the domains of image recognition [23] and restoration [24], speech

recognition [25] and natural language processing [26].

However, as the number of layers for a CNN keeps increasing to a certain extent, of-

ten the model accuracy gets saturated and decreases rapidly. This degradation in model

performance is addressed by the residual neural network (ResNet) proposed in [27],

which includes residual blocks that add skip connections along with the normal data

flows in a deep CNN. Hence, in this study, residual blocks are applied for the generator

to allow extra useful information to flow from the input data and at the same time avoid

the degradation issue of very deep CNNs. The architecture of the adopted residual
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Figure 3: The procedure of applying a filter in a convolutional layer, the depth is set to 1 for a more accessible

illustration.

block is shown in Figure 4(a), which follows the work proposed in [14]. Each residual

block includes two convolutional layers followed by batch normalisation which stan-

dardises the previous layers’ outputs to stabilise and accelerate the training process

[28]. Parametric rectified linear unit (PReLU) [29] is used as the activation function.

Consider the input of the residual block as x, and the desired output of the residual

block is H(x). As shown in Figure 4(a), where a skip/identity connection is added to a

stacked CNN, the input x is copied and added to the output of the stacked layers. This

means that instead of fitting these in-between layers directly to produce H(x), another

mapping F(x) called a residual mapping is used where F(x) = H(x) − x. Hence H(x)

is recast into F(x) + x. The skip connections allow information to flow between layers

easily without any transformations and help the later layers utilise the information from

the original input layer or previous layers. Moreover, the skip connections enable iden-

tity mappings (the output is the same as the input), which is difficult to approximate

for traditional non-linear deep CNNs. Hence, if the optimal layer mapping is close to

an identity mapping, this skip structure makes it easier to find the optimal layer pa-
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Figure 4: The adopted (a) residual block and (b) upsampling block for the proposed SRGAN model. ”Conv”

refers to a convolutional layer, the numbers after ”k”, ”n” and ”s” respectively stand for the filter size, number

of filters and stride amount of the convolutional layer(e.g. k3n64s1 indicates that the convolutional layer has

a filter size of 3 × 3, 64 filters and a stride of 1).
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rameters. To increase the resolution of the input data, the upsampling block shown in

Figure 4(b) is applied, which is inspired by the work in [22] and includes an initial

nearest-neighbour interpolation, a convolutional layer with batch normalisation and a

rectified linear unit (ReLU) activation function [30].

The model architecture of the generator is shown in Figure 5(a), which includes N

residual blocks and M upsampling blocks.

For the discriminator, as fewer convolutional layers are adopted, no residual blocks

are required. The design shown in Figure 5(b) simply follows the guidelines proposed

in [31] for deep convolutional generative neural networks (DCGAN). Leaky ReLU [32]

is applied as the activation function, and batch normalisation is also applied.

2.6. Dataset and Model Training

The dataset used in the study includes 5-minute average PV generation and load

consumption data of 2925 Australian PV households, collected by Solar Analytics [33]

using Wattwatcher energy monitors [34] for the period between January 2017 and De-

cember 2017. 5-minute data is then resampled into 30-minute and hourly datasets. The

PV and load power data are normalised by the household’s PV system size and peak

load before fitting the SRGAN model. This makes sure the numerical range is between

0 and 1. The power data from 80% of the households is used to train the SRGAN

model, 10% as the test set to evaluate the performance of the model and the remaining

10% is used as the validation set to select the optimal model hyper-parameters such as

the number of training iterations, numbers of residual blocks and upsampling blocks in

the generator.

Both the generator and the discriminator are trained by backpropagation [35] with

training steps described in Appendix A to update the parameters of both functions.

Model training is performed on a desktop with an Nvidia GeForce RTX 2070 GPU, an

Intel Core i7-8700K CPU and 32 GB of RAM, using Keras [36] and Tensorflow [37]

as the deep learning packages.

Separate models are trained for interpolating 30-minute and hourly PV and load

data, then some tuning of the model hyper-parameters is done using the validation set

and the Jensen-Shannon divergence (JSD) [38] defined in Eq. (7) as the evaluation
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Figure 5: The model architecture of the (a) generator and (b) discriminator. ”Conv” refers to a convolutional

layer, the numbers after ”k”, ”n” and ”s” respectively stand for the filter size, number of filters and stride

amount of the convolutional (e.g. k3n64s1 indicates that the convolutional layer has a filter size of 3 × 3, 64

filters and a stride of 1).
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Table 1: Hyper-parameters adopted for model training of the SRGAN model.

