

SPAK

Documentation and Introductory Tutorial

Simon Carlile and Philip Leong,

August, 1996.

�

Introduction

This document illustrates the m_file library functions for analysing and plotting spherical localisation data.

In this example a large data array in the file bigloc.txt is first loaded into MatLab

» load bigloc.txt /ascii

All of the routines in the library assume that the input data is in the form of four columns where each column represent

		Actual Location	Perceived location

		Az.	El.		Az.	El.

The azimuth and elevation coordinates correspond to the standard single pole coordinate system where 0,0 is directly ahead and positions to the right and up are positive and to the left and down are negative.

Selecting and plotting data for a particular position on the sphere

To select data for a particular location we need to use the routine sel_ld. This routines allows data between specific azimuth and elevation boundaries to be extracted from a larger data set.

The input format is d_out = sel_ld(d_in,az_lo,az_hi,el_lo,el_hi);

�SYMBOL 183 \f "Symbol" \s 10 \h�	d_in is the four column data from which we will select the position.

�SYMBOL 183 \f "Symbol" \s 10 \h�	az_lo,az_hi,el_lo,el_h: are the range of coordinates which define the area of interest

For instance to pick localisation estimates associated with position Azimuth 0, elevation -20

» dat=sel_ld(bigloc,0,0,-20,-20);

Lets plot this raw data on a sphere. First we need to draw the sphere with draw_sp(DrawZero). The argument DrawZero simply specifies whether a large red dot indicating the position 0,0 should be also be drawn (If DrawZero > 0 then draw the dot). We can set the view point from which we observe the sphere later but there is one technical problem that needs to be pointed out. MatLab version 4.2 has a bug in the hidden line removal algorithm that means that data on the hidden side of the sphere is not always properly removed from view (we have checked this with the MathWorks and they agree). Likewise, when the view point for the sphere is moved above or below the equator this can also result in odd looking spheres.

So to draw the sphere

» draw_sp(1); 		% draw the sphere with the dot

The sphere is a unit sphere in cartesian space that is centred on the origin. That is, its centre is 0,0 and its radius is equal to 1. This sets up the figure window for subsequent plotting on the sphere.

Now lets draw the data on the sphere using white dots with size 5

» plot_sp(dat(:,[3:4]),'w.',5);

Remember that the localisation data is in columns 3 and 4 and the actual location is in columns 1 and 2 so to superimpose the actual location on the cluster with a large blue dot we would plot

» plot_sp(dat(1,[1:2]),'b.',15);

We could change the view point say to look from the right hand side of the plot using the MatLab view() command. SPAK provide a conversion routine to convert from hoop coordinates to cartesian coordinates: hp2cart([az el]) This routines expects a matrix containing pairs of azimuth and elevation values. So to view from the right hand side we

» view(hp2cart([90 0]))

To return the figure to its former rotation

» view(hp2cart([0 0]))

Dealing with Front-Back confusions:

A common form of localisation error is the front-back confusion. This is a particular case of a cone-of-confusion error. In this analysis these errors will been extracted from the data and treated separately. Some authors have corrected the F-B confusion by reflecting the judgement back into the appropriate hemisphere (see Wightman and Kistler, 1989). However, we believe that this is a fairly theory laden manipulation of the data and is probably not the best approach. The F-B confusions still need to be dealt with in some way as they impose a bimodal distribution on the data which can affect the statistical analysis. The notion that they can be removed from the data set is supported by the fact that, qualitatively speaking, they are quite different sorts of errors compared to the smaller errors about the actual target location and as such may reflect the failure of a separate processing system (spectral analysis?).

Therefore, before doing any analysis we should extract the F-B confusions from the data and treat them separately. The routine rfb_ld provides the means of achieving this.

[dat_out,b] = rfb_ld(dat_in,tolIAA,tolMidLine);

This routine extracts the front back confusion from the dat_in and returns dat_out with F-B confusions removed. b is the index into dat_in indicating the F-B confusions, tolIAA defines the area around the IAA where F-B confusion are ignored (ie the estimated error of azimuth localisation about the interaural axis) and tolMidLine is the amount by which target estimates are allowed to cross the midline for midline F-B confusions. For instance a target located at 0,0 might be reflected to -170 or +170 azimuth if front-back confused. Thus for our data set

» [out,b]=rfb_ld(bigloc,15,30);

To plot the F-B confusions as red ‘*’

» figure(2) % generate a second figure window

» plot(bigloc(b,1),bigloc(b,3),'r*')

» hold

and the remaining data as blue dots

» plot(out(:,1),out(:,3),'b.')

