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Abstract—A risk management system for foreign exchange
(FX) brokers is described. Stochastic model predictive control
(SMPC) is used to reduce positions in foreign holdings over a
receding horizon, while minimising a mean-variance cost func-
tion. Computation of the broker’s position incorporates elements
which model client flow, transaction costs, market impact, and
exchange rate. Using both synthetic and historical data, the
technique is shown to outperform two simple hedging strategies
on a risk-cost Pareto frontier. Prediction of client and market
behaviour are shown to further enhance the hedging outcome.

1. INTRODUCTION

The foreign exchange (FX) market plays an important role
in international trade, most transactions being made by major
banks and financial institutions. Unpredictable variations in
exchange rates, combined with an accumulation of large trans-
actions being made on behalf of clients, creates a significant
risk for FX brokers. Such risk is routinely mitigated via
financial derivatives, bid-ask spreads, and actions to reduce
accumulated positions in foreign currencies over time.

While exposure to exchange rate volatility can be minimised
by reducing positions, this conflicts with a desire to minimise
transaction costs. In this paper, we formalize a methodology
to manage FX risk by increasing or decreasing the broker’s
position subject to the current positions and market conditions.

To address the FX hedging problem, stochastic model
predictive control (SMPC) is applied. We define a quadratic
transaction cost model for the inter-bank trades and risk
caused by exchange rate volatility. A stochastic formulation
is used to describe exchange rate and client flow dynamics.
A mean-variance optimization is then performed to minimise
a combination of cost and risk over a receding horizon. The
result is that, through a series of hedging actions, the broker’s
position can be reduced to almost zero at a given time, while
minimising cost and risk. Results with both synthetic and
historical data are used to demonstrate the effectiveness of
this technique and it is shown that by improving the quality of
prediction, the cost-risk frontier can be considerably improved.

The technique only requires controlling current holdings of
the broker, and therefore does not impose additional infrastruc-
ture costs. To the best of our knowledge, this method has not
been published publicly before, and implementing this method
will lead to reduction of transaction costs for the broker’s
clients while increasing market competitivity.
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The rest of this paper is as follows. Section II explores the
background on hedging, FX risk management and SMPC. In
section III, a formal definition of the problem is given and cost
functions are defined. Our SMPC formulation is introduced in
section IV, followed by numerical results is section V.

II. RELATED WORK

FX order flow risk management of market intermediaries
are described in [1], explaining how they engage in selective
hedging, either hedging their risk in a derivatives market
(namely FX forwards) or holding their excessive inventories
if they are compensated with a risk premium.

Ullrich [2] suggested an ad-hoc algorithm for changing
hedging intensity based on predicting the high frequency
FX rate. Evans and Lyons [3], Bates [4] and Dellacorte [5]
investigated using additional information including customer
order flow to predict high frequency FX rate changes. They
claimed that order flow information can explain FX rate
movements, although critical studies reveal that these methods
are not successful in obtaining results better than a random
walk benchmark [6], [7].

Model predictive control (MPC) and SMPC have recently
become of interest in finance, especially in portfolio selection
[8] and option pricing [9]. MPC is also known as receding
horizon control (RHC). At each time-step a finite horizon
optimization is performed to obtain the optimum control
sequence, but only the first action of this sequence is applied.
As time moves forward, the model is updated based on the
observations, and the finite horizon optimization repeated.
Feedback allows better control of the system in presence of
external disturbance and model deficiencies, at the expense
of computational power required for optimization at each
time step. SMPC use stochastic optimization, which is more
versatile in cases where a deterministic model of the under-
lying system is unfeasible. Stochastic optimisation has been
successfully applied to hedging problems since it is a natural
way to model the non-deterministic manner in which assets
change over time [10], [11].

Primb’s work on option hedging [12], [13] used SMPC with
a linear quadratic cost function. Recent works by Bemporad
et al. [14]-[16], have shown that a stochastic model predictive
control can perform extremely well, with performance ap-
proaching that of prescient MPC models for European options



hedging.

