
Scaling Binarized Neural Networks on Reconfigurable
Logic

Nicholas J. Fraser*‡, Yaman Umuroglu*†, Giulio Gambardella*, Michaela Blott*,
Philip Leong‡, Magnus Jahre† and Kees Vissers*

*Xilinx Research Labs; †Norwegian University of Science and Technology; ‡University of Sydney
nfraser@xilinx.com, yamanu@idi.ntnu.no

ABSTRACT
Binarized neural networks (BNNs) are gaining interest in
the deep learning community due to their significantly lower
computational and memory cost. They are particularly well
suited to reconfigurable logic devices, which contain an abun-
dance of fine-grained compute resources and can result in
smaller, lower power implementations, or conversely in higher
classification rates. Towards this end, the Finn framework
was recently proposed for building fast and flexible field
programmable gate array (FPGA) accelerators for BNNs.
Finn utilized a novel set of optimizations that enable efficient
mapping of BNNs to hardware and implemented fully con-
nected, non-padded convolutional and pooling layers, with
per-layer compute resources being tailored to user-provided
throughput requirements. However, FINN was not evaluated
on larger topologies due to the size of the chosen FPGA,
and exhibited decreased accuracy due to lack of padding.
In this paper, we improve upon Finn to show how padding
can be employed on BNNs while still maintaining a 1-bit
datapath and high accuracy. Based on this technique, we
demonstrate numerous experiments to illustrate flexibility
and scalability of the approach. In particular, we show that
a large BNN requiring 1.2 billion operations per frame run-
ning on an ADM-PCIE-8K5 platform can classify images
at 12 kFPS with 671 µs latency while drawing less than 41
W board power and classifying CIFAR-10 images at 88.7%
accuracy. Our implementation of this network achieves 14.8
trillion operations per second. We believe this is the fastest
classification rate reported to date on this benchmark at this
level of accuracy.

1. INTRODUCTION
Convolutional neural networks (CNNs) provide impressive

classification accuracy in a number of application domains,
but at the expense of large compute and memory require-
ments [17]. A significant body of research is investigating
compression techniques combining numerous approaches such
as: weight and synapse pruning; data compression techniques

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PARMA-DITAM ’17 , January 25 2017, Stockholm, Sweden
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4877-5/17/01. . . $15.00

DOI: http://dx.doi.org/10.1145/3029580.3029586

such as quantization, weight sharing and Huffman coding;
and reduced precision with fixed point arithmetic [9, 11, 12].
Recently, an extreme form of reduced precision networks,
known as BNNs [6], have gained significant interest as they
can be implemented for inference at a much reduced hardware
cost. This is due to the fact that multipliers and accumula-
tors become XNORs and popcounts respectively, and both
are significantly lighter in regards to resource and power foot-
print. For example, a KU115 offers 483 billion floating point
operations per second (GFLOPS) compared to 46 trillion
operations per second (TOPS) for binary synaptic operations.
This is visualized in the roofline models in Figure 4 which il-
lustrates theoretical peak performance for numerous reduced
precision compute operations.1 Furthermore, the model size
is greatly reduced and typically small enough to fit in on-
chip memory (OCM), again reducing power, simplifying the
implementation and providing much greater bandwidth.
Finn [25] describes a framework for mapping BNNs to

reconfigurable logic. However, it focuses on BNNs for em-
bedded applications and as such, the results reported are for
smaller network sizes running on an embedded platform. In
this work, we briefly summarise Finn and analyse it from the
perspective of scaling to larger networks and devices, such as
those targeted for data centers. Firstly, we focus on several
technical issues that arise when scaling networks on Finn in-
cluding: BRAM usage, throughput limitations and resource
overheads. We also identify several properties of CNN layers
which make them map to Finn more efficiently. Our results,
measured on an ADM-PCIE-8K5 platform [2], show that
indeed very high image classification rates, minimal latency
with very high power efficiency can be achieved by mapping
BNNs to FPGAs, even though improvements may be made.
Secondly, we highlight an issue of padding, a common feature
of large CNNs, which may cause significant hardware over-
heads. We propose an alternative form of padding, which
maps more efficiently to reconfigurable logic. Specifically,
the contributions of this work are: 1) measured performance
results for large-scale networks on an ADM-PCIE-8K5 board;
2) an analysis of Finn for large-scale problems, highlighting
some bottlenecks as well as proposing solutions; and 3) a
form of padding, which achieves high accuracy while also
maintaining a binary datapath.