Calculating summary statistic about a cluster of data

One of the things we are interested in calculating and plotting for a cluster of data points about a particular location is the centroid. The routine kent_sp provides a whole feast of statistical information about a cluster of points including its centroid. The function call is

	[G, kappa, beta, q, ellz, ell, ln, iskent] = kent_sp(v);

The input, v is a two column matrix containing the azimuth and elevation coordinates of the data (in hoop coordinates). The output is many and varied. Firstly, kent_sp will respond with two command line bits of information e.g.

	Unimodal

	Kent dist (Kstat=9.88765 > 5.99146)

We will come back to the meaning of these things later.

In general, the centre of a cluster data is described by the centroid (or 'centre of gravity') of the distribution. The simplest distribution is normally distributed and would appear as a bell shaped distribution centred over the centroid. In spherical statistics this is referred to as a Fisher distribution. A slightly more complex distribution would be an elliptical distribution that would look like a bell squashed on two sides, this is referred to as a Kent distribution. In the latter case, the ellipse which describes the mouth of the bell has two orthogonal axes of different lengths. The matrix ln contains data points which lie on a line extending from the centroid of the cluster and lie along the long axis of the distribution. This can be used to illustrate the orientation of the long axis of Kent distributed data. In this context, however, ln(1,:) contains the location of the centroid in hoop coordinates.

So to continue with our spherical example lets first select our data from the data set where the front back confusions have been removed.

dat=sel_ld(out,0,0,-20,-20);

figure(1)

clg

draw_sp(1);

plot_sp(dat(:,[3:4]),'w.',5);

plot_sp(dat(1,[1:2]),'b.',15);

We would now calcuate and plot the centroid for this cluster by

» [G, kappa, beta, q, ellz, ell, ln, iskent]=kent_sp(dat(:,[3,4]));

The routine reports back to the screen

Unimodal

Kent dist (Kstat=197.996 > 5.99146)

plot the centroid using a green dot of size 15

» plot_sp(ln(1,:),'g.',15);

We could then draw a line from the actual target location to the centroid location using the function line_sp(v,steps,symbol). The variable v contains the target and centroid locations such that

 » line_sp([dat(1,[1,2]); ln(1,:)],5,'w-');

will draw a white line connecting the centroid of our cluster to the actual target location (see below for a more complete description of line_sp).

We also need a general description of how concentrated or tightly clustered the data is about the centroid. This factor is indicated by kappa. Generally, the inverse of kappa (k-1) is used in this role so the smaller k-1 the tighter the clustering about the centroid.

A more specific description of the distribution of the data is provided by the variance or the standard deviation of the data about the mean. In the spherical statistic illustrated here, this is indicated by the radius of the circle or the ellipse that describes the distribution. kent_sp returns ellz which is a two value vector indicating the lengths of the major and minor axes of an ellipse describing the distribution. The actual values are the radius lengths on the unit sphere that correspond to one standard deviation. If the data is Fisher distributed then these values should be very similar (that is, the ellipse tends to be a circle). The beta parameter returned by kent_sp is an indicator of the 'ovalness' of the distribution and is used in assessing if the distribution should be classified statistically as a Fisher or Kent distribution. The level of confidence of this classification is 0.05 and if the distribution is Kent then the parameter IsKent is set to a value greater than zero. The command line info that kent_sp returns such as

Unimodal

Kent dist (Kstat=197.996 > 5.99146)

indicates whether the distribution is best described by one centroid or if there are at least two centroids (Bimodal). The statistics associated with deciding if the distribution is Fisher or Kent is shown on the next line. The statistic derived for the cluster is compared to the statistic corresponding to the confidence limit 0.05. If the former exceeds the latter then the distribution is not normal (Fisher) and is probably Kent (although to be absolutely sure more complex distributions may need to be tested for but to our knowledge these test have not been developed).

The circle or ellipse that describes the distribution is also returned by kent_sp as a 2 column array of hoop coordinate positions describing the locations of 20 points on the ellipse in hoop coordinates (el). This can be plotted directly onto the sphere using the routine line_sp(v,steps,symbol).

�SYMBOL 183 \f "Symbol" \s 10 \h�	v is two column matrix defining the corners of a polygon to be plotted on the sphere.