To the best of our knowledge, MPC has not been applied to
the specific area of hedging foreign exchange risk, the subject
of this paper. As will be demonstrated, this problem has its
unique challenges.

III. PROBLEM FORMULATION

In this section, we define a FX broker acting as an interme-
diary between different clients and the interbank market.

A. Broker position

At any t, the broker holds position z(t) for currency
k, starting with z(0). This is affected by client initiated
trades f5(¢) and hedging actions hy(t) which are initiated
by the broker and usually occur in the inter-bank market.
For simplicity, we only allow trades at discrete timeslots
t € [0,1,...,N] and use a discrete notation for all functions.
Therefore the dynamics are formulated as

zp(t+1) = z(t) + ha(t) + fi(t) (0

The broker must clear all positions at the end of trading
session (e.g. daily or weekly), therefore zx(N + 1) = 0,Vk
where N is the end-of-trading session time. This is common
practice to avoid carrying an open position’s risk during
closing hours [17]. Assuming no client trades at the last time-
step, i.e. fx(IN) = 0, the last hedging action becomes:

he(N) = =z (N) 2

Profit and loss of the broker is made by three major sources:

1) Transaction cost received from clients.
2) Hedging action transaction cost paid to other banks.
3) Market volatility.

As the profit from client-initiated trades is not affected by
hedging, it is not used in this study.

At time ¢, the cumulative transaction cost Cy(t) paid by
broker for hedging is:

Cr(t) = feost(hi(i), 4, k) 3)
=0

where f.,s: is a time dependent cost function based on the bid-
ask spread quoted for hy(t). This spread is known to be highly
volatile, and is affected by market impact (increasing with the
size of hy(t)), market conditions (e.g. the spread decreases
in liquid markets), and the history of trades between counter-
parties.

In our model, we use a quadratic cost function based on a
fixed spread:

fcost (hk(t)at) = (6khk (t))Q (4)

where Jj is the bid-ask half spread for currency k. The
quadratic has the advantage of taking the market into account,
as larger trades generally cost more under real market condi-
tions.
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To avoid the market impact and risk of larger trades, we
add an additional constraint on the size of hedging actions:

‘hk(t)‘ < hk,'maw (&)

Exchange rate volatility changes the value of positions,
causing profit and loss:

t
Li(t) = > wr(i)re(i) ©6)
i=1
where Ly (t) is the profit and loss due to changes in exchange
rate and 74 (t) is the exchange rate returns for currency k.

B. Control problem

A broker wishes to reduce his cost and risk at the end of
trading period, subject to the dynamics and constraints defined
in section III-A. This is formulated as a mean-variance opti-
mization E[C(N)]+ AVar[L(V)] where X is the risk aversion
factor. The following equation, considering the probabilistic
nature of client flow and exchange rate, formalizes the broker’s
target:

m

N
zzazhzm}

k=11i=0

argmin E
hi(i); Vik

m

SO an(iyreli)

k=11i=1
subject to  zx(t + 1) = zx(t) + he(t) + fr(t)
‘hk(z)| < hlmma:c

where m is the number of currencies in the portfolio.

+ AVar )

C. Exchange Rate Model

In this paper, the following stochastic differential equation
is used to model the exchange rate:

dp(1) = j(7) + pp(r)dr + v(7)dW (1) (8)

where p(7) is the exchange rate for the continues time 7, j(7)
is the jump component influenced by events and announce-
ments, p is risk free interest, W (7) is the Wiener process and
v(7) is the drift (volatility).

Here, we assume ;1 ~ 0 as the optimization horizon is too
short for the interest rate to be effective. The jump component
is defined as:

ﬂﬂ—{gﬂ TeA ©)

else

where A is the set of announced time of events known in
advance and [ is a random variable determining the intensity
of the jump.

We model the returns r(t) as the following discrete time

equation:
r(t) = p(tAT) — p((t — 1)AT) (10)

where AT is the time-steps used in MPC optimization.