Hyper-parameter Selected Value

Learning rate 10−4

Momentum (β1) 0.5

Mini-batch size 128

Number of residual blocks (N) 5

Number of upsampling blocks (M) 2 for hourly; 1 for 30-minute

Weighting factor (λ) 10−3

metric which measures the distances between the interpolated and the measured data

probability distributions:

JS D(P||Q) =
∑
sεS

[P(s)log(
P(s)
Z(s)

) + Q(s)log(
Q(s)
Z(s)

)] (7)

Where P and Q are the probability distributions of the measured and interpolated data

defined on the same probability space S , Z = 1
2 (P+Q), s represents a possible outcome

from S .

The tuned hyper-parameters are summarised in Table 1. Same as the set-up in [14],

we applied an Adam optimiser [39] with a learning rate of 10−4 to update the SRGAN’s

parameters. The weighting factor λ in Eq. (5) is 10−3, achieving a good balance be-

tween the MSE loss and adversarial loss. On the other hand, we respectively changed

the mini-batch size to 128 and momentum β1 to 0.5. Another change made is to use five

residual blocks instead of 16 used in [14]. Empirically it is found that these adjustments

made the training process more efficient and stable for all the evaluated interpolation

scenarios using the adopted dataset and GPU. Moreover, interpolating hourly PV/load

data requires two upsampling blocks, while one upsampling block is sufficient for in-

terpolating 30-minute data. The range for the optimal numbers of training iterations

are between 105 to 5 × 105. More iterations are required for interpolating hourly data

as it has an additional upsampling block.
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3. Results and Discussion

This section can be divided into three main parts according to the objectives of the

study: Section 3.1 and 3.2 to visually and statistically assess the performance of the

SRGAN model; Section 3.3 and 3.4 to inspect the errors of the SRGAN model for

different groups of PV and load power profiles and for a different benchmark dataset;

Section 3.5 to introduce the comparative methods and evaluate their performances re-

garding the end-use application of reducing errors in estimated electricity costs and

battery savings for a PV-battery system.

Since the SRGAN model is applied to interpolate 5-minute PV and load power data

from 30-minute and hourly power measurements, a total of four interpolation scenarios

are evaluated in this section. Hence, most figures in this section include four subplots.

Each subplot presents results for a single interpolation scenario.

3.1. Visual inspection

The first step of the model evaluation is to inspect the SRGAN generated profiles

and their ground truth visually. This involved two main steps: the first is to check

whether both measured and interpolated profiles share similar overall patterns; the sec-

ond step assesses whether both profiles present the same level of fluctuations, especially

for cloudy-day PV profiles and load profiles with consumption spikes. Another aspect

of evaluating is whether it is necessary to include the adversarial loss component in

the loss function in Eq. (5) for interpolating PV/load power data. Hence, in addition

to the SRGAN model, another approach with the same model architecture is trained

only using the MSE loss component in Eq. (5). This model is referred to as the super

resolution mean squared error (SR-MSE) approach.

Figure 6 shows a few examples of SRGAN and SR-MSE interpolated 5-minute PV

and load power profiles and their respective input 30-minute/hourly and 5-minute mea-

sured power profiles. For an example of a clear-sky day PV power profile, as shown

in Figure 6(a), the synthetic profile generated by SRGAN matches well with the mea-

sured profile. A cloudy day PV power profile is illustrated in Figure 6(c). Although

some discrepancies can be observed where the SRGAN interpolated profile does not
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Figure 6: 5-minute daily PV power measured profiles compared to synthetic profiles generated by the SR-

GAN and SR-MSE models for (a) a clear-sky day interpolated from 30-minute data and (c) a cloudy day

interpolated from hourly data; 5-minute daily load measured profiles compared to synthetic load profiles in-

terpolated by the SRGAN and SR-MSE models from (b) a 30-minute power profile and (d) an hourly power

profile. The measured 30-minute/hourly and 5-minute profiles are shown in the first and second row, whereas

the third and fourth rows show interpolated power profiles using the SRGAN and SR-MSE models.