�SYMBOL 183 \f "Symbol" \s 10 \h�	steps is the number of intervening steps that each line is broken up into when it is drawn. The corners of the polygon are given in 3D cartesian coordinates so if the distance between two points is fairly long then the line drawn between them may appear to pass through the unit sphere on which these points are plotted. The parameter steps allows each line to broken into a number of segments. The tangent to the segment passes through the origin and has a unit radius. This allow the drawing of curved lines that follow the radius of the sphere and so looks much nicer. The down side is that this process is fairly computationally intensive.

�SYMBOL 183 \f "Symbol" \s 10 \h�	symbol is just the standard selection of MatLab plotting symbols and colours.

so for our example we plot

» line_sp(ell,2,'-');

As was described briefly above the value ln returned by kent_sp is a 2 column matrix containing a line indicating the longest axis of the ellipse starting at the centroid. This can also be plotted using line_sp, so for our example

» line_sp(ln,2,'m-');

This is useful for determining if the axis of the ellipse are aligned to the coordinate system of our sphere (ie the meridians of latitude and longitude).

The last thing returned by kent_sp is G, a three column matrix which is the rotation matrix for the centroid of the cluster. The rotation matrix has a number of very useful properties when plotting spherical data but a description of these is beyond the scope of this short illustrative tutorial.

Analysing and plotting data for many target positions.

In many cases we are interested in analysing and plotting data from a particular hemisphere. Essentially we use the same selection routines and analytical routines demonstrated above but in a loop to go systematically through each of the target locations in the data set. For instance, to select all the data that corresponds to the front hemisphere Azimuth -90 to +90 and elevation -50 to +90.

» front=sel_ld(out,-90,90,-50,90);

This data can now be sorted so that all of the identical locations are adjacent to each other in the array. As we see below, this allows sequential selection and analysis of each data point for plotting etc.

» front=sort_ld(front);

Now we are in a position to select the data associated with the first target location in the array. The function next_ld just selects all the data points which are identical to the first one in the list, returns these in the first argument and the remainder of the list in the second argument.

» [dat, front_remainder] = next_ld(front);

To plot the data

» plot_sp(dat(:,[3:4]),'w.',5);

and the original target location

» plot_sp(dat(1,[3:4]),'b.',15);

Now calculate the centroid and draw a line between the actual target location and the centroid of the cluster.

»[G, kappa, beta, q, ellz, ell, ln, iskent]=kent_sp(dat(:,[3,4]));

» plot_sp(ln(1,:),'g.',15);

» line_sp([dat(1,[1,2]) ln(1,:)],5,'w-');

» line_sp(ell,2,'-')

This whole process can be automated to step through each location and plot accordingly. So for our data set we extract the data in the frontal hemisphere, sort it, then submit it to the analysis loop.

front=sel_ld(out,-90,90,-50,90);

front=sort_ld(front);

clg

draw_sp(1);

[dat, front] = next_ld(front);

while (length(dat) > 0)

	 plot_sp(dat(1,[1:2]),'b.',15); % original position

	[G,kappa,beta,q,ellz,ell,ln,isk] = kent_sp(dat(:,[3 4]));

	plot_sp(ln(1,:),'g.',15);

	line_sp([dat(1,[1,2]); ln(1,:)],5,'w-');

	line_sp(ell,2,'-')

	drawnow

	[dat, front] = next_ld(front);

end

Analysing the association between two sets of data

Spherical correlation coefficient

A more global way in which data obtained for a number of locations in space might be analysed is to calculate the spherical correlation coefficient. This is similar to the familiar Pearson correlation coefficient which evaluates the association between two variables. However, in the case of the spherical correlation coefficient it is calculated for data distributed on a sphere. Function scc_sp(in_put) takes a four column data matrix with Az1 El1 Az2 El2 and determines the centroids of the unique positions in each data set then calculates the spherical correlation coefficients between each data set. So for our bigloc data set with the front-back confusions removed

» scc_sp(out)

ans =

 0.9864

This indicates that their is a very high correlation between the actual target locations in our data set and the locations perceived by the subjects. Note that if the data set is large, as is the case for bigloc, then this calculation may take a few 10’s of seconds depending on the speed of the machine that MatLab is running on.