2. BACKGROUND
A great deal of prior work on mapping neural networks

1Assuming 70% device utilization, 250 MHz clock frequency
and 178 LUTs and 2 DSPs per average floating point opera-
tion, and 2.5 LUTs per binary XNOR-popcount operation.

25

http://dx.doi.org/10.1145/3029580.3029586
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3029580.3029586&domain=pdf&date_stamp=2017-01-25

to hardware exist for FPGAs, GPUs and ASICs to help
increase inference rate or improve energy efficiency. We refer
the reader to the work by Misra and Saha [18] for a compre-
hensive survey of prior works. In general we distinguish four
basic architectures: 1) a single processing engine, usually
in the form of a systolic array, which processes each layer
sequentially [3, 5, 19, 28]; 2) a streaming architecture [1, 26],
consisting of one processing engine per network layer; 3) a
vector processor [8] with instructions specific to accelerating
the primitives operations of convolutions; and 4) a neurosy-
naptic processor [7], which implements many digital neurons
and their interconnecting weights. Significant research in-
vestigates binarization of neural networks whereby either
input activations, synapse weights or output activations or
a combination thereof are binarized. If all three compo-
nents are binary, we refer to this as full binarization [15].
If not all three components are binary, we refer to this as
partial binarization. The seminal XNOR-Net work by Raste-
gari et al. [20] applies convolutional BNNs on the ImageNet
dataset with topologies inspired by AlexNet, ResNet and
GoogLeNet, reporting top-1 accuracies of up to 51.2% for full
binarization and 65.5% for partial binarization. DoReFa-Net
by Zhou et al. [29] explores reduced precision with partial
and full binarization on the SVHN and ImageNet datasets,
including best-case ImageNet top-1 accuracies of 43% for
full and 53% for partial binarization. Finally, the work by
Courbariaux et al. [6] describes how to train fully-connected
and convolutional networks with full binarization and batch
normalization layers, reporting competitive accuracy on the
MNIST, SVHN and CIFAR-10 datasets. All BNNs used in
this work are trained by a methodology based on the one
described by Courbariaux et al. [6], and unset bits represent
a numerical -1 value while set bits represent a +1. The
downside to the high performance characteristics of BNNs is
a small drop in accuracy, in comparison to floating point net-
works. Improving the accuracy for reduced precision CNNs
is an active research area in the machine learning community
and first evidence shows that accuracy can be improved by
increasing network sizes [22].

3. BNNs ON RECONFIGURABLE LOGIC
This work builds on top of Finn [25], a framework for

building scalable and fast BNN inference accelerators on
FPGAs. Finn is motivated by observations on how FPGAs
can achieve performance in the TOPS range using XNOR–
popcount–threshold datapaths to implement the BNNs de-
scribed by Courbariaux et al. [6]. Given a trained BNN and
target frame rates, Finn follows the workflow in Figure 1a to
compose a BNN accelerator from hardware building blocks.
In more detail, a given network topology and model retrieved
through Theano [24], together with design targets in form
of resource availability and classifcation rate, is processed
by the synthesizer which determines the scaling settings and
produces a synthesizable C++ description of a heteroge-
neous streaming architecture.2 The top-level architecture is
exemplified in Figure 1b and has two key differentiators com-
pared to prior work on FPGA CNN accelerators. First, all
BNN parameters are kept in OCM, which greatly increases

2To achieve portability, we chose a commercial high level
synthesis tool, Vivado High-Level Synthesis (HLS) [27], for
the implementation. The tool enables faster development
cycles via high-level abstractions, and provides automated
pipelining to meet the clock frequency target.

BNN topology
& parameters

synthesizable C++
network description

Theano + BinaryNet

FINN synthesizerFPS target

bitfile

Vivado HLx
FINN

hardware
library

platform with FPGA

(a) Accelerator generation.

layer 1
compute array

layer 2
compute

array

layer L
compute

array

of
f-c

hi
p

on
-c

hi
p

heterogeneously sized; tailored to compute requirements

parameters

parameters
parameters

classifications

...

images
External memory or
peripheral devices

(b) Top-level architecture.

processing
element #2

processing
element #P

...in
pu

t v
ec

to
r

bu
ffe

r

ou
tp

ut
 v

ec
to

r
bu

ffe
r

processing
element #1

SIMD lanes (S)

(c) Building block (MVTU).