This model can be extended to a multivariate form, ac-
counting for correlation between different exchange rates. For
a given correlation matrix C, the following equation will
generate correlated random variables:

W=W;,qL an

where L is obtained from a Cholesky decomposition C =
LL*, W, ;4 is a matrix of independent and identically
distributed random variables, and W is the resulting matrix
of correlated random variables.

Using (11), correlated Wiener processes can be generated
which are then replaced in (8). Addition of events or drift are
performed in a manner analogous to the univariate case.

IV. DYNAMIC HEDGING OF FX RISK

Based on the model defined in section III-B, the problem
can be solved using stochastic control theory. Stochastic model
predictive control, assumes that a state-space model is defined,
which can be used to predict the system’s behaviour.

Based on (7), the cost function is defined as:

m N-—1

Z Z 82hu(i)

k=1 i=0

N-1

m N-1 2
3ot (Z li) + Y (i) +xk<o>)

i=0

+ 12

(he(5) + fr(5) + 2x(0))

Jj=0

To simplify notation, we consider each vector to be a
concatenation of multiple currencies, e.g. for 3 currencies
USD, EUR and GBP:

F(t) = [fusp(t) feur(t) fapp(t)] (13a)
H(t) = [husp(t) heur(t) hasp(t)] (13b)
R(t) = [rusp(t) revr(t) raep(t)] (13¢)

6 = [dusp drur daBP, (13d)

and define the vector representing them as:

F(t)=[F(0) F(1) ... F(N —1)] (14a)
H(t) =[H(0) H(1) ... H(N —1)] (14b)
R(t) = [R(1) R(2) ... R(N)] (14c)

Therefore (12) can be rewritten as:
J =E [HTAHT+
(YTH + YTF + Xo)TA(YTH + YTF + XO)T} +
AVar [(TXO +WH + OF)7 R}
—E [HT (A +Q)H + 2HT (QF + YDX,) +
(FTQF +2F" YD X, + X{ DXo) |+

AVar [HT\I:TR n UTR}

(15)
where Xo = X (0) is the starting position and
S 0 --- 0
0SS --- 0
00 --- S
A7nN><'rnN :diag(amxl ® iNXl)T
‘ ! (17)
dzag(émxl ® 1N><1)
TmNXm = Im><m X iN><1 (18)
D,yxm = diag(8)" diag(8) (19)
Q=7YDYT (20)
U=9F+ 7YX, 1)
and S is lower triangular matrix of Is, Ty is [11...1]Nx1,

I is the identity matrix, m is the number of different curren-
cies, diag(z) creates a diagonal matrix from vector z and ®
is the Kronecker product.

The problem of minimising (15) is a stochastic optimisation
problem which can be reduced to quadratic optimization. Here,
E[ ] and Var[ ] operators are replaced by their definitions
Elz] =z =137, 2") and Var[z] = %(Z?’zl(x(i) —z)?).
Also, random variables F' and R are replaced with 7 scenarios,
giving FO F® . F® and RO R® ... R®, gener-
ated by Monte-Carlo methods and/or prediction. The resulting
cost function is:

J=HTAH+2H"B + C

1 n
Y f{(i)f{(i)T) v
"

i=1

A_A+Q+)\\IJT<

n
B —QF + TDX, + A7 [ LS ROY®
7 “

(22)
1 ; _
C=|-> FOUTQFY | + 2F" YD X+
=
1 o
XIDXo+ A < > Y(”TY“)>
st
where
n
lz (@) (23)
[
R.(9) (@) ; ©)
RO —RO® _ 13RO (24)
"2
1
v — gOTyG _ = Z ROTYG) (25)

j=1
Numerical quadratic programming algorithms can effi-
ciently minimize (22) with the constraint —hy ez < hg (i) <
Rk, maz. One can use a receding horizon scheme to control
the hedging actions, with client flow and FX rate models
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Fig. 1. The proposed FX risk management system.

being updated at each time step based on observed market
conditions. The Monte-Carlo simulator generates scenarios
based on the models, which are then given to the stochastic
optimizer to obtain the optimal hedging action H. The first
value of H is hedged, which adds to the transaction cost.
At the next time-step, FX rate changes cause changes in the
value of broker’s open positions, generating profit or loss. The
process continues until the end-of-trading time is reached.