Tests for differences in the medians of two data sets

******** Still being implemented and not yet included in the full package ***********

In this application we have decided to test for a difference in the medians rather than the means or centroids of the clusters as the only test for differences in means that is currently available for spherical data assumes that the data is rotationally symmetrical. As many of the locations used in bigloc show that the population error is best described using a Kent distribution we know that this assumption is violated in with these kinds of data. The function cmedian_sp(in_dat) takes a four column data matrix with Az1 El1 Az2 El2 and returns a statistic that can be used to evaluate the extent of the differences between the data in the first two columns from the second two columns

First we will illustrate a no difference condition by taking the data from bigloc for one location and deviding it into two groups for comparison. Lets take location 0,0

» t1=sel_ld(bigloc,0,0,0,0);

now devide t1 into two equal portions and construct dat_in such that Az1 El1 contains half of the localisation data and Az2 El2 contains the other half (nb. t1 actually contains 115 rows so this example will ignore the last data entry)

» t2=[t1(1:57,[3 4])';t1(58:114,[3 4])']';

» cmedian_sp(t2)

�
Reference

amov_sp

function r = amov_sp(mv, center);

% moves the origin on a ray (mv) to a specific centre. Can be used in radial display plots of

% the orientation plots ofa population of distributions. (see Leong and Carlile, 1996)

cart2hp

function p = cart2hp(xyz);

% Return hoop coords p for cartesian xyz

% xyz is a matrix with [x y z] being the columns and the samples as rows

% p is a matrix with [az el] being the columns and the samples as rows

clst_ld

function idx = clst_ld(smode, az, el, d_in)

% find index idx to d_in which is the closest (but not equal to) location (az, el).

% If smode==0, searches for the closest az for same el

% smode==1 for closest el with az being same

% smode==2 az and el must be different

% smode==3 closest larger az with el being same

% smode==4 closest larger el with az being same

% smode==5 closest smaller az with el being same

% smode==6 closest smaller el with az being same

dc2tp

function p = dc2tp(d)

% converts between direction cosines and theta phi coords

draw_sp

function draw_sp(DrawZero);

% Draw a sphere and set up the plotting modes.

% In particular it clears the figure, puts it into "hold" mode

% and sets the view to Az=0 El=0. If DrawZero > 0 then will also

% draw a red dot at (0,0)

drcos_sp

function d = drcos_sp(v);

% Returns the direction cosines of vector v (v is in hoop coords)

get_ld

function pos = get_ld(d_in,az_pos,el_pos)

% function d_out=get_ld(d_in,az_pos,el_pos)

% Select the data associated with a particular azimuth and elevation location in a data list

% (d_in). Returns the data (pos)

% see also sort_ld, next_ld

function xyz = hp2cart(p);

% Return cartesian xyz coords for points p in hoop coords

% p is a matrix with [az el] being the columns and the samples as rows

% xyz is a matrix with [x y z] being the columns and the samples as rows

hp2ll

function ll = hp2ll(p);

% converts from hoop coordinates az -180=>0=>+180, el +/-90

% to (latitude,longitude) coordinates

hp2sp

function sp = hp2sp(p);

% converts from hoop coordinates az -180=>0=>+180, el +/-90

% to spherical coordinates where az 0=>360 el +/-90 and r=1

% xyz is a matrix with [x y z] being the columns and the samples as rows

% p is a matrix with [az el] being the columns and the samples as rows

% sp is a matrix with [saz sel r] being the columns and the samples as rows

hp2tp

function tp = hp2tp(p);

% converts from hoop coordinates az -180=>0=>+180, el +/-90

% to (theta,phi) coordinates where theta 0=>2pi and phi 0=>pi

% two cols of data are assumed Az El

% p is a matrix with [az el] being the columns and the samples as rows

% tp is a matrix with [theta phi] being the columns and the samples as rows

�
kent_sp

function [G, kappa, beta, q, ellz, ell, ln, iskent]=kent_sp(v);

% Returns the 3x3 matrix G where the three cols g1 g2 g3 are the centroid,

% major axis and minor axis respectively. kappa is the concentration

% parameter and beta is the ovalness parameter. iskent is nonzero

% if it comes from a Kent distribution, otherwise it is Fisher.

% ellz returns the major and minor axis size for an ellipse

% with size being the std deviation along the major and minor axes

% and ell is a set of points to plot to show the ellipse

% ln is a set of points to plot to show the major axis direction

% Inputs are the Az and El are in radian spherical coords (phi,theta)

% Kent's paper is J.R. Statist. Soc 1982, 44, No 1, pp. 71-80

CONFIDENCE = 0.05;	% do our tests to 95% confidence

line_sp

function line_sp(v,steps,symbol);

% this function plots a polygon composed of lines joining the points

% described by v (in hoop coordinates) on a unit sphere using the line/colour

% specified by symbol. Each line is drawn in steps sections.

mean_sp

function p = mean_sp(v)

% computes the mean direction of d which are in hp coords

% calculated using drcos_sp() and p is the mean vector in hp coords.

med_sp

function med = med_sp(v)

% computes the median direction of v which are in hp coords

% p is the median vector in hp coords

next_ld

function [pos,list] = next_ld(d_in)

% Select the data associated with the next target location in a sorted list (d_in).