match the measured profile point by point, it captures the overall pattern and varia-

tions in power quite well. Similar results can be observed from Figure 6(b) and 6(d),

which compare two 5-minute load profiles respectively interpolated from 30-minutes

and hourly resolutions using SRGAN, to their corresponding measured profiles. On

the other hand, although the SR-MSE approach can capture the overall patterns of the

PV and load profiles, its generated profiles seem to be too smooth and less convincing,

especially for load profiles and cloudy-day PV profiles. This shows the necessity of

applying the adversarial loss for interpolating PV and load power data, similar to what

is found for image super-resolution [14].

3.2. Data distribution and autocorrelation

In order to illustrate the distances between the data probability distributions of mea-

sured and SRGAN interpolated power profiles for households in the test set, the cumu-

lative distribution functions (CDFs) of measured and interpolated data are shown in
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Figure 7: CDFs of measured 5-minute PV power data and synthetic 5-minute data interpolated from (a)

30-minute power data and (b) hourly power data using the SRGAN model; CDFs of measured 5-minute load

power data and synthetic 5-minute data interpolated from (c) 30-minute power data and (d) hourly power

data using the SRGAN model.

Figure 7. The CDFs are computed using the same method for both the measured and

interpolated datasets: the minimum and maximum powers from the measured test set

are used to set the range of values in the x-axis; then this range is divided into 50 equal-

width intervals and the cumulative probabilities are calculated for each power interval.

There is almost no visible difference between the synthetic and measured CDFs for

all the evaluated scenarios, which indicates that the SRGAN model is able to generate

5-minute interpolated power profiles from the identical data probability distributions

of the measured data.

Figure 8 demonstrates the mean daily autocorrelation profiles of measured and SR-

GAN interpolated datasets for all the four evaluated scenarios: PV/load data interpola-

tion from 30-minute/hourly resolution. To compute a mean daily profile, autocorrela-

tions are calculated for all the daily power profiles in the measured/synthetic evaluation

set. Then they are averaged for each 5-minute timestamp of a day. Similar to the CDF

results, the mean daily autocorrelations of the SRGAN interpolated data match quite

well with the ground truth, which means the SRGAN model is capable of capturing the
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Figure 8: Mean daily autocorrelation profiles of measured 5-minute PV power data compared to synthetic 5-

minute data interpolated from (a) 30-minute power data and (b) hourly power data using the SRGAN model;

Mean daily autocorrelation profiles of measured 5-minute load power data compared to synthetic 5-minute

data interpolated from (c) 30-minute power data and (d) hourly power data using the SRGAN model.

temporal characteristics of 5-minute load and PV power profiles.

3.3. Performance for different power profiles

It is vital to ensure the SRGAN model performs well against different types of

PV/load power profiles and to assess which types of PV/load power scenarios result

in better performances. Hence, the PV and load power profiles in the test set are seg-

mented into different clusters, and then assessments are carried on these clusters. The

daily clearness index [40] is used to separate PV power profiles as it provides a mea-

sure of cloudiness. As the daily clearness index ranges between 0 to 0.8 in the test set,

eight equally spaced clearness index intervals of 0.1 are used to group the PV power

profiles. The K-means algorithm [41] is used to cluster the normalised 30-minute and

hourly load power profiles. One of the aims of this analysis is to inform the potential

readers on which types of load profiles may have better performance compared to the

others. It is more desirable to use the number of clusters that results in the commonly

adopted typical load patterns, instead of adopting the number of clusters with the opti-

mal clustering performance (i.e. 12 clusters used in Section 3.5.1). As five typical load
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profiles were used in [42], and most of the resulting load cluster centroids using five

clusters are similar to the typical load profiles used in [42]. Hence, in this analysis five

clusters are adopted for both temporal resolutions.

The evaluation metric is the normalised root mean squared error (NRMSE) in the

daily totals of 5-minute power, the reasons for selecting this metric instead of the JSD

used in the model tuning process are two-fold: 1. The interpolated data probability

distributions match quite well with the ground truth, leading to JSDs that are too small

to compare among various clusters; 2. This metric is also adopted in several similar

studies [8, 10]. The NRMSE used in this paper is computed using Eq. (8).