1

weight
memory

XNOR

popcount

accum
ulator

+

threshold
m

em
ory

>=

in
pu

t v
ec

to
r

in
de

x

ou
tp

ut
 v

ec
to

r

TT

TS

S

S
T

(d) MVTU datapath.

Figure 1: Finn workflow and architecture, reproduced from [25].

arithmetic intensity, reduces power and simplifies the design.
Furthermore, one streaming compute engine is instantiated
per layer, with resources tailored to fit each layer’s compute
requirements and the user-defined frame rate. Compute
engines communicate via on-chip data streams and each pro-
duces and consumes data in the same order with the aim of
minimizing buffer requirements in between layers. Thereby
each engine starts to compute as soon as the previous engine
starts to produce output. In essence, we build a custom
architecture for a given topology rather than scheduling op-
erations on top of a fixed architecture, as would be the case
for typical systolic array based architectures, and avoid the
“one-size-fits-all” inefficiencies and reap more of the benefits
of reconfigurable computing.

3.1 The Matrix–Vector–Threshold Unit
In more detail, the key processing engine in Finn is the

Matrix–Vector–Threshold Unit (MVTU) as illustrated in
Figure 1c, which computes binarized matrix-vector products
and compares against a threshold to generate a binarized
activation. Convolutions are lowered [4] to matrix–matrix
multiplications, using a Sliding Window Unit (SWU) (de-
scribed further in Section 4.2) to generate the image matrix
and the MVTU to carry out the actual arithmetic. The
SWU generates the same vectors as those in [4] but with
the elements of the vector interleaved to reduce and simplify
memory accesses and to avoid the need for data transposition
between layers. Internally, the MVTU consists of an input
and output buffer, and an array of P Processing Elements
(PEs), shown in Figure 1d, each with a number of SIMD
lanes, S. The synapse weight matrix to be used is kept in
OCM distributed between PEs, and the input images stream
through the MVTU as each one is multiplied with the ma-
trix. Each PE receives exactly the same control signals and

26

input vector data, but multiply-accumulates the input with
a different part of the matrix. A PE can be thought of as
a hardware neuron capable of processing S synapses per
clock cycle. Finally, the MVTU architectural template can
also support partial binarization for non-binarized outputs
and inputs. Removing the thresholding stage provides non-
binarized outputs, while using regular multiply-add instead
of XNOR-popcount can handle non-binarized inputs. These
features are used in the first and last layers of networks that
process non-binary input images or do not output a one-hot
classification vector.

3.2 Folding
Depending on the use case, a neural network inference

accelerator may have different throughput requirements in
terms of the images classified per second (FPS). In FINN,
FPS is controlled by the per-layer parameters P (number of
PEs in an MVTU) and S (number of SIMD lanes in each
PE). If the number of synapses, Y , connected to a neuron
is greater than S, then the computation is folded across the
PE, with the resulting PE producing an activation every
F s = Y/S clock cycles. Similarly, if the number of neurons,
X, in a layer exceeds P , then each PE is responsible for
calculating activations for Fn = X/P neurons. In total, it
would take the MVTU F s · Fn clock cycles to compute all
its neuron activations. The MVTUs are then rate balanced
by adjusting their P and S values to match the number
of clock cycles it takes to calculate all required activations
for each layer. As this is a balanced streaming system, the
classification throughput FPS will be approximately Fclk/II ,
where Fclk is the clock frequency, and the II (Initiation
Interval) is equal to the total folding factor F tot = F s · Fn

cycles for a fully-connected layer. Note that convolutional
layers have an extra folding factor, Fm, which is the number
of matrix–vector products which need to be computed, i.e.,
the number of pixels in a single output feature map (OFM).
Therefore, for convolutional layers the total folding factor is:
F tot = F s · Fn · Fm.