Fig. 1 illustrates the relationship of the proposed risk man-
agement system to the rest of model. The hedging algorithm
is summarised in algorithm 1.

Algorithm 1 SMPC Hedging Algorithm

141

while i < N do
Update client flow model from historic data
Update FX rate model from market conditions
Generate 7 scenarios for F and R for time ¢ € [¢, ..., N]
Compute the optimal H(i : n)
Hedge by H(i)
11+1

end while

V. RESULTS

In this section, two numerical examples are provided to
compare the SMPC hedging with two benchmark strategies,
both of which consider the exchange rate and client flow as
being unpredictable and therefore do not use this information.

The first benchmark strategy sets a hard limit z,,,4, for the
broker’s position:

Tmaz — (@) + (1) 2(t) + f(t) > Tmaz

z(t) + f(t) — Tmaz z(t) + f(t) < —Tmaa (26)
0 otherwise

h(t) =

By changing this limit, the strategy tries to move from
minimum risk (2,4 = 0) to minimum cost (4 = 00);
however, as the limit passes a certain threshold, the transaction

Client flow Standard Deviation

7:00

11:00

15:00
Hour of day

Fig. 2. The synthetic client flow standard deviation vs. time.

cost caused by large end-of-trading session clearance imposes
an additional cost to the broker.

The second strategy divides hedging instalments over all
remaining trading hours to avoid market impact effects and
additional transaction costs; this is further parametrized by A
as a risk aversion parameter:

() = () + ) A

where A = 1 gives the minimum risk and A = 0 results in the
minimum cost.

It must be noted that the minimum cost is only for variations
of A € [0,1] and not the global minima for transaction cost.
Given full knowledge of client flow, one can use the following
equation to obtain the minimum theoretical transaction cost:

@7

N —.
Crin = Z((Sf)Q

i=1

(28)

where f = L 5"V f(i). Minimum risk, in any case, is 0
when h(t) = —f(¢).

The experiments were implemented in the R programming
language [18] and used quadprog package [19] for quadratic
programming.

A. Synthetic test and results

It has been observed that the clients exhibit a certain
seasonality, e.g. more trades happen mid-day rather than at
the end-of-day hours. Therefore the client flow is modelled as
a zero-mean heteroskedastic process, with a time-dependent
variance o2

f(t) ~ N(0,0%(t)) (29)

We assume that f(i) and f(j) are independent for Vi # j.
The client flow standard deviation, o (t), for synthetic data is
shown in Fig. 2.
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Fig. 3. Example of 10 FX rate and client flow stochastic scenarios.

The exchange rate is simulated using the model developed
in section III-C. For each day, the number of events and their
associated times are selected; this data is marked as publicly
available, and is re-used in all simulations. A time-constant
value of v = 0.0005 and I = 0.0050 were selected for
volatility and event intensity of (8).

Fig. 3 shows 10 generated exemplar scenarios. An event at
15:00 causes a step change in the FX rate.

First, a simple test with one foreign asset for one trading
session was performed. Settings demonstrated in Fig. 3 were
used to generate FX rate and client flow. Fig. 4 shows the
accumulation of position against different stochastic paths.
Fig. 5 and Fig. 6 show hedged positions and hedging actions
respectively using SMPC algorithm with A = 5 x 1074, A
comparison between Fig. 4 and Fig. 6 shows the algorithm
has reduced the position to O at the end of trading session.
Furthermore, by using the knowledge of the announced event
at 15:00, the open positions were minimized before the event
to reduce the possibility of losses in case of sudden FX rate
movement.

The main hedging simulation was performed with five
foreign assets. The half-spreads §;, were selected as 0.5, 1,
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—5.0|e+07

7:00 11:00 15:00 19:00 23:0C

Hour of day

Fig. 4. Example of broker’s position z(t) changing through the trading
session. Different shades of grey show stochastic paths generated at various
times of trading session, with black being the observed position and brightness
increasing proportional to uncertainty.

86T07

4e+07

Positions

0e+00

—4e+07

7:00 11:00 15:00 23:0C

Hour of day

Fig. 5. Effect of hedging on broker’s position. Different shades of grey show
stochastic paths generated at various times of trading session.

1, 1.5 and 2 per 10000 for the individual assets respectively.
The asset correlation matrix C was regenerated randomly at
the start of each session.

The simulation was ran for 50 trading sessions and end-of-
trading costs and profits for different scenarios were measured.
Average costs and risks (standard deviation of profits) are
reported in Fig. 7. Each cost-risk frontier is generated by
changing .4, in (26) for the first strategy, while for other
strategies, different values for A were used. The prescient
strategy assumes perfect prediction, and uses (22) with future
values of client flow and standard deviation of FX rate returns.

Since the first strategy uses hard limits, it only performs well
up to a certain z,,,,. The second strategy performs better, but
does not reach the minimum cost as calculated by (28). SMPC
hedging, however, outperforms both approaches, and is very
close to hedging with prescient flow and volatility.
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Fig. 6. Hedging actions h(t) in the single asset example. Different shades
of grey show optimization results performed at various time-steps.

The client flow model defined in (29) assumes that it is
independent and identically distributed (i.i.d.) random variable.
However, some of the external factors that influence client
flow are measurable and can be used to forecast future flow.
As prediction of client flow is beyond the scope of this paper,
we study the effect of prediction by corrupting the observed
flow with noise:

FO) = pf(t) + (1= )N (1)

where f()(t) is the predicted flow used in hedging, f(t) is
the observed flow, N (t) ~ N(0,02(t)) and p is the forecast
accuracy (p = 1 corresponds to perfect hindsight).

Fig. 8 shows the effect of prediction with p = 0.3 versus
prescient (p = 1) and stochastic hedging. Table I compares
different values of p against accuracy of prediction in (30)
and the reduction of cost relative to C,,;,, for risk = 10°. It is
observed that increasing certainty of client flow considerably
improves the risk-cost frontier.

(30)
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Fig. 8. Risk-cost frontiers for synthetic example, with and without prediction.

TABLE I
COST REDUCTION FOR DIFFERENT PREDICTION ACCURACIES FOR
SYNTHETIC EXAMPLE.

P Prediction RMSE  Cost Reduction Relative
(x108) (x108) Cost Reduction %

0.00 8.69 6.92 0.00
0.10 7.81 6.62 9.50
0.20 6.93 6.33 18.20
0.30 6.09 5.71 37.70
0.40 5.19 5.38 48.10
0.50 4.33 5.18 54.30
0.60 3.45 4.56 73.70
0.70 2.60 443 77.80
0.80 1.73 4.38 79.60
0.90 0.87 4.11 87.80
1.00 0.00 3.73 100.00

B. Historical data

We used 6 months of retail FX client transaction flow data
supplied by Westpac banking corporation. AUD was chosen



as the home currency and USD, EUR, NZD and JPY were
selected as foreign assets.

The client flow was filtered and aggregated to create 32
half-hourly values per day. The first 2 month of data was used
to obtain model parameters of (29), and the next 4 months
were used for outsample testing.

The exchange rate simulation was performed by fitting
historical FX rates to the model of section III-C. Individual
variances v and correlation matrix C were computed from co-
variances of the previous day, and jump component timings
were extracted from the publically available DailyFX event
calendar [20]. Jump intensity was set to I = 10v. Only events
classified as high impact were considered in this simulation
and the rest were discarded. The half-spread § for each
currency was selected as 0.5, 1, 2 and 1 per 10000 for USD,
EUR, NZD and JPY respectively.

Two hundred (n = 200) scenarios were generated per
day for SMPC simulation. Cost and profit and loss were
computed according to (3) and (6) respectively and were
normalized by the daily total value of transactions >_ |f(4)].
The average normalized cost is reported on the vertical axis
and the standard deviation of profit and loss is reported on
horizontal axis as risk. Run-time of the algorithm for each
time-step was less than a second on a 3.4 GHz Intel Core-
17 machine, making it suitable for deployment in real-time
systems.

The average risk-cost curves for a simulation over 50 days
are shown in Fig. 9. Although SMPC hedging outperforms
both benchmark hedging algorithms, there is a significant gap
between SMPC results and the prescient curve. This problem
can be traced to client modelling, where the simple model of
(29) is not able to capture certain features such as the fat-tailed
distribution of flow, and dependencies between adjacent time
periods.

To test this hypothesis, similar to the test in section V-A
for synthetic example, (30) was used to determine the impact
of better client flow models and forecasting on hedging.
Fig. 10 shows the effect of prediction with p = 0.3 and
p = 0.6 versus prescient (p = 1) and stochastic hedging,
while table II compares different values of p against accuracy
of prediction in (30) and the reduction of cost relative to C,n,
for normalized risk = 2.5. As with the synthetic test, increasing
p improves hedging results.

VI. CONCLUSION

In this paper, a strategy for hedging FX trading risk was
presented. The approach utilises stochastic model predictive
control which has a solid theoretical background, and handles
unknowns in exchange rate and client flow using stochastic
models. Feedback control is used to ensure that constraints can
be satisfied, and prediction utilised to enhance its performance.
The cost function is constructed so that it can be efficiently
minimised via quadratic programming, making the scheme
suitable for real-time implementations.

The hedging strategy was verified using both synthetic and
real-world data. SMPC was shown to significantly outperform
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Fig. 10. Risk-cost frontiers for historical example, with and without predic-
tion.

TABLE II
COST REDUCTION FOR DIFFERENT PREDICTION ACCURACIES FOR
HISTORICAL EXAMPLE.

P Normalized Normalized Relative
Prediction Error Cost Cost Reduction %

0.0 5.29 0.237 0.0
0.1 4.92 0.228 8.0
0.2 4.36 0.222 14.2
0.3 3.81 0.210 25.0
0.4 3.27 0.202 324
0.5 2.71 0.192 422
0.6 2.16 0.185 48.3
0.7 1.63 0.178 54.9
0.8 1.09 0.173 59.9
0.9 0.54 0.167 65.1
1.0 0.00 0.130 100.0

simple trading strategies, and the performance of the SMPC
with different levels of prediction ability was quantified.

In future work, we intend to pursue the following ideas to

further improve hedging performance:

o The addition of a linear term to the cost function would be
more realistic; however (22) will no longer be quadratic
and other techniques are required for optimization.

« An alternative model for risk can be constructed using a
covariance matrix of FX rate returns:

t
R(t)=>_ X"V ()X (i) 31
i=1

where R(t) is the risk until time ¢ and V' (¢) is the volatil-

ity covariance matrix for the duration of ith hedging time-

step. Replacing (6) with (31) in (12) will remove the
cost function’s dependence on the unpredictable changes
in FX rate direction, reducing the number of scenarios
required to simulate future market trends.

o Our current client flow model is overly simplified since

we only consider hourly seasonality modelled via a



<
s
=}
=)
<
g o
a o
=)
<
S
S o_|
o o
k7
o
o ..
o ‘oL,
& o C o Y PSPPI, --@--Prescient Flow and Volatility
E Minimum Cost o~ SMPC Hedging
g —A— Benchmark Strategy 1: Hard Limit
o —+— Benchmark Strategy 2: Installments
o
I I I I I
0 5 10 15 20 25

Normalized Risk (0.0001 AUD per AUD)
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Gaussian distribution. Using better stochastic models or
machine learning techniques to predict client flow will
improve the hedging, as demonstrated in the paper. Simi-
larly, improved prediction of volatility can further reduce
risk.
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