NRMS E =

√
1

Ntest
×
∑Ntest

n=1 (yn − ŷn)2

ymax − ymin
(8)

where yn is a secondary value quantitatively computed using one/multiple measured

high resolution daily power profiles in the test set (e.g. daily total of PV/load power

values), ŷn is the same type of value as yn, but computed using one/multiple interpolated

daily profiles in the test set. Ntest is the number of test set daily profiles used to compute

NRMSE. ymax and ymin are the maximum and minimum values of yn.

In this case, to compute the NRMSEs in daily totals for different types of PV/load

profiles, yn and ŷn are set to be the sums of the measured and interpolated high reso-

lution power values of a daily load/PV power profile in a given daily clearness index

interval or a load cluster. Ntest is the number of daily PV/load profiles for this clearness

index interval/load cluster in the test set.

Figure 9 demonstrates the NRMSEs in daily PV totals for different ranges of daily

clearness index. As the clearness index increases, the NRMSEs decreases for both the

30-minute and hourly interpolated datasets. This is expected as there are more weather

transients during cloudy days, making it difficult for the SRGAN model to capture all

the uncertainties within the PV power profiles accurately.

The NRMSEs in daily totals of load power values are computed in a similar man-

ner. Figure 10 shows the K-means cluster centroids of 30-minute and hourly load

power data and their corresponding NRMSEs in daily totals. Both data granularities

end up with similar load clusters. Load profiles with relatively small daytime focused
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Figure 9: NRMSEs in daily totals of 5-minute synthetic PV power data interpolated from (a) 30-minute and

(b) hourly PV power data for different clearness index intervals.

consumption (Cluster 2) result in the smallest NRMSEs in daily totals for both evalu-

ated scenarios, followed by Cluster 5, which contains power profiles with morning and

evening peaks. Although Cluster 4 has a similar bell shape as Cluster 2, it has a much

higher NRMSE. We then look into the mean daily standard deviations of normalised

load profiles in the test set for Cluster 2 and Cluster 4. This is computed by determining

the standard deviation of normalised power for each daily profile in a cluster and aver-

age them. As a result, Cluster 4 has a much higher mean daily standard deviation and

the SRGAN model cannot accurately capture all the consumption fluctuations. This is

similar to what is found in Figure 9. Overall the NRMSEs are relatively small and sta-

ble across various clusters of load profiles, which means the SRGAN model performs

well regardless of the type of load curve.

3.4. Performance in a benchmark dataset

It is worthwhile to investigate the performance of the trained SRGAN model on a

different dataset. As a widely adopted benchmark dataset, the Smart Grid Smart City

(SGSC) dataset includes 30-minute smart meter data (primarily load data) collected

between 2010 and 2014 from Australian households in the state of New South Wales
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Figure 10: Cluster centroids of (a) 30-minute and (c) hourly normalised daily load power profiles and NRM-

SEs in daily totals of 5-minute synthetic load power data interpolated from (b) 30-minute and (d) hourly PV

power data within these clusters.

(NSW). In this case study, one-year data of 2013-2014 is used for validation, which

includes 2839 customers with a full year of load data and 43 households with a whole

year of PV data.

Figure 11 demonstrates a few daily power profiles of SGSC data and their interpo-

lated 5-minute power profiles using the SRGAN model trained using the Solar Analyt-

ics dataset. Although there is no ground truth for 5-minute SGSC data, visually, the

interpolated 5-minute power profiles are realistic. Also they contain weather transients

and load spikes that can not be observed from the original measured 30-minute profiles.

The absence of 5-minute data also means it is impossible to compare the data probabil-

ity distributions of the measured and interpolated datasets. Instead, the adopted metric

is the NRMSEs in daily totals of load/PV power profiles, which is already used above

for validating the model on different types of power profiles in the adopted test set.

Eq. (8) is also used to computed NRMSEs in the daily totals of load/PV power pro-

files of the SGSC data. In this case yn and ŷn are set to be the measured and interpolated

daily totals, which are the sums of the measured 30-minute and interpolated 5-minute

power values of a daily load/PV power profile in the SGSC dataset. Ntest is the total
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Figure 11: 30-minute measured and 5-minute interpolated PV power profiles from the SGSC dataset for (a) a

clear-sky day and (b) a cloudy day; 30-minute measured and 5-minute interpolated load power profiles from

the SGSC dataset with (c) morning and evening focused consumption and (d) daytime focused consumption.

number of daily PV/load profiles in the SGSC dataset.

The NRMSEs in daily totals of PV power and load power are respectively 0.39%

and 0.14%, which are comparable with the NRMSEs for the test set of the Solar An-

alytics dataset (0.25% for PV and 0.24% for load). Moreover, the NRMSEs in load

daily totals are even lower for the SGSC dataset. Since the SGSC dataset is collected

in a different year and quite likely from a different group of households (the Solar

Analytics training set only has 693 NSW PV customers, and the remaining 1647 PV

households are from other states), this shows that the trained SRGAN model is likely

to have the the same level of performance in other datasets with different time windows

and geographical scopes.

Although both of the adopted datasets were collected from Australian households,

it is suspected that the SRGAN model can still perform well for datasets in other coun-

tries since the above results show that the model performs consistently across various

types of PV/load profiles and datasets collected in different years.
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3.5. Alternative methods and their performances on end-use applications

3.5.1. Conditional SRGAN

The only input to the SRGAN model is the low resolution profile. However, if more

information of the power profile can be leveraged to direct the interpolation process

of the SRGAN model, it can be extended to a conditional SRGAN (CSRGAN) and

possibly improved. This information Y is also referred to as a class label related to the

seasonality or classification of the input power profiles, such as the season/month of a

year, load clustering labels. Y can be added to both the generator and the discriminator

as an extra input vector, as a result, they are both conditioned on Y and Eq. (6) can be

easily adjusted to the loss function of the CSRGAN model:

min
G

max
D

V(D,G) =
1

u × m

u×m∑
t=1

(XHR
t −G(XLR)t)2+

λ × (EXHR∼pHR [log D(XHR|Y)]+

EXLR∼pLR [log(1 − D(G(XLR|Y)))])

(9)

In this case, the SRGAN model is converted to a CSRGAN model by respectively

adding month number and clustering label as the extra information for interpolating

PV and load power profiles. Month number could be helpful to the PV power pro-

file interpolation as it may be related to the seasonal effects on cloud movements, and

clustering label could also be useful for generating interpolated load profiles as various

load clusters may have their distinct load characteristics such as the amount of the con-

sumption spikes. The K-means algorithm [41] is applied to cluster the low-resolution

load power datasets (30-minute and hourly), Davies-Bouldin index (DBI) [43] is used

as the metric to select the optimal numbers of clusters. As a result, 12 clusters are

adopted for clustering both the 30-minute and hourly load power data.

An alternative naive prediction model is also implemented as a comparison to the

SRGAN and CSRGAN approaches. The main idea of the naive prediction is similar to

what is done in [11]: for a given 30-minute/hourly daily profile in the evaluation set,

another daily profile in the training set that has the closest Euclidean distance is se-

lected. Then for predicting the 5-minute profile, the corresponding 5-minute profile of

the closest 30-minute/hour profile is adopted as a naive prediction. To make a compre-
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hensive comparison, results are also derived for the cases where measured 30-minute,

hourly and 5-minute datasets are available. The results of the 5-minute dataset are used

as an ideal case which allows us to compute the errors in daily, monthly and yearly

totals of PV/load power values and errors in estimating electricity costs and battery

savings, whereas 30-minute and hourly datasets are applied to produce a baseline of

the cost and saving results.

3.5.2. Estimation of daily, monthly and yearly totals

Table 2 compares the NRMSEs in the daily, monthly and yearly totals of inter-

polated 5-minute load/PV power values using the CSRGAN, SRGAN and naive pre-

diction approaches. For the evaluated scenarios, the CSRGAN approach has a better

overall performance in estimating the PV power totals compared to the SRGAN model.

The only exception is when predicting the daily PV totals using hourly data as input

temporal resolution. On the other hand, inputting additional information only improves

the estimation of load power totals when interpolating 30-minute load data. The CSR-

GAN model results in larger NRMSEs when hourly data is provided.

It is also vital to inspect how the NRMSEs of these interpolation models fluctuate

for different households in the test set. Moreover, it would be desirable to compare

the NRMSEs against other relevant studies. Although there is no existing studies on

interpolating 5-minute PV/load power data, studies in [8–10] interpolate 5-minute/10-

minute irradiance data from hourly data as reviewed in Section 1. As PV generation

is strongly dependent on solar irradiance data, the performances of our model and the

reviewed studies can be roughly compared. It should be noted that the comparisons are

not entirely fair as the reviewed studies interpolate irradiance data for a few weather

stations while this study aims to interpolate PV power data for households. They re-

ported one NRMSE in the daily totals of solar irradiance for each weather station,

taking account of all the collected daily irradiance profiles for that weather station. We

use the same metric to generate the box plots in Figure 12 for each evaluated scenario

and interpolation model. It should be noted that the NRMSEs on this plot are different

to the NRMSEs of daily totals in Table 2: The NRMSEs in Table 2 are computed using

all daily profiles in the test set while the household-level NRMSEs in Figure 12 are
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Table 2: NRMSEs in daily/monthly/yearly totals of interpolated 5-minute PV and load power data. NRMSEs

are determined for the whole test set.

NRMSE in PV totals (%)

Method input data resolution Daily Monthly Yearly

CSRGAN 30-minute 0.25 0.12 0.07

hourly 0.36 0.15 0.11

SRGAN
30-minute 0.25 0.17 0.16

hourly 0.32 0.16 0.12

Naive prediction
30-minute 1.29 0.72 0.63

hourly 1.11 0.57 0.48

NRMSE in load totals (%)

Method input data resolution Daily Monthly Yearly

CSRGAN 30-minute 0.23 0.15 0.18

hourly 0.39 0.40 0.53

SRGAN
30-minute 0.24 0.19 0.23

hourly 0.28 0.17 0.17

Naive prediction
30-minute 1.85 1.27 1.67

hourly 1.72 1.11 1.43
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Figure 12: Household-level NRMSEs in daily totals of 5-minute PV power data interpolated from (a)

30-minute and (b) hourly measured data, using the CSRGAN, SRGAN and naive prediction approaches;

household-level NRMSEs in daily totals of 5-minute load power data interpolated by the CSRGAN, SR-

GAN and naive prediction approaches, from (c) 30-minute and (d) hourly measured data across households

in the test set. η is the median value of the household-level NRMSEs for an interpolation scenario using one

interpolation model.

generated individually for each household in the test set to form a box plot, using on

year of daily load/PV power profiles.

As the reviewed studies all used small datasets and it is unclear whether these

NRMSEs are normally distributed, it makes more sense to compare the medians of the

NRMSEs instead of their means. Hence, the medians (η) for each evaluated interpola-

tion scenario are displayed on top of the box plots in Figure 12 for each interpolation

model. The median NRMSEs in daily totals of irradiance among various reported lo-

cations are respectively 3% in [8], 0.65% in [9] and 0.9% in [10]. Our model has a

better performance compared to the approach in [10]. The work in [8] and [9] inter-

polate 10-minute instead of 5-minute data from hourly measurements. Despite having

a higher upsampling factor, the NRMSE median shown in Figure 12(b) is 0.66 % for

the SRGAN model, which is quite close to the 0.65 % median in [9] and much smaller

compared to the reported value in [8].

Similar to the results in Table 2, the SRGAN model has better performances over
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the other two alternative methods when interpolating 5-minute load/PV data from

hourly resolution. However, the medians and interquartile ranges (IQR) of the NRM-

SEs across test set households for interpolating PV and load power data are relatively

close between the SRGAN and CSRGAN models when using 30-minute data as inputs.

Hence, paired Wilcoxon signed-rank tests are performed, which is a non-parametric

statistical significance test to compare two paired groups of samples [44]. In this case,

we use one-sided instead of two-sided tests to assess which approach results in smaller

NRMSEs for households in the test set. Another aim is to determine whether there are

sufficient households in the test set for us to find the optimal interpolation approach

for each evaluated scenario. As a result, Wilcoxon signed-rank tests are conducted to

compare the three approaches for each considered interpolation scenario, all of them

returned a p-value < 0.05. Moreover, the statistical tests show that the CSGAN model

achieves the lowest NRMSEs (p-value = 0.0012) in terms of interpolating load data

from 30-minute resolution. On the other hand, despite having a lower NRMSE in Ta-

ble 2, the CSRGAN model leads to higher household-level NRMSEs (p-value = 0.006)

for interpolating 5-minute PV power data from 30-minute resolution compared to the

SRGAN model.

Unfortunately, the metric reported in the reviewed load data interpolation study [13]

was the root mean square error (RMSE), and there was no unit provided for the RMSEs.

Moreover, the reviewed study aimed to interpolate very high frequency data (100/1000

Hz), which is quite different to our scope. Hence, it is not feasible to compare between

our model and the approach in [13].

3.5.3. Estimation of electricity costs and battery saving potentials

One potential end-use application of the interpolated PV/load data is to provide

more accurate estimations of electricity costs and battery saving potentials for house-

holds with PV when only coarse meter data is available. In this work, the battery

simulation model in [45] is adopted to evaluate the interpolated data, which requires

PV and load data as inputs, simulates the operations of a residential battery and com-

putes the electricity costs with & without a battery and potential battery savings for an

Australian solar household. Also, this case study follows the same economical param-
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eters, battery specifications, charging & discharging algorithm and tariff structures (flat

and time-of-use (ToU)) in [45]. For each household, the battery size range is set to be

1-15 kWh with an increment of 1 kWh (where 1 kWh is equivalent to 3.6 MJ). The

potential battery savings are computed for each battery size by taking the difference

between the electricity costs with & without a battery.

Table 3 illustrates the normalised root mean squared error (NRMSE) and r-squared

values in estimated yearly electricity costs and battery saving potentials using low res-

olution measured data and interpolated 5-minute data for the households in the test set.

For using 30-minute PV & load data as inputs, the CSRGAN model can achieve the

smallest errors in estimating electricity costs and battery saving potentials under the

tested flat and ToU tariffs. On the other hand, in terms of adopting hourly PV & load

data, the SRGAN approach produces the smallest NRMSEs and the highest r-squared

values in estimating electricity costs and battery savings for all the evaluated scenarios.

Both the CSRGAN and SRGAN have much better performances than the measured

low resolution data and the naive prediction approach. Compared to just using hourly

measured data, under the flat and the ToU tariffs, the SRGAN model respectively leads

to 41.2% and 44.7% error reductions in estimating electricity costs, 42.9% and 41.7%

error reductions in estimating battery saving potentials.

Another aspect to assess is the performances of different methods for each individ-

ual site. The relative error in terms of battery savings is applied as the metric. It has

been used for both sensitivity analyses in [7] and [6] to assess the impacts of using

low resolution PV and load data. Figure 13 illustrates the box plots of household-level

relative errors in percentages using the four approaches in Table 3. The SRGAN model

has the lowest ranges of percentage relative errors using hourly PV and load datasets

as inputs. Like Section 3.5.2, one-sided Wilcoxon signed-rank tests are conducted on

the percentage relative errors of all four approaches for each considered interpolation

scenario with a p-value smaller than 0.05. As a result, the SRGAN model also out-

performs the CSRGAN model using PV and load datasets interpolated from 30-minute

resolution.

The above results indicate that the SRGAN model can address the inaccuracies in

the estimated electricity costs and battery savings caused by using low granularity data
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Table 3: NRMSEs and r-squared values for estimating yearly electricity costs and battery saving poten-

tials using low resolution measured data, 5-minute data interpolated by the CSRGAN, SRGAN and naive

prediction models.

Errors in yearly electricity costs

Tariff Flat ToU

Method
input data

resolution
NRMSE (%) r squared NRMSE(%) r squared

CSRGAN
30-minute 0.24 0.99972 0.24 0.99976

hourly 0.46 0.99903 0.48 0.99906

SRGAN
30-minute 0.28 0.99965 0.31 0.99960

hourly 0.28 0.99963 0.29 0.99966

Measured

(low resolution)

30-minute 0.29 0.99960 0.31 0.99961

hourly 0.48 0.99892 0.52 0.99890

Naive prediction
30-minute 2.16 0.97842 2.34 0.97766

hourly 1.84 0.98430 1.94 0.98459

Errors in yearly battery savings

Tariff Flat ToU

Method
input data

resolution
NRMSE(%) r squared NRMSE(%) r squared

CSRGAN
30-minute 2.59 0.96576 1.82 0.98621

hourly 3.86 0.92970 2.84 0.96887

SRGAN
30-minute 2.93 0.95917 2.10 0.98220

hourly 3.66 0.93686 2.52 0.97526

Measured

(low resolution)

30-minute 4.13 0.93673 2.67 0.97724

hourly 6.41 0.84935 4.32 0.94229

Naive prediction
30-minute 5.83 0.87075 4.93 0.92733

hourly 5.75 0.87180 4.61 0.93373
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Figure 13: Household-level percentage relative errors in estimating yearly battery saving potentials using 30-

minute measured data, data interpolated by CSRGAN, SRGAN and naive prediction models using 30-minute

input data under (a) a flat tariff and (b) a ToU tariff; household-level percentage relative errors in estimating

yearly battery saving potentials using hourly measured data, data interpolated by CSRGAN, SRGAN and

naive prediction models using hourly input data under (c) a flat tariff and (d) a ToU tariff. η is the median

value of the household-level percentage relative errors using one interpolation method, an input resolution

(30-minute/hourly) and a tariff (flat/ToU).

in the power optimisation of PV battery systems. Hence, the SRGAN model can be

potentially integrated into a battery sizing tool that could still achieve accurate battery

sizing results when only low resolution input data is available.

4. Conclusion

In this work, a SRGAN based model is proposed to synthetically interpolate 5-

minute average PV and load power data from 30-minute and hourly data.

Detailed evaluations of the SRGAN model have been performed, a few key findings

are summarised below:

1. Visual inspections show the necessity of adding an adversarial loss component

to generate realistic 5-minute power profiles.

35



2. The SRGAN model can fully capture the data probability distribution and tem-

poral characteristics of the measured 5-minute data.

3. The model performs consistently on different types of load and PV profiles. Even

though the SRGAN model is trained using the Solar Analytics dataset, it achieves

the same level of performance on the Smart Grid Smart City (SGSC) dataset,

which has a different time window and geographical scope.

4. The SRGAN interpolated data can be applied to derive much better estimations

of electricity costs and battery saving potentials of PV battery systems than using

low resolution data or a naive forecasting approach.

5. By providing additional information during the data interpolation process, the

SRGAN model is turned into a CSRGAN approach. However, the CSRGAN

does not provide any significant improvements over the SRGAN model. It even

leads to more inaccuracies when interpolating hourly data especially for load

data.

The above findings indicate that the proposed model can address the issue of limited

proprietary high resolution data in modelling and optimisation of a PV-integrated bat-

tery system. Moreover, the SRGAN model can be potentially used to generate high

resolution PV/load power data for data-driven PV/load forecasting and load disaggre-

gation models, when only low resolution smart meter data is available.

For future work, it would be desirable to improve the CSRGAN model and explore

other types of information that could potentially assist the interpolation process. It will

also be worthwhile to evaluate the proposed approach for interpolating power profiles

of other types of renewable generation (e.g. wind) or finer temporal resolutions (e.g.

1-minute) in order to assess how well the SRGAN model generalises in time series that

are different to the datasets adopted in this work.
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Appendix A. Training Steps for the SRGAN Model

1: Input number of iterations I, mini-batch size Nbatch, LR and HR daily PV/load

profile pairs [XLR
n , XHR

n ].

2: for i in (1, 2, ..., I) do

3: A mini-batch that consists of multiple LR and HR daily PV/load profile pairs

([XLR
n , XHR

n ], n = 1, 2, ...,Nbatch) is randomly drawn from the training data.

4: The generator parameters are kept constant. The mini-batch is used to update

the discriminator parameters through backpropagating the loss defined in Eq. (2).

5: Another mini-batch ([XLR
n , XHR

n ], n = 1, 2, ...,Nbatch) is sampled from the train-

ing data.

6: The discriminator parameters are kept constant. The second min-batch is used

to update the generator parameters through backpropagating the loss defined in Eq.

(5).

7: end for

8: Output the trained SRGAN model.
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