3.3 BNN-specific Operator Optimizations
The methodology described in [6] forms the basis for train-

ing all BNNs in this paper. Firstly, in regards to arithmetic,
we are using 1-bit values for all input activations, weights and
output activations (full binarization), where an unset bit rep-
resents -1 and a set bit represents +1. Binary dot products
result in XNORs with popcounts (which count the number
of set bits instead of accumulation with signed arithmetic).
Secondly, all BNN layers use batch normalization [13] on
convolutional or fully connected layer outputs, then apply
the sign function to determine the output activation. In [25]
it is shown how the same output can be computed via thresh-
olding, which combines the bias term, batch normalization
and activation into a single function. Finally, the networks
described in [6] perform pooling prior to activations, i.e. pool-
ing is performed on non-binarized numbers, which are then
batch normalized and fed into the activation function. How-
ever, as shown in [25], pooling can be equally performed after
activation, once binarized, in which case it can be effectively
implemented with the Boolean OR-operator.

4. PADDING FOR BNN CONVOLUTIONS
This section describes the improvements made to Finn in

this work.

A B

D E

C

F

original: 2x3 2x2 sliding window outputs

A B

D E

C

F

original: 2x3

A B C

F

0 0 0

D E

0 0 0

0

0

0

0

0

0

0

0

padded: 4x5

A

0

0

0

A B

0 0

B C

0 0

C

0

0

0

D

0

0

0

D E

0 0

FE

0 0

F

0

0

0

...

2x2 sliding window outputs

A B

D E

B

E

C

F

Figure 2: Convolution without (top) and with (bottom) padding.

write addresses
are sequential
(0, 1, 2, 3, 4…)

*

A

*

C

B

D

*

A

*

C

B

D

*A*CB A *A*CB A

read data stream
=

image matrix

single, wide
IFM memory

read
address

generator

OFMs of
previous

layer

MVTU

column 0 of image matrix

next
layer

padding
value (*) read addresses:

0, 1, 3, 4,
1, 2, ..

is write address
in padding

region?

Figure 3: Finn SWU enhanced with streaming padding.

4.1 Padding using nonzero values
Zero-padding is commonly applied for convolutional layers

in deep neural networks, in order to prevent the pixel infor-
mation on the image borders from being ”washed away” too
quickly [14]. Figure 2 illustrates the sliding window outputs
on the same image with and without padding. Observe that
the pixels on the border (such as A and F) occur more fre-
quently in the sliding window outputs when padding is used,
thus preventing them from being ”washed away” too quickly
in the next layer.

A challenge arises for zero-padding in the context of BNNs
with only {−1,+1} arithmetic: there is no zero value de-
fined. In fact, the original BinaryNet [6] paper uses ternary
values {−1, 0,+1} for the forward pass, with zeros used for
padding. However, ternary values require two bits of storage,
essentially doubling the OCM required to store values and
the bitwidth of the datapath. Since Finn focuses on BNNs
that fit entirely into on-chip memory of a single FPGA, min-
imizing the resource footprint is essential. Thus, a padding
solution that avoids ternary values is preferable. A straight-
forward solution would be to use e.g. -1 as the padding value,
and expect that the BNN learns weights which compensate
for these values. Surprisingly, -1-padding works just as well
as 0-padding according to our results, which are presented
in Section 5.2.

4.2 Streaming padding for FINN
Finn lowers [4] convolutions to matrix-matrix multiplica-

tion of the filter weight matrix with the image matrix. The
image matrix is generated on-the-fly by the SWU. Figure
3 illustrates how the Finn SWU is enhanced to support
streaming padding for convolution layers. The key opera-
tional principle is the same as in Finn. Namely, a single, wide
input feature map (IFM) memory is used to store the feature
maps into OCM in the order they arrive, and the addresses
that correspond to the sliding window pixels are read out.
Padding is achieved by a multiplexer that chooses the data
source for writing into the IFM memory. If the current write
address falls into the padding region, the padding value (e.g.
-1) is written into the memory; otherwise, an element from
the output stream of the previous layer is written instead.

27

Table 1: Accuracy with different padding modes for CIFAR-10.

Padding Mode
no-padding 0-padding -1-padding

S
ca

le σ = 1/4 75.6% 78.2% 79.1%
σ = 1/2 80.1% 85.2% 85.2%
σ = 1 84.2% 88.6% 88.3%

5. EVALUATION

5.1 Experimental Setup

5.1.1 BNN Topologies
The network topologies used for our experiments are all

based on the CNN topology described in [6], which we denote
as cnn. This topology is inspired by the VGG16 network [21],
which consists of three groups of (3x3 convolution – 3x3 con-
volution – 2x2 maxpooling) layers, and two fully-connected
layers at the end. To explore how Finn performs on a range
of network sizes, we introduce a scaling factor, σ, to scale
the width of each layer, and denote the resulting topology
as cnn(σ). Note that σ does not influence the number of
layers in a network, it merely affects: 1) the number of
neurons in each fully connected layer; and 2) the number
of filters in each convolutional layer. Specifically, cnn(0.5)
has half as many filters in each convolutional layer and half
as many neurons in each fully connected layer, compared
to the CNN described in [6]. In terms of convolutional net-
works, [25] only evaluated a single non-padded BNN topology
(cnnNoPad(1/2)). In this work, we consider cnn(1/2) as well as
smaller (cnn(1/4)) and bigger (cnn(1)) padded convolutional
topologies to investigate how Finn scales.

In order to simulate a realistic use case, we consider an
application with a fixed FPS requirement, i.e., real-time
object recognition of a video stream. If one considers an 800
× 600 video stream at 25 FPS, which partitioned into tiles
of 32 × 32 for classification. In order to classify the tiles
in real-time, a classification rate of approximately 12 kFPS
would be required. We use this image rate as our target for
all experiments and adjust the number of PEs and SIMD
accordingly in each layer of each design.

5.1.2 The Platform
The target board is an Alpha Data ADM-PCIE-8K5 which

features a Xilinx Kintex UltraScale XCKU115-2-FLVA1517E
FPGA (KU115). The KU115 offers 663k LUTs, 2160 BRAMs
(36k) and 5520 DSPs and is running at 125 MHz for our ex-
periments. The host machine is a IBM Power8 8247-21L with
80 cores at 3.69 GHz and 64 GB of RAM and it is running
Ubuntu 15.04. In all experiments, all parameters are stored
in OCM while the test images and the predicted labels are
read from and written to the host memory directly. The pro-
vided resource counts include the PCI Express infrastructure
used for moving data streams as well as the BNN accelerator.
Although we are not able to provide per-experiment power
measurements, the maximum power consumption observed
for this board was 41 W on a board power dissipation bench-
mark test, and we expect that the real power dissipation
values for BNN accelerators will be significantly lower than
this.

5.2 Effects of Padding
To investigate how different padding modes affect accuracy,

we trained a set of convolutional BNNs on the CIFAR-10

Table 2: Operations per image with different padding modes for
CIFAR-10.

Padding Mode
no-padding 0-padding -1-padding

S
ca

le σ = 1/4 30.4 M 78.5 M 78.5 M
σ = 1/2 118.9 M 310.3 M 310.3 M
σ = 1 530.1 M 1234.1 M 1234.1 M

0.125 2 32 512 8192

101

103

105

Ops:Byte

G
O

p
s
/
s

FP32

8-bit

4-bit

1-bit

cnn(1)

cnn(1/2)

cnn(1/4)

Figure 4: KU115 roofline with different datatypes.

dataset with different scaling factors (σ). The convolutions
used are 3×3, so one pixel of padding is added on each
border. The results are summarized in Table 1. As expected,
using 0-padding improves accuracy by 4-5% compared to no-
padding, indicating that the conventional wisdom on padding
increasing accuracy also applies to BNNs. Furthermore, we
can see that the accuracy of -1-padded networks are on par
with the 0-padded ones of same scale. This suggests that
BNNs are able to learn to compensate for the -1 values used
for padding by adjusting the weight values and thresholds,
and the accuracy benefits can be still obtained with a binary
(as opposed to ternary) datapath.

It should also be noted that no-padding results in a signif-
icant reduction in the amount of operations per frame and
the number of parameters. Thus, it is worthwhile to examine
the computation versus accuracy tradeoffs in the context of
padding. Table 2 lists the total number of XNOR-popcount
operations necessary to classify one image using different
padding modes and scaling factors. We can observe that
the no-padding topology variant for the same scale factor
requires 2− 3× less computation. However, this comes at a
cost of higher error rate, and a smaller-but-padded network
may be advantageous over a larger-but-not-padded network.
For instance, cnn(1/4) classifies at 79% accuracy using 78.5 M
operations, whereas the cnnNoPad(1/2) classifies at 80.1% ac-
curacy using 118.9 M operations. Thus, cnn(1/4) may be
preferable due to its lower computational cost if a 1% drop
in accuracy is acceptable for the use case at hand.

5.3 Scaling to Larger Networks
A results summary is shown in Table 3 which also shows the

accuracy achieved by the implemented networks on a number
of benchmark datasets. The new padded CNN results are
provided in the top portion of Table 3, while key results
from [25] are shown in the lower portion. Note that for

Table 3: Key performance and resource utilization results achieved
by this work (top) and Finn (bottom) on a number of BNN
topologies.

Network Device LUT BRAM kFPS GOps/s

P
a
d
d
e
d cnn(1/4) KU115 35818 144 12.0 938

cnn(1/2) KU115 93755 386 12.0 3,711
cnn(1) KU115 392947 1814 12.0 14,814

F
IN

N
[2

5
] cnnNoPad(1/2) Z7045 54538 192 21.9 2,466

mlp(1/16) Z7045 86110 130.5 12,361 8,265
mlp(1/8) Z7045 104807 516.5 6,238 11,613
mlp(1/4) Z7045 79097 398 1,561 9,086

28

0 20 40 60 80 100

cnn(1)

cnn(1/2)

cnn(1/4)

% relative to allocated

params

buffers

unused

Figure 5: Utilization of allocated BRAM storage space.

comparison, scaled versions of the multilayer perceptrons
(MLPs) consisting only of fully-connected layers described in
[6] are also shown and denoted as mlp(σ).

We can see that larger networks scale well to larger FPGAs,
with our best designs achieving 14.8 TOPS and 671 µs image
classification latency. Furthermore, even with the largest
network tested, all model parameters fit within OCM of the
KU115 and thus avoids potential bottlenecks on external
memory access. However, if we were to attempt a larger
network (such as cnn(2)) the design would no longer fit in
OCM without also reducing the frame rate. This is discussed
further in Section 5.3.1.

While the results described in Table 3 represent state-
of-the-art in terms of image classification rates and energy
efficiency, it is still work in progress. Our best raw perfor-
mance number (14.8 TOPS) outperforms that of the smaller
FPGA device used in Finn [25] (11.6 TOPS), which is no
surprise. However, the MLPs shown in [25] do achieve per-
formance figures closer to the theoretical peak of the device.
This is mostly due to the simplicity of MLPs versus CNNs.
Figure 4 shows the estimated peak performance of the KU115
with vertical lines indicating the arithmetic intensity of the
3 CNN networks and coloured markers indicating actual per-
formance of Finn. We can see that our implementations
still fall below the KU115’s theoretical peak. We expect that
with planned improvements, including those in Section 5.3.1,
significant performance gains can still be achieved. However
it should be noted, that the largest design cnn(1) shown
in Table 3 requires 1.2 billion operations (GOP) per frame,
which is similar in computational requirements to the pop-
ular AlexNet [16] which requires 1.45 GOP per frame. In
comparison the GPUs, the NVidia Titan X can achieve 3.2
kFPS at 227 W for AlexNet inference, compared to 12 kFPS
at less than 41 W on the KU115 FPGA.3 It should be noted
that these figures are in terms of 32-bit floating point op-
erations, as opposed to the binarized ones discussed in this
work. However, high accuracy has been achieved by fully
binarized [10] and partially binarized [29] versions of AlexNet
and we expect to be able to achieve high performance on
such networks.

5.3.1 BRAM Efficiency
Since FINN currently focuses on BNNs that fit entirely

onto the on-chip memory of a single FPGA, making the
most out of the available on-chip memory is essential. Figure
5 illustrates how much of the allocated BRAM space (as
reported by Vivado) is actually utilized by the accelerator.
The two largest contributors to BRAM usage in FINN are
the network parameters (BNN weights and thresholds), and
stream buffers (such as FIFOs and input-output buffers),
which are shown with different colors in the bar chart. As
can be expected, the majority of the utilized storage is for
weights, although the streaming buffers occupy roughly equal
storage for cnn(1/4) since there are not as many parameters.

3https://www.nvidia.com/content/tegra/embedded-
systems/pdf/jetson tx1 whitepaper.pdf

weight
memory

XNOR

popcount

accum
ulator

+
threshold
m

em
ory

>=in
pu

t v
ec

to
r(

s)
in

de
x

ou
tp

ut
 v

ec
to

r(
s)

XNORXNOR

popcountpopcount ++

accum
ulator

accum
ulator

>=>=

Figure 6: Datapath for matrix–multiple vector product.

A bigger concern is that on average only ∼22% of the
storage space in the allocated BRAMs is actually used. For
scaling to even larger networks, this under–utilization could
constitute a problem as synthesis will fail trying to allocate
more BRAMs than is available in the FPGA. Further analy-
sis into this issue revealed that this is a consequence of how
convolutions are currently handled in FINN. Recall that the
total folding factor is F tot = F s · Fn · Fm for a convolution
layer. The Fm folding factor here arises due to implement-
ing matrix–matrix products as a sequence of matrix–vector
products Unlike F s and Fn, Fm is currently not controllable,
since only one matrix–vector product is computed at a time
in each MVTU. When high FPS is desired, the initiation
interval must be minimized, which can only be achieved by
small values Fn and F s since Fm is constant. This requires
creating many PEs and SIMD lanes operating in parallel,
each of which have their own weight and threshold memories
operating independently. However, this causes the weight
matrix to be split and distributed into many small pieces,
thus causing the observed storage under–utilization.

One way of addressing this problem would be enabling
control over the Fm parameter by enhancing the MVTU to
enable multiplying the same matrix by multiple vectors in
parallel. In this manner, fewer PEs and SIMD lanes could be
instantiated, each working on a larger portion of the weight
matrix and utilizing BRAM storage better. Figure 6 shows
how the MVTU datapath could be enhanced to support
multiple vectors, broadcasting the same data from the weight
memory to multiple XNOR-popcount-accumulate datapaths.
Note that only the datapath is duplicated; the weight and
threshold memories have a single copy. We leave further
investigation of the matrix–multiple vectors for future work.

6. CONCLUSION
In this work, we explored the scaling of BNNs on large

FPGAs using the Finn framework. We highlight an issue
with padding in convolutional layers in BNNs described in
[6] which would cause them to require a 2-bit datapath. We
show that a small modification to padding (padding with -1
values) improves accuracy over no-padding and is compara-
ble to 0-padding, while still allowing networks to maintain a
binary datapath. We found that high performance for large
networks can be attained, with our highest demonstrated per-
formance achieving 12 kFPS at less than 41 W of board power
and 14.8 TOPS of raw computational performance. When
scaling to large networks, we also show that the efficiency of
BRAM usage in Finn is low, and propose an architectural
modification which would allow for better BRAM utilization.
Alternatively, if a higher number of smaller BRAMs were
available on FPGAs devices, this would allow Finn to better
exploit the available resources.

For future work, we will further enhance the Finn frame-
work to support partial binarization, and different kinds of

29

convolutional layers, such as inception layers [23] and fire-
modules [12]. The architectural improvements, described
in Section 5.3.1 will be implemented to further improve
the BRAM usage efficiency of architectures produced by
Finn. Further networks which have been trained on larger
datasets, i.e., ImageNet, will also be implemented. Finally,
better power measurements will be attained rather than
using “worst-case” power dissipation values.

References
[1] H. Alemdar, N. Caldwell, V. Leroy, A. Prost-Boucle,

and F. Pétrot. Ternary Neural Networks for Resource-
Efficient AI Applications. CoRR, abs/1609.00222, 2016.

[2] Alpha Data. ADM-PCIE-8K5 Datasheet, 1.3 edition, 9
2016.

[3] R. Andri, L. Cavigelli, D. Rossi, and L. Benini. YodaNN:
An ultra-low power convolutional neural network accel-
erator based on binary weights. CoRR, abs/1606.05487,
2016.

[4] K. Chellapilla, S. Puri, and P. Simard. High performance
convolutional neural networks for document processing.
In Proc. ICFHR. Suvisoft, 2006.

[5] Y.-H. Chen, J. Emer, and V. Sze. Eyeriss: A spatial ar-
chitecture for energy-efficient dataflow for convolutional
neural networks. In Proc. ACM/IEEE ISCA. IEEE,
2016.

[6] M. Courbariaux and Y. Bengio. Binarized neural net-
works: Training deep neural networks with weights
and activations constrained to +1 or -1. CoRR,
abs/1602.02830, 2016.

[7] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cas-
sidy, R. Appuswamy, A. Andreopoulos, D. J. Berg, J. L.
McKinstry, T. Melano, D. R. Barch, et al. Convolu-
tional Networks for Fast, Energy-Efficient Neuromorphic
Computing. CoRR, abs/1603.08270, 2016.

[8] C. Farabet, C. Poulet, J. Y. Han, and Y. LeCun. CNP:
An FPGA-based processor for convolutional networks.
In Proc. IEEE FPL, pages 32–37. IEEE, 2009.

[9] S. Han, H. Mao, and W. J. Dally. Deep Compres-
sion: Compressing Deep Neural Network with Prun-
ing, Trained Quantization and Huffman coding. CoRR,
abs/1510.00149, 2015.

[10] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and
Y. Bengio. Quantized neural networks: Training neural
networks with low precision weights and activations.
CoRR, abs/1609.07061, 2016.

[11] F. N. Iandola, K. Ashraf, M. W. Moskewicz, and
K. Keutzer. Firecaffe: near-linear acceleration of deep
neural network training on compute clusters. CoRR,
abs/1511.00175, 2015.

[12] F. N. Iandola, M. W. Moskewicz, K. Ashraf, S. Han,
W. J. Dally, and K. Keutzer. SqueezeNet: AlexNet-level
accuracy with 50x fewer parameters and< 1MB model
size. CoRR, abs/1602.07630, 2016.

[13] S. Ioffe and C. Szegedy. Batch normalization: Accelerat-
ing deep network training by reducing internal covariate
shift. In Proc. ICML, pages 448–456, 2015.

[14] A. Karpathy. CS231n: Convolutional Neural Networks
for Visual Recognition.

[15] M. Kim and P. Smaragdis. Bitwise neural networks.
CoRR, abs/1601.06071, 2016.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet
classification with deep convolutional neural networks.
In Proc. NIPS, pages 1097–1105, 2012.

[17] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.
Gradient-based learning applied to document recogni-
tion. Proc. of the IEEE, 86(11):2278–2324, 1998.

[18] J. Misra and I. Saha. Artificial neural networks in
hardware: A survey of two decades of progress. Neuro-
computing, 74(1–3):239–255, 2010.

[19] K. Ovtcharov, O. Ruwase, J.-Y. Kim, J. Fowers,
K. Strauss, and E. Chung. Accelerating deep convo-
lutional neural networks using specialized hardware,
February 2015.

[20] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi.
XNOR-Net: ImageNet Classification Using Binary Con-
volutional Neural Networks. In ECCV, 2016.

[21] K. Simonyan and A. Zisserman. Very deep convolu-
tional networks for large-scale image recognition. CoRR,
abs/1409.1556, 2014.

[22] W. Sung, S. Shin, and K. Hwang. Resiliency of deep neu-
ral networks under quantization. CoRR, abs/1511.06488,
2015.

[23] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabi-
novich. Going deeper with convolutions. In Proc. IEEE
CVPR, pages 1–9, 2015.

[24] Theano Development Team. Theano: A Python frame-
work for fast computation of mathematical expressions.
CoRR, abs/1605.02688, May 2016.

[25] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott,
P. Leong, M. Jahre, and K. Vissers. FINN: A Framework
for Fast, Scalable Binarized Neural Network Inference.
In Proc. ACM/SIGDA ISFPGA, 2017.

[26] S. I. Venieris and C.-S. Bouganis. fpgaConvNet: A
Framework for Mapping Convolutional Neural Networks
on FPGAs. In Proc. IEEE FCCM, pages 40–47. IEEE,
2016.

[27] Xilinx Inc. Vivado design suite user guide: High-level
synthesis. White Paper, 2016.

[28] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong.
Optimizing FPGA-based accelerator design for deep
convolutional neural networks. In Proc. ACM/SIGDA
ISFPGA, pages 161–170. ACM, 2015.

[29] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou.
DoReFa-Net: Training low bitwidth convolutional neu-
ral networks with low bitwidth gradients. CoRR,
abs/1606.06160, 2016.

30