% Returns the data (pos) and the d_in list but with pos data removed.

% see also sort_ld, get_ld

�
plot_sp

function plot_sp(p, c, f);

% Plot a point p in color c on the sphere. p is in hoop coordinates

% p is a matrix with [az el] being the columns and the samples as rows

% f is the size of the marker to use

rfb_ld

function [dat_out,b]=rfb_ld(dat,tol1,tol2);

% Extracts the front back confusion from the dat and returns dat_out with

% F-B confusions removed. b is the index into dat, tol1 defines the area

% around the interaural axis where F-B confusion are ignored (ie the estimated error

% of localization about the interaural axis) and tol2 is the amount by

% which target estimates are allowed to cross the midline

scc_sp

function scc = scc_sp(bigloc)

% calculate the spherical correlation coefficient between the centroids

% of the data in bigloc.

sel_ld

function d_out = sel_ld(d_in,az_lo,az_hi,el_lo,el_hi);

% function d_out = sel_ld(d_in,az_lo,az_hi,el_lo,el_hi);

% Spak routine takes a four column input in d_in of az1 el1 az2 el2

% and selects data on the basis of entries in the first two cols that are

% in the az and el range specified (inclusive) and puts these in d_out.

sort_ld

function d_out = sort_ld(d_in)

% Spak routine to sort azimuth and elevation data so that it increases

% in elevation and increases in azimuth within each elevation cohort

% Data is sorted on the basis of the first two columns in d_in

�
sp2hp

function p = sp2hp(sp);

% converts from spherical coordinates where az 0=>360 el +/-90.

% to hoop coordinates az -180=>0=>+180, el +/-90

% sp is a matrix with [saz sel r] being the columns and the samples as rows

% p is a matrix with [az el] being the columns and the samples as rows.

tp2hp

function hp=tp2hp(tp);

% converts from (theta,phi) coordinates where az 0=>2pi and el 0=>pi

% to hoop coordinates az -180=>0=>+180, el +/-90

% two cols of data are assumed [theta phi]

% tp is a matrix with [theta phi] being the columns and the samples as rows

% p is a matrix with [az el] being the columns and the samples as rows

xmed_sp

function cost = xmed_sp(p, d)

% cost function for med_sp which is minimised to compute med

% d and p are in hoop coordinates

�
Listing

% load data

cd \matlab\toolbox\spak

load bigloc.txt /ascii

% select one position and plot

dat=sel_ld(bigloc,0,0,-20,-20);

draw_sp(1);

plot_sp(dat(:,[3:4]),'w.',5);

plot_sp(dat(1,[1:2]),'b.',15);

% rotate the view

view(hp2cart([90 0]))

% return it to the original

view(hp2cart([0 0]))

% F-B confusion illustration

[out,b]=rfb_ld(bigloc,15,15);

figure(2)

plot(bigloc(b,1),bigloc(b,3),'r*');

hold

plot(out(:,1),out(:,3), 'b. ');

%plotting single cluster, centroid and distribution

dat=sel_ld(out,0,0,-20,-20);

figure(1)

clg

draw_sp(1);

plot_sp(dat(:,[3:4]),'w.',5);

plot_sp(dat(1,[1:2]),'b.',15);

[G, kappa, beta, q, ellz, ell, ln, iskent]=kent_sp(dat(:,[3,4]));

plot_sp(ln(1,:),'g.',15);

line_sp(ell,2,'-');

line_sp(ln,2,'m-');

% select and analyse all of frontal hemisphere

front=sel_ld(out,-90,90,-50,90);

front=sort_ld(front);

clg;

draw_sp(1);

[dat, front] = next_ld(front);

while (length(dat) > 0)

	 plot_sp(dat(1,[1:2]),'b.',15); % original position

	[G,kappa,beta,q,ellz,ell,ln,isk] = kent_sp(dat(:,[3 4]));

	plot_sp(ln(1,:),'g.',15);

	line_sp([dat(1,[1,2]); ln(1,:)],5,'w-');

	line_sp(ell,2,'-')

	drawnow

	[dat, front] = next_ld(front);

end

SPAKDEMO.DOC:� DATE \l �8/08/96�				� PAGE �6�

