
424 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

Architecture and Design Flow for a
Highly Efficient Structured ASIC

Man-Ho Ho, Member, IEEE, Yan-Qing Ai, Student Member, IEEE,
Thomas Chun-Pong Chau, Student Member, IEEE, Steve C. L. Yuen,

Chiu-Sing Choy, Senior Member, IEEE, Philip H. W. Leong, Senior Member, IEEE,
and Kong-Pang Pun, Senior Member, IEEE

Abstract— As fabrication process technology continues to
advance, mask set costs have become prohibitively expensive.
Structured application specific integrated circuits (sASICs) offer
a middle ground in price and performance between ASICs
and field-programmable gate arrays (FPGAs) by sharing masks
across different designs. In this paper, two sASIC architectures
are proposed, the first being based on three-input lookup-tables,
and the second on AOI22 gates. The sASICs are programmed
using a standard-cell compatible design flow. They are customized
using a minimum of three masks, i.e., two metals and one via.
The area and delay of the sASIC are compared with ASICs
and FPGAs. Results over a set of benchmark circuits show that
our AOI22-based sASIC had an average of 1.76x/1.41x increase
in area/delay compared to ASICs, a considerable improvement
compared with the 26.56x/5.09x increase for FPGAs. This is, to
the best of our knowledge, the best performance reported in the
literature for a practical sASIC. A prototype using the sASIC
was fabricated using a universal machine control 0.13-µm mixed-
mode/RF process. It was fully verified using scan and functional
tests, and used in a demonstration system.

Index Terms— Application-specific integrated circuit (ASIC),
area-delay comparison, field-programmable gate array (FPGA),
structured-ASIC (sASIC), via-programmable.

I. INTRODUCTION

S INCE the invention of the semiconductor fabrication
process over 40 years ago, the feature size of the pho-

tolithography process has shrunk from over 10 µm to the
current 22 nm. The photolithographic mask layers required
have also grown from about 25 for a 0.25-µm process, to
approximately 36 for a 40-nm process [1]. As reported in
[2], a 45-nm mask set costs about $900K, and a 32/28-nm

Manuscript received August 13, 2011; revised January 11, 2012; accepted
February 20, 2012. Date of publication April 3, 2012; date of current version
February 20, 2013. This work was supported in part by the Innovation and
Technology Fund, the HKSAR under Project GHP/028/07SZ, and the Hong
Kong Applied Science and Technology Research Institute Team, Hong Kong.

M.-H. Ho, Y.-Q. Ai, C.-S. Choy, and K.-P. Pun are with the Depart-
ment of Electronic Engineering, Chinese University of Hong Kong,
Shatin, Hong Kong (e-mail: mhho@ee.cuhk.edu.hk; cschoy@ee.cuhk.edu.hk;
yqai@ee.cuhk.edu.hk; kppun@ee.cuhk.edu.hk).

T. C.-P. Chau is with the Department of Computing, Imperial College
London, London SW7 2BT, U.K. (e-mail: cpc10@imperial.ac.uk).

S. C. L. Yuen is with the Electrical and Mechanical Services Department,
Government of the Hong Kong Special Administrative Region, Hong Kong
(e-mail: clyuen@gmail.com).

P. H. W. Leong is with the School of Electrical and Informa-
tion Engineering, University of Sydney, Sydney 2071, Australia (e-mail:
philip.leong@sydney.edu.au).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVLSI.2012.2190478

mask set approximately $2M. IBM reports that the number of
spins needed to produce an operational-integrated circuit has
also increased to approximately 2.5 [3]. Increased mask costs
translate to a corresponding rise in the NRE cost, making low
to midvolume production unaffordable. This has reduced the
number of design starts in the industry [4].

Field-programmable gate array (FPGA) devices provide an
alternative solution to the NRE cost problem. These devices
allow circuit functionality to be reconfigured after fabrica-
tion, and the mask cost is amortized over all FPGA users.
However, FPGAs are not suitable for all mass production
applications since they suffer from poor area, power and speed
compared with application-specific integrated circuits (ASICs)
[5]–[7]. This performance gap is quantified in [8], which
found that, over a particular set of benchmarks, FPGAs
require on average 35 times more area, 14 times more power
and have 4 times longer critical path delay compared with
ASICs.

Structured ASICs (sASICs) were introduced to bridge the
expanding gap between ASICs and FPGAs. They consist of
a repeating, regular logic fabric. A design is implemented
through customization of one or more metal/via layers, while
the remaining layers are shared among different designs. It
has been reported that sASICs can cut down NRE cost by as
much as 90% and time to market by 4–6 months [6]. The
layout of the fabric can also be fine-tuned to better exploit
design rule limits or to optimize for manufacturability [9],
[10]. It was estimated that metal-programmable sASICs can
be 2x–10x cheaper than cell-based ICs [11].

Commercial vendors have diverse approaches for sASIC
design [7], [12]–[15]. Unfortunately, implementation details
for these commercial solutions are proprietary and perfor-
mance comparisons are limited in scope. Even when com-
parisons are available [7], they are over a single circuit and
many details are not disclosed.

Several academic groups have proposed and studied differ-
ent lookup table (LUT) circuits and their sizing for use in
sASIC logic block [16]–[18]. Heterogeneous logic blocks [5],
[19]–[21], dynamic PLA [22], pass-transistor style [23], and
static CMOS styles of different patterns were also proposed
[10], [24]–[27]. Few of these works have taken into account
practical implementation issues, such as antenna design rules,
ESD protection, etc. Moreover, most of them used custom
EDA tools rather than industry-standard tools, limiting their
appeal for practical applications.

1063–8210/$31.00 © 2012 IEEE

HO et al.: ARCHITECTURE AND DESIGN FLOW FOR A HIGHLY EFFICIENT STRUCTURED ASIC 425

Fig. 1. Schematic of the 3-LUT-based logic block.

In this paper, two sASIC architectures, one based on
a three-input LUT, and the other on an AOI22-based
(AND-OR-INVERT) logic block are proposed. Based on the
former, a fully standard-cell compatible design flow was devel-
oped. The latter achieved significant improvements on area and
delay by exploring a finer granularity in the logic block design.
The proposed sASICs are programmed by customizing a
minimum of one via mask and two metal masks for both logic
configuration and routing. Additional layers can be used for
designs with tough routing and/or performance requirements.

The rest of this paper is organized as follows. Section II
details our proposed sASIC architectures and logic block
designs. The standard-cell ASIC compatible design flow is
explained in Section III. Section IV gives a comprehensive
comparison on the performance of the proposed sASICs
against standard-cell ASIC and FPGA. A prototype of a
real-world sample design working in a running system is
demonstrated in Section V, and finally, we conclude our works
in Section VI.

II. ARCHITECTURE

For this paper, the universal machine control (UMC)
0.13-µm 1P8M2T mixed-mode/RF process was used. The
FSC0H_D standard-cell library, from Faraday, was used for
parts of our sASIC design as well as ASIC comparison
purposes. A total of 415 cells are available in the library, and
the cell height is 3.2 µm, equal to eight horizontal routing
tracks.

A. LUT-Based Logic Block

Our initial logic block design was LUT-based, since they
have been extensively studied and are functionally complete.
We studied three via-programmable LUT circuits for use
in an sASIC and concluded that the transmission-gate (TG)
style LUT provides a good balance between area and perfor-
mance [17].

M3 pins M3 config

A

B
C

n5

n6

n2 n3 n4

n7

n8

CC

n9
n11CX

n1
CX

n12

n13

n10

Fig. 2. Occupied tracks and pins of 3-LUT-based logic block.

The three-input LUT employed in our sASIC is illustrated in
Fig. 1. It can be divided into three parts, i.e., the input invert-
ers, the function generator, and the output stage. The three
input inverters provide the optional logic inversion for input
pins.

The function generator is based on a 4-to-1 Mux. First,
consider such a Mux with the four inputs (n1-n4 in Fig. 1) each
tied to logic-high or logic-low, and the two select pins (A, B
in Fig. 1) used as inputs. This implements a 2-LUT. A 3-LUT
can be implemented by allowing n1–n4 to be configured as
either high, low, “C,” or its complement “CX.” It can perform
all three-input binary functions.

This function generator reduces the number of transistors
for a 3-LUT from 28 for the standard implementation using
an 8-to-1 Mux, to 12, a 57% reduction in transistor count.
Increasing the LUT size to more than three inputs impacts
delay since signals would need to pass through extra trans-
mission gates. Other research has reached the same conclusion
that a 3-LUT [18] implemented using TGs [19] provide a good
balance in terms of area, delay and power.

An “output stage” is included in the logic block to provide
the gate sizing capability. Drive strengths of 0.6x, 1x, and 2x
are implemented.

Apart from three input combinational logic functions,
numerous other circuit elements can also be implemented
using our 3-LUT logic block in different configurations. These
include tri-state buffers, tri-state inverters, filler cells, D-latch,
clock-gating cells, and D-flip-flops. However, as flip-flops are
time critical and require additional functionality, dedicated
cells were used and are described in Section II-C.

The layout of the block measures 10.4 µm by 4.8 µm.
As the wire pitch for the process is 0.4 µm, the logic block
spans 26 vertical routing tracks, and is 12 tracks high. Fig. 2
shows the pins and metal configuration sites of the logic
block. Metal-3 and metal-4 are run in vertical and horizontal
directions, respectively. The configuration sites are all in
metal-3, leaving all of metal-4 for routing. In metal-3, 13 out
of the 26 routing tracks, i.e., 50%, are occupied by IO pins
or configuration sites.

B. AOI22 Gate-Based Logic Block

A phenomenon we observed with the 3-LUT library is that
the standard-cell synthesis tool does not utilize all of the logic
functions that a 3-LUT can provide. FPGA tools may be able

426 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

AOI22BHD

CTIEX1S

INVDHD INVHHD

A1

A2

B1

B2

TH

TL

G O1 I2 O2 I3 O3

Fig. 3. Schematic of the AOI22-based logic block.

Fig. 4. Schematic of the AOI22 cell.

to better utilize the logic flexibility but cannot be used for
other tasks, such as gate sizing and buffer insertion.

With these considerations, we designed a logic block based
on the AOI22 logic gate, which implements a four-input
“AND-OR-INVERT” function. The schematic of a single logic
block is shown in Fig. 3. The logic block contains a custom-
layout configurable tie-hi/lo cell, an AOI22 gate, and two
inverters of different driving strengths.

The tie cell is modified from the standard-cell library
version so that either logic-high or logic-low can be provided
with different connections of the three nodes. When the gate
node is connected to the drain of the pMOS, the drain of
nMOS provides a tie-lo output, and vice versa. The inverters
INVDHD and INVHHD are of 0.8x and 2x driving strength,
while the AOI22BHD cell is of 0.4x driving strength. These
were chosen so that, for all logic functions that require at
most one inverter in the input or output of the AOI22 gate,
two driving strengths can be provided. Standard-cell library
components were used to implement the gates.

The AOI22 gate is logically equivalent to two AND gates
connected to a single NOR gate as shown in Fig. 3. Its
implementation is a four-input logic gate with eight transistors,
and its schematic is given in Fig. 4. We chose this gate since
two-input NAND and NOR gates are extensively used in our
benchmark circuits, even when 3-LUTs are available. If we
tie the A1, A2 inputs of the AOI22 cell to logic-lo, the cell is
a two-input NAND gate, with B1, B2 as inputs. If we tie the
A2, B2 inputs to logic-hi, we get a two-input NOR gate. Under

TH

TL

G

A1 B1 B2
TH

A2 O1 O2 I3 O3I2

M3 pins M4M3 config

TL

Fig. 5. Occupied tracks and pins of AOI22-based logic block.

Fig. 6. Fabric with logic/buffer/flip-flop ratio 4:2:1.

these configurations, the AOI22 gate has slightly improved the
speed and significantly less area than a 3-LUT. Complex logic
functions such as 2/4-input MUXes, can be implemented with
less than four AOI22 logic blocks. A total of 17 logic functions
were implemented in the cell library, including half-adder,
full-adder, MUX2, MUX4, etc. Other special cells like delay
cells and filler cells are also provided.

Layout of the block measures 7.2 µm by 3.2 µm, which is
30% narrower than the 10.4-µm wide 3-LUT block. The logic
block is 18 routing tracks wide, with 11 of them assigned to
the four-input pins, the output pin, and the configuration sites,
as shown in Fig. 5. This leaves 39% of the vertical routing
tracks on metal-3 free for routing. Depending on the function
to be implemented, up to three out of the eight horizontal
tracks on metal-4 can be used.

C. Fabric Organization

Similar to standard-cell ASICs, the sASIC fabric in our
paper is row based, Fig. 6 shows the organization of the fabric.
Each row consists of a repeating pattern of a logic block,
followed by a D-flip-flop, and a number of inverters/buffers.
Rows are flipped and abutted to form the entire programmable
fabric, resulting in columns of flip-flops and buffers between a
sea of logic blocks. In addition, an arbitrary number of hard-
macro blocks, placed in any location, are supported.

The DFZRSBHHD D-flip-flop from the standard-cell library
was used. This has a drive strength of two and incorporates
asynchronous set and reset, scan functionalities, and has dual
outputs. Each of these flip-flops has an additional tie-high,
tie-low, and antenna cell, which can be connected to unused
flip-flop pins. Antenna cells are placed in advance because
inserting them after routing would require changes to lower
layer masks.

For our initial 3-LUT fabrics, buffers were implemented
using the logic blocks. This was later improved by including

HO et al.: ARCHITECTURE AND DESIGN FLOW FOR A HIGHLY EFFICIENT STRUCTURED ASIC 427

Fig. 7. Fabric with logic/buffer/flip-flop ratio 9:3:1.

dedicated buffers for the better timing performance. Dedicated
buffers were used in all AOI22-based fabrics. The buffer cell
chosen was BUFKHD from the standard-cell library, which is
of driving strength four.

The ratio between number of logic blocks, flip-flops, and
dedicated buffers is adjustable in the backend steps, allowing
the fabric to be tuned for different classes of designs. This is
demonstrated in Figs. 6 and 7. In Fig. 6, the ratio between
logic blocks, dedicated buffers, and flip-flops was set to
4:2:1, and it is suitable for register-intensive designs. Buffer
columns were placed directly adjacent to flip-flop columns. In
Fig. 7, the ratio was set to 9:3:1, for logic-intensive designs.
Buffer columns were evenly distributed across the sea of logic
blocks, to minimize the performance degradation associated
with legalizing the inserted buffers to their feasible sites.

III. EDA DESIGN FLOW

A. Library Preparation and Design Synthesis

For the 3-LUT cell library, all 256 possible functions were
enumerated. The layout of each was generated by scripts
written in the Cadence SKILL language, under the ICFB
environment. Each function uses the same layout, with dif-
ferent configuration patterns for the metal-3 programming
layer. Parasitic extraction was done using Cadence QRC and
Cadence encounter library characterizer was used to produce
timing libraries for the 3-LUT cells in the Liberty library
format.

For the AOI22-based cell library, we treated each logic
block cell as a hard-macro. Layouts of standard-cells were
instantiated using Cadence Virtuoso, where fixed and program-
mable interconnects were manually drawn. Parasitic extraction
was set to only consider interconnects between standard-cells.
Synopsys PrimeTime was used to produce timing libraries at
different process corners.

Design synthesis can be done using any synthesis tool
supporting the Liberty library format. In our case, Synopsys
design compiler was used.

B. Fabric Creation and Design Mapping Flows

The backend flow is a modified ASIC flow. We divided the
backend flow into two sub-flows, one for creating a reusable
fabric and one for mapping specific designs onto a fabric. In
Fig. 8, the left is used for building a fabric, predefining legal
sites for flip-flops and hard-macros, such as block memories.
Power planning for the fabric is also done in this step.

The input netlist contains only the hard macros to be prebuilt
on the fabric. The fabric designer must provide the size of the

Fig. 8. Fabric creation and design mapping flows.

fabric and manually define the legal sites for hard-macros. Our
script also takes as input, the ratio for the number of different
types of “constrained elements” in this step. These refer to
cells in our library, which have restricted placement sites, and
their placement/legalization needs to be done with our custom
tool scripts, e.g., flip-flops. Based on the category of circuits
to be mapped on the fabric, the ratio between logic blocks and
flip-flops can be customized. The flow also supports a second
type of constrained element, which could, for example, be a
dedicated cell or buffer.

Although, the current flow only supports two kinds of
constrained elements, it is possible to support an arbitrary
number of them with small modifications to the current tool.

Following fabric creation, a design mapping flow is run to
implement specific designs on the fabric, as shown on the right
in Fig. 8. Steps in dashed boxes are unique to our sASIC, while
the remaining steps are standard ASIC steps. The first step is to
read in the power connections and hard-macro sites defined for
the fabric. During implementation, hard-macros are manually
placed near the desired sites, and our tool will legalize them
to the exact co-ordinate required. In many cases, the design to
be implemented may not fully utilize all these legal sites and,
as such, the legalize script automatically fills the unused sites
with “macro fillers,” where the input pins of the macros are
tied to logic-hi/lo.

Fig. 9 shows the layout of a sASIC with mapped sample
design. Only one of the five memory blocks is in use and
extra rows of flip-flops were placed directly above and below
the hard-macros, since more are required near the inputs and
outputs of hard-macros.

428 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

Fig. 9. Design mapped on a fabric with spare hard-macro sites.

Before placement, the legal sites for flip-flops are restored.
Logic cell placement is similar to that for standard-cell
designs, but the floorplan now includes predefined sites for
the constrained elements. These are implemented by adding
obstructs on the user-defined legal sites, blocking logic cells
from being placed on them. Constrained elements are made
floating during logic cell placement so that they do not occupy
area and block logic cells. The constrained elements are later
legalized back into these sites by our custom tool script.
We found that restoring the legal sites for dedicated buffers
altogether in this step would greatly reduce the available free
space for buffer insertion during the optimization steps. Thus,
this is handled in later steps.

After the logic cell placement, we legalize floating flip-
flops into their predefined feasible sites. A greedy algorithm
is applied to move the flip-flop under consideration to the
nearest legal site. After our algorithm places all flip-flops,
optimization steps are executed to counter the effects of flip-
flop legalization, as this can move the cells in-front or behind
the flip-flop on its timing path. Flip-flops are fixed after this
to prevent optimization steps from moving them.

After these processes, pre-clock tree synthesis (CTS)
optimization and in-placement optimization are performed,
followed by CTS and post-CTS optimizations. Since buffer
insertions have all been done by now, legal sites for dedicated
buffers can be restored. A custom script is used to legalize
buffers as was the case for flip-flops. The script does not
consider logic cells that possibly overlap these sites since
logic cells were placed earlier. As such, we need to run an
incremental placement to insure that all logic cells are moved
out of any illegal sites, e.g., buffer sites. Afterwards, a custom
“cell legalize” is run to move cells onto the correct placement
grid.

After placement, we can proceed with global detailed
routing. At a minimum, the router requires that metal-3
and metal-4 layers are available. Additional layers can also
be used, when routing requirements cannot be met and a
compromise between NRE cost and design area must be made.

By this step, the design mapping flow can be considered
finished. We then verify the design against the design rules
and report the timing results. The flow just described is
highly compatible with a typical ASIC’s backend design flow,
and can be operated at the users’ site. This allows proven,
industrial quality tools to be used and removes the need for
dedicated sASIC CAD tools. Moreover, compatibility with
standard tools allow users to do further verification after
physical design. Although all the scripts developed were for
the Cadence encounter platform, our tools could be ported to
other platforms.

IV. EXPERIMENTAL RESULTS

To evaluate the performance of our sASIC architectures, a
total of nine benchmark circuits were implemented, respec-
tively, on ASIC, FPGA, and the two proposed sASIC archi-
tectures. These chosen circuits are the larger ones from the
IWLS 2005 benchmarks [28] collection.

As mentioned earlier, standard cells used within the sASIC
and for comparison purposes were taken from Faraday’s
FSC0H_D generic-core cell library and the UMC 0.13 µm
1P8M2T mixed-mode/RF fabrication process was targeted. For
designs requiring block memories, e.g., vga_lcd and ethernet,
Faraday’s memory compiler was used to generate libraries of
block memory IP cores for both ASIC and sASIC designs.
The block memory occupies 0.042 mm2 of the core area in
the “ethernet” design, and 0.096 mm2 of the “vga_lcd” design.

Synopsys design compiler D-2010.03-SP1 was used for
design synthesis. We adopted the method of Kuon et al.
[8]. to compare FPGA and ASIC performance. The desired
clock rate was set to an unattainable 2 GHz during a first
round synthesis, and the resulting frequency obtained was used
during a second round of compilation from which a maximum
clock frequency was recorded. Typical case libraries were used
during synthesis.

For FPGAs, the flow targeted a Xilinx Virtex-II XC2V3000
device [29], speed grade −6, which is fabricated in a
0.12-µm transistor/0.15 µm 8-metal-layer process. This device
is selected since it was manufactured in a comparable process
node, allowing a fair area comparison to be made. The Xilinx
ISE 10.1 tool was used with no clock speed constraints pro-
vided. On-chip block memory was instantiated as appropriate.

Cadence EDI System suite v9.11 was used for placement
and routing of both the standard-cell and sASIC flows. For
standard-cell ASIC designs, an initial utilization of 0.75 was
set for floorplanning all the benchmark designs, to ensure that
all designs can finish without design rule violations. All metal
layers were set to be usable in the ASIC flow. For the sASIC
flow, instead of building one universal fabric for all designs, we
built a customized fabric for each design. The layers of routing
were also allowed to change with the design, depending on
the design’s routing congestion status. The worst case timing
libraries were used during placement and routing. I/O pins
were placed if possible entirely on the bottom, otherwise on
both the top and the bottom of the design. This was done to
mimic a real-world situation where the placement of the I/O
pins of a block in a SoC is usually predefined and fixed, rather

HO et al.: ARCHITECTURE AND DESIGN FLOW FOR A HIGHLY EFFICIENT STRUCTURED ASIC 429

TABLE I

AREA AND CLOCK PERIOD OF BENCHMARK CIRCUITS ON DIFFERENT PLATFORMS

P&R area (mm2) Ratio P&R clock period (ns) Ratio

Designs STD 3-LUT AOI22 FPGA L/S A/S F/S STD 3-LUT AOI22 FPGA L/S A/S F/S

s35932 0.152 0.844 0.277 4.705 5.54 1.82 30.87 0.810 2.420 1.140 4.151 2.99 1.41 5.12

s38417 0.155 0.743 0.280 4.436 4.78 1.80 28.58 1.460 4.480 2.200 9.503 3.07 1.51 6.51

s38584 0.140 0.627 0.267 4.178 4.48 1.91 29.86 1.030 3.060 1.400 6.472 2.97 1.36 6.28

b14_1 0.105 0.422 0.189 3.372 4.02 1.80 32.12 2.530 5.940 3.570 17.492 2.35 1.41 6.91

b15_1 0.100 0.448 0.193 3.876 4.48 1.93 38.77 2.140 5.030 3.150 11.398 2.35 1.47 5.33

des_area 0.049 0.414 0.102 1.651 8.47 2.10 33.79 1.270 3.420 1.810 6.240 2.69 1.43 4.91

des_perf 1.639 4.918 2.416 19.220 3.00 1.47 11.73 3.060 6.230 5.870 5.373 2.04 1.92 1.76

vga_lcd 0.222 1.047 0.336 2.207 4.72 1.51 9.95 1.670 4.930 1.790 6.400 2.95 1.07 3.83

ethernet 0.263 1.246 0.400 6.152 4.73 1.52 23.36 1.700 4.900 1.900 8.826 2.88 1.12 5.19

avg. 4.91 1.76 26.56 2.70 1.41 5.09

than being freely placed by the EDA tool. Static timing analy-
sis was done with Synopsys PrimeTime C-2009.06-SP3-2.

Area measurements of standard-cell and sASICs only
include the logic cells and hard-macros. The area of the
core power rings, macro halos and filler cells were omitted.
This facilitates comparisons with FPGAs, which are based
solely on logic utilization. The comparison of area between
standard-cell or sASICs against FPGAs is not straightforward,
as little information regarding die area and the distribution
of transistors for logic or routing is available. As the actual
area of a CLB on the Virtex-II device is reported to be
10240 µm2 in [30], we multiply this value by the number of
CLBs used for individual designs, giving an estimate of the
actual occupied die area on the FPGA. The area occupied by
hard block memories instantiated in designs is not included
in the estimation. It should be noted that in real designs
a substantial number of “hard blocks” on FPGAs, such as
digital signal processing block or memories, may be included,
reducing the area overhead for FPGAs versus ASICs. Since
in our benchmarks only two designs used hard blocks, our
average area result for FPGAs could be pessimistic depending
on the type of designs implemented. This does not affect the
comparison with sASICs.

A. Area and Critical Path Delay Comparisons

Table I lists the area and clock period of designs imple-
mented on standard-cell ASIC (STD), three-input LUT-based
sASIC (3-LUT), AOI22-based sASIC (AOI22), and the Xilinx
Virtex-II FPGA, respectively. Columns titled “L/S,” “A/S,” and
“F/S” refer to results for 3-LUT/AOI22-based sASICs and
FPGA implementations normalized against the corresponding
standard-cell ASIC implementation.

From Table I, we can see that the area occupied by
the two sASICs are between those of ASICs and FPGAs.
The AOI22 sASIC design has improved area density over the
3-LUT design. The 3-LUT and AOI22 sASIC implementations
have an average area overhead of 4.91 and 1.76 compared with
ASICs. FPGAs, which use SRAM-based logic and routing
configuration have a 26.6x area overhead over ASICs. This
figure is consistent with that found in other works [8].

TABLE II

TOTAL WIRE LENGTH

Wire length (µm) WL ratio

Designs STD LUT AOI L/S A/S

s35932 0.401 1.201 0.783 3.00 1.95

s38417 0.268 0.713 0.693 2.66 2.59

s38584 0.370 0.523 0.589 1.42 1.59

b14_1 0.343 0.710 0.431 2.07 1.26

b15_1 0.264 0.623 0.430 2.36 1.63

des_area 0.150 0.575 0.310 3.83 2.06

des_perf 3.182 6.024 7.481 1.89 2.35

vga_lcd 0.367 1.283 0.611 3.49 1.66

ethernet 0.491 1.615 0.973 3.29 1.98

avg. 2.67 1.90

Both the 3-LUT-based and AOI22-based sASICs performed
best in terms of area for “des_perf,” which is the largest among
the nine benchmark circuits. The overheads were 3x and 1.47x
that of the ASIC, respectively.

On average, the 3-LUT-based sASIC has 2.7x the critical
path delay of the ASIC. The AOI22-based sASIC had the best
performance, with an average delay of 1.41x that of the ASIC.
The FPGA was the slowest with a speed degradation of 5.09x.

The AOI22-based sASIC performed remarkably well in
terms of speed, achieving 1.07x and 1.12x the delay of ASICs
for the “vga_lcd” and “ethernet” designs. It performed worst
for “des_perf,” with a delay of 1.92x that of the ASIC. In con-
trast, both the 3-LUT-based sASIC and the FPGA performed
best for “des_perf,” at 2.04x and 1.76x delay. The excellent
speed of the 3-LUT sASIC and FPGA for “des_perf” were
because the circuit is efficiently constructed using complex
LUTs. The AOI22-based sASIC, on the other hand, needs extra
levels of logic gates to implement the same complex logic,
impacting on its performance. Also, the FPGAs routing were
fully buffered, and features direct chains between neighboring
slices, whereas the highest buffer strength available on our
sASICs were limited by the dedicated buffer cells selected.

Table II shows the total wire lengths for each design on the
three platforms. The 3-LUT-based sASIC requires on average

430 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

TABLE III

AREA DELAY PRODUCT OF BENCHMARK CIRCUITS

ON DIFFERENT PLATFORMS

Area delay product Ratio

Designs STD LUT AOI FPGA L/S A/S F/S

s35932 0.123 2.04 0.316 19.5 16.5 2.56 158.2

s38417 0.227 3.33 0.616 42.2 14.7 2.72 186.0

s38584 0.144 1.92 0.374 27.0 13.3 2.60 187.6

b14_1 0.266 2.51 0.675 59.0 9.4 2.54 222.1

b15_1 0.214 2.25 0.607 44.2 10.5 2.84 206.5

des_area 0.062 1.42 0.185 10.3 22.8 2.99 166.0

des_perf 5.014 30.64 14.181 103.3 6.1 2.83 20.6

vga_lcd 0.210 4.69 0.429 14.1 22.3 2.04 67.3

ethernet 0.376 5.90 0.679 54.3 15.7 1.81 144.4

avg. 14.6 2.55 151.0

2.67x that of an ASIC, whereas the AOI22-based sASIC
is 1.9x.

We also calculated the area-delay product of each design
for the three platforms. The results are shown in Table III. The
AOI22-based sASIC achieved an average area-delay product
of 2.55x that of the ASIC. The 3-LUT-based sASIC had an
average of 14.6x, while the FPGA has the worse area-delay
product average of 151.0x. These results showed that in terms
of area-delay product, our AOI22-based sASIC is about 59.2x
better than the FPGA, and a 5.73x improvement over the
3-LUT sASIC. The 3-LUT-based sASIC is still
10.3x better than the FPGA in terms of area-delay
product.

Our AOI22-based sASIC achieved an average of
1.76x/1.41x area/delay ratio against ASICs. These figures
are comparable with those obtained by Gopalani et al. [10],
[27] who reported an average area/delay ratio of 1.12x/1.4x.
It should be noted that Gopalani used small benchmark
circuits, approximately 0.1 mm2 in area, and if we remove
the largest design, “des_perf,” from our benchmarks, a
delay ratio of 1.35x is achieved. Compared with their work,
the main differences are: 1) our buffer sizing scheme that
we believe is an improvement over connecting multiple
NAND2 gates in parallel; 2) our approach of using standard
D-flip-flops rather than constructing them from NAND2 gates
reduces vulnerability to timing hazards and offers full scan
capabilities; and 3) their design used metal-1 to metal-4 so
only masks from substrate to poly can be shared, adding to
the mask costs.

Compared with this paper in [25], our fabric achieves better
area with similar speed, leading to an improved area-delay
product.

B. Fabric Parameters

In the previous section, the results reported were for custom
design-specific fabrics. To create these fabrics, we set an
initial fabric size by dividing the cell area in a synthesized
netlist by an utilization of 0.65. On the fabrics we do initial
placement, after which we adjust the logic/flip-flop/buffer ratio

TABLE IV

LOGIC/FLIP-FLOP/BUFFER RATIO

Designs Asg.
Block counts Ratio

AOI FF BUF A/F B/F

s35932 4/1/2 7389 1728 968 4.28 0.56

s38417 4/1/2 7857 1564 1083 5.02 0.69

s38584 4/1/2 8132 1160 1322 7.01 1.14

b14_1 15/1/3 7261 215 805 33.77 3.74

b15_1 15/1/3 7045 417 624 16.89 1.50

des_area 15/1/3 4598 128 1082 35.92 8.45

des_perf 9/1/3 78238 8808 9971 8.88 1.13

vga_lcd 4/1/2 5687 1681 1287 3.38 0.77

ethernet 4/1/2 8899 2343 1850 3.80 0.79

TABLE V

FABRIC TOPOLOGIES

Topologies Ratio

Properties CTM OBS FIXD O/C F/C

Cell area (mm2) 0.102 0.126 0.145 1.23 1.42

Wire length (µm) 0.310 0.377 0.955 1.22 3.08

Clk period (ns) 1.79 1.94 1.98 1.08 1.11

and scale the size of the fabrics as necessary. We iterate
through this process until the designs can be successfully fit
in their respective fabrics.

Table IV shows the assigned logic/flip-flop/buffer ratio
(Asg.) for the fabrics, and the actual counts and ratio of
them after the backend flow. It can be seen that in designs
“s38584,” “b14_1,” and “des_area,” the assigned logic/flip-flop
ratio is lower than the actual usage ratio, which implies that is
could be implemented on a smaller fabric with less flip-flops.
However, increasing the logic/flip-flop ratio also increases the
distance between flip-flop columns, which could affect the
timing performance. Hence, we believe that perhaps a number
of different fabrics are necessary to achieve reasonably good
performance over different logic/flip-flop ratios.

Of course, depending on the application, it may be prefer-
able to use a single fabric for all designs. To examine the worst
case effect of this approach, we implemented the smallest
(“des_area”) design, on the fabric for the largest design
(“des_perf”), which measures 1762.8 µm by 1765.6 µm. The
design occupies 5% of the available area.

Table V shows the comparison over different fabric topolo-
gies. These included: 1) a custom built fabric (CTM); 2) using
obstructs (OBS) to block out extra area using the “des_perf”
fabric; and 3) using the “des_perf” fabric (FIXD), for the
“des_area” design. The second topology is a commonly used
method in ASIC backend design to control detailed placement
location, and is adapted here to reduce the effects of using
a large fabric for a small design. Without using OBS, the
design is 42% larger in area, and required over 3x the total
wire length when implemented on the large fabric. By using
OBS, the area increased by 23%, and the total wire length
by only 22% compared with on custom fabric, being 13 and
60% reducted, respectively, compared with no OBS used.

HO et al.: ARCHITECTURE AND DESIGN FLOW FOR A HIGHLY EFFICIENT STRUCTURED ASIC 431

Fig. 10. Abstract for the tape-out design.

Fig. 11. Maximum frequency for the testing circuits under different voltages.

From our observation, the timing degradation involved is
design-specific, and is in this case limited by I/O pin density.
In the CTM case, pins can be spread in all four sides as
wished, while in the OBS and FIXD cases pins were spread
only on at most two sides to reduce the wire length from/to
pins.

V. PROTOTYPE CHIP

To verify our sASIC design methodology and implemen-
tation, we fabricated a sample design. The returned chips
underwent scan and functional tests, and were used in a
PC-based system.

The chip contains several test circuits along with a sample
application, which is a subset of a LCD backlit controller
design. The design was implemented with the 3-LUT-based
sASIC described in Section II, on the UMC 0.13 µm 1P8M2T
Mixed-Mode/RF process.

Fig. 10 shows the designs on the tape-out chip. The
blocks “tunit” and “peak_top” were all implemented with our
3-LUT sASIC, while the top level MUXes were taken from
the Faraday standard-cell library.

The test unit features a 19-stage ring oscillator, a eight-bit
counter, and a 8×8 multiplier. The ring oscillator was created
by cascading 19 NAND3 logic cells, each formed using a
3-LUT logic block.

Fig. 12. Picture used as sample input. Sample output is shown in the upper
left corner.

Fig. 13. Tape-out two chip on a custom PCB, plugged onto a Virtex-5
development board.

A. Prototype Chip Results

The fabricated chip is verified on a HILEVEL Griffin tester
using both scan and functional tests. For the scan test, the
generated scan pattern was shifted into the chip through the
scan chain using the tester to verify its logical correctness
against over 99% of stuck-at faults. All the test chips passed
the scan tests.

For functional tests, we used a supply voltage over the range
of 0.8–1.3 V, and recorded the maximum frequency for each
test circuit. For the counter and the multiplier, the maximum
frequency refers to the highest frequency for which correct
outputs were generated. The 8 × 8 multiplier had its input
shifted-in eight bits a time, and therefore requires two cycles
to input data.

Fig. 11 shows the maximum frequency of test circuits
against supply voltage. At the default voltage of 1.2 V
for the typical case corner, the oscillation frequency of the
19-stage ring oscillator was 88.31 MHz, implying the delay
of each 3-LUT-based NAND3 cell to be 0.30 ns. The maximum
frequency for the counter recorded was 131 MHz, and that for
the multiplier was 285.71 MHz.

B. Functional Test of LCD Backlight Controller

Fig. 12 shows a sample input for the system. The upper
left corner shows the low resolution output of the LCD backlit
panel. The sample pictures like this one were transformed into
vectors and used as inputs for the circuit.

The outputs of circuit during functional test were verified
against a software model as well as post-layout simulations.

432 IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 21, NO. 3, MARCH 2013

After verification, the chip was inserted in a custom PCB,
connected to an ML555 FPGA development board with a
Xilinx Virtex-5 FPGA. The ML555 is interfaced to a Linux
PC via PCI-E x8. The remaining parts of the application also
reside on the FPGA. Jungo WinDriver [31] was used for
the PCI-E software interface. This part replaces the LVDS
interface of the original design, to act as input interface from
PC memory/hard disk to FPGA. The output is sent back
through the driver, and shown as a eight bit-depth frame on
the screen.

Fig. 13 is a photograph showing the experimental setup. The
USB cable is used solely for providing power to the custom
PCB. This system verified correct system-level operation of
the LCD backlight controller.

VI. CONCLUSION

In this paper, we presented 3-LUT and AOI22-based sASIC
fabrics that can be customized using three masks. User-defined
hard macros can be accommodated and full scan capability
available. The associated design tools are based on a standard-
cell compatible EDA design flow using industry-standard
software. This approach allows the entire flow to be executed
at the user’s site, avoiding intellectual property disclosure
issues, and alleviating the additional cost of purchasing new
EDA tools.

Quantitative comparisons between the sASIC fabrics,
FPGAs, and ASICs were made. The AOI22 cell was found
to be superior to the 3-LUT in terms of area and speed, and
both were significant improvements over FPGAs. A prototype
chip was fabricated and used to verify the correctness of the
fabric and design tools.

A. Future Work

There are several possibilities for improvement of the fabric
reported in this paper. Currently, only one type of dedicated
buffer is supported in the programmable fabric. The types and
distribution of additional buffers could be investigated and
may lead to improve the performance. More work could be
done in optimizing the number of routing tracks occupied by
logic blocks to improve the routability. Along the same lines,
additional via-configurable routing structures could be prebuilt
in the upper layers to relieve congestion when additional
routing resources are required.

REFERENCES

[1] TSMC 65 nm Technology Overview (MPW) [Online]. Available:
http://www.europractice-ic.com/technologies_TSMC.php?tech_id=65nm

[2] M. LaPedus. (2011, Jan.). 450-mm Brings Confusion to Supply
Chain [Online]. Available: http://www.eetimes.com/electronics-news/
4212786/450-mm-brings-confusion%-to-supply-chain?pageNumber=2

[3] P. Doe. High Costs of Mask Sets and Design Force Industry
Change [Online]. Available: http://www.electroiq.com/index/display/
semiconductors-article-display/2%05808/articles/wafernews/volume-11/
issue-23/features/high-costs-of-mask-sets-a%nd-design-force-industry-c
hange.html

[4] M. Horowitz, “Why design must change: Rethinking digital design,”
in Proc. 42nd Annu. IEEE/ACM Int. Symp. Microarch., Dec. 2009,
p. 267.

[5] L. Pileggi, H. Schmit, A. Strojwas, P. Gopalakrishnan, V. Kheterpal,
A. Koorapaty, C. Patel, V. Rovner, and K. Tong, “Exploring regular
fabrics to optimize the performance-cost trade-off,” in Proc. Design
Autom. Conf., Jun. 2003, pp. 782–787.

[6] K.-C. Wu and Y.-W. Tsai, “Structured ASIC, evolution or revolution?”
in Proc. Int. Symp. Phys. Design, 2004, pp. 103–106.

[7] T. Okamoto, T. Kimoto, and N. Maeda, “Design methodology and tools
for NEC electronics’ structured ASIC ISSP,” in Proc. Int. Symp. Phys.
Design, 2004, pp. 90–96.

[8] I. Kuon and J. Rose, “Measuring the gap between FPGAs and ASICs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 26, no. 2,
pp. 203–215, Feb. 2007.

[9] R. Mehrabadi, S. Yuan, and R. Saleh, “Structured logic arrays for future
CMOS technologies,” in Proc. Canad. Conf. Elect. Comput. Eng., Apr.
2007, pp. 235–238.

[10] S. Gopalani, R. Garg, S. P. Khatri, and M. Cheng, “A lithography-
friendly structured ASIC design approach,” in Proc. 18th ACM Great
Lakes Symp. VLSI, 2008, pp. 315–320.

[11] U. Ahmed, G. Lemieux, and S. Wilton, “Performance and cost tradeoffs
in metal-programmable structured ASICs (MPSAs),” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 19, no. 12, pp. 2195–2208, Dec.
2011.

[12] D. D. Sherlekar, “Design considerations for regular fabrics,” in Proc.
Int. Symp. Phys. Design, 2004, pp. 97–102.

[13] H. K. Phoon, M. Yap, and C. K. Chai, “A highly compatible architecture
design for optimum FPGA to structured-ASIC migration,” in Proc. IEEE
Int. Conf. Semicond. Electron., Dec. 2006, pp. 506–510.

[14] G. H. Oh, W. T. Lor, H. K. Phoon, and C. P. Lim, “High performance
configurable distributed hybrid memory in structured ASIC,” in Proc.
IEEE Int. Conf. Semicond. Electron., Nov. 2008, pp. 27–32.

[15] Y.-W. Tsai, K.-C. Wu, H.-H. Tung, and R.-B. Lin, “Using structured
ASIC to improve design productivity,” in Proc. 12th Int. Symp. Integr.
Circuits, Dec. 2009, pp. 25–28.

[16] C. Patel, A. Cozzie, H. Schmit, and L. Pileggi, “An architectural
exploration of via patterned gate arrays,” in Proc. Int. Symp. Phys.
Design, 2003, pp. 184–189.

[17] T. C. Chau, P. H. Leong, S. M. Ho, B. P. Chan, S. C. Yuen, K.-P.
Pun, O. C. Choy, and X. Wang, “A comparison of via-programmable
gate array logic cell circuits,” in Proc. ACM/SIGDA Int. Symp. Field
Program. Gate Arrays, 2009, pp. 53–62.

[18] Y.-C. Chen, H.-Y. Pang, K.-W. Lin, R.-B. Lin, H.-H. Tung, and S.-C.
Su, “Via configurable three-input lookup-tables for structured ASICs,”
in Proc. 20th Symp. Great Lakes VLSI, 2010, pp. 49–54.

[19] K. Tong, V. Kheterpal, V. Rovner, L. Pileggi, and H. Schmit, “Regular
logic fabrics for a via patterned gate array (VPGA),” in Proc. IEEE
Custom Integr. Circuits Conf., Sep. 2003, pp. 53–56.

[20] A. Koorapaty, L. Pileggi, and H. Schmit, “Heterogeneous logic block
architectures for via-patterned programmable fabrics,” in Field Program-
mable Logic and Application (Lecture Notes in Computer Science),
vol. 2778, P. Y. K. Cheung and G. Constantinides, Eds. Berlin, Germany:
Springer-Verlag, 2003, pp. 426–436, 10.1007/978-3-540-45234-8_42.

[21] A. Koorapaty, V. Kheterpal, P. Gopalakrishnan, M. Fu, and L. Pileggi,
“Exploring logic block granularity for regular fabrics,” in Proc. Design,
Autom. Test Eur. Conf. Exhibit., vol. 1. Feb. 2004, pp. 468–473.

[22] N. Jayakumar and S. Khatri, “A metal and via maskset programmable
VLSI design methodology using PLAs,” in Proc. IEEE/ACM Int. Conf.
Comput. Aided Design, Nov. 2004, pp. 590–594.

[23] K. Gulati, N. Jayakumar, and S. Khatri, “A structured ASIC design
approach using pass transistor logic,” in Proc. IEEE Int. Symp. Circuits
Syst., May 2007, pp. 1787–1790.

[24] N. Shenoy, J. Kawa, and R. Camposano, “Design automation for mask
programmable fabrics,” in Proc. 41st Design Autom. Conf., Jul. 2004,
pp. 192–197.

[25] Y. Ran and M. Marek-Sadowska, “Designing via-configurable logic
blocks for regular fabric,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 14, no. 1, pp. 1–14, Jan. 2006.

[26] M.-C. Li, H.-H. Tung, C.-C. Lai, and R.-B. Lin, “Standard cell like via-
configurable logic block for structured ASICs,” in Proc. IEEE Comput.
Soc. Annu. Symp. VLSI, Apr. 2008, pp. 381–386.

[27] S. Gopalani, R. Garg, S. Khatri, and M. Cheng, “DFM-aware structured
ASIC design,” in Proc. 12th Int. Symp. Integr. Circuits, Dec. 2009, pp.
29–32.

[28] IWLS Benchmarks. (2005) [Online]. Available: http://www.iwls.org/
iwls2005/benchmarks.html

[29] Xilinx Inc. San Jose, CA (2007, Nov.). Virtex-II Platform FPGAs: Com-
plete Data Sheet, [Online]. Available: http://www.xilinx.com/support/
documentation/data_sheets/ds031.pdf

HO et al.: ARCHITECTURE AND DESIGN FLOW FOR A HIGHLY EFFICIENT STRUCTURED ASIC 433

[30] H. Zarandi, S. Miremadi, C. Argyrides, and D. Pradhan, “Fast SEU
detection and correction in LUT configuration bits of SRAM-based
FPGAs,” in Proc. IEEE Int. Parallel Distrib. Process. Symp., Mar. 2007,
pp. 1–6.

[31] Windriver PCI for Linux. JUNGO Ltd., Netanya, Israel [Online]. Avail-
able: http://www.jungo.com/st/linux.html

Man-Ho Ho (M’11) received the B.Eng. degree
in computer engineering and the M.Phil. degree in
electronic engineering from the Chinese University
of Hong Kong (CUHK), Hong Kong, in 2008 and
2011, respectively.

He was a Research Assistant with the Department
of Electronic Engineering, CUHK, from 2008 to
2009. He is currently an Assistant ASIC Design
Engineer with HiSilicon Technologies, Hong Kong.
His current research interests include computer
architecture and machine learning.

Yan-Qing Ai (S’12) received the B.Eng. degree in
mechanical engineering from the Beijing Institute
of Technology, Beijing, China, the B.Eng. degree
in electronic engineering from Tsinghua University,
Beijing, in 2001 and 2004, respectively, and the
M.Phil. degree in integrated circuit design from Zhe-
jiang University, Hangzhou, China, in 2009. He is
currently pursuing the Ph.D. degree with the Depart-
ment of Electronic Engineering, Chinese University
of Hong Kong (CUHK), Hong Kong.

He was a Team Leader with National High
Performance IC Design Center, Shanghai, China, a Project Leader with
HiSilicon Technologies Company Ltd., Hong Kong, from 2004 to 2010, and
a Research Assistant with the Application-Specific Integrated Circuit Labo-
ratory, Department of Electronic Engineering, CUHK. His current research
interests include sASIC design tools development, channel modeling, and
protocols of body area network communication.

Thomas Chun-Pong Chau (S’09) received the
B.Eng. and M.Phil. degrees in computer engineering
from the Chinese University of Hong Kong, Hong
Kong, in 2008 and 2010, respectively. He is currently
pursuing the Ph.D. degree with the Department
of Computing, Imperial College London, London,
U.K.

His current research interests include reconfig-
urable computing, high performance computing, and
real-time computing.

Mr. Chau was a recipient of the Croucher Foun-
dation Scholarship.

Steve C. L. Yuen received the B.Eng. and M.Phil.
degrees in computer engineering from the Chinese
University of Hong Kong (CUHK), Hong Kong, in
2002 and 2004, respectively.

He was a Research Associate at CUHK from
2008 to 2010, where he led the Structured Appli-
cation Specific Integrated Circuit Team. Currently,
he is with the Transport Department of Hong Kong,
engaged in the prequalification of traffic signal
equipment. His current research interests include
sensor and low-power electronics.

Chiu-Sing Choy (SM’96) received the B.Sc.,
M.Sc., and Ph.D. degrees from the University of
Manchester, Manchester, U.K., in 1983, 1984, and
1987, respectively, all in electrical and electronic
engineering.

He spent a year with Ferranti Microelectronics,
Oldham, U.K., participating in application specific
integrated circuit (ASIC) technology research from
1985. In 1986, he joined the Department of Elec-
tronic Engineering, Chinese University of Hong
Kong, Hong Kong, where he is currently a Professor.

His current research interests include network-on-chip, body network, struc-
tured ASIC, ultralow supply circuit techniques, multimedia, and baseband
processing.

Prof. Choy is a fellow of Hong Kong Institution of Engineers (HKIE) and
was a council member of the HKIE.

Philip H. W. Leong (SM’02) received the B.Sc.,
B.E., and Ph.D. degrees from the University of
Sydney, Sydney, Australia.

He was a Consultant with ST Microelectronics,
Milan, Italy, working on advanced flash-memory-
based integrated circuit design in 1993. From 1997
to 2009, he was with the Chinese University of Hong
Kong, Hong Kong. He is currently an Associate Pro-
fessor with the School of Electrical and Information
Engineering, University of Sydney. He is a Visiting
Professor with Imperial College, London, U.K., and

the Chief Technology Consultant with Cluster Technology. He is the author
of more than 100 technical papers and holds four patents.

Dr. Leong was the Co-Founder and the Program Co-Chair of the Interna-
tional Conference on Field Programmable Technology (FPT), the Program
Co-Chair of the International Conference on Field Programmable Logic
and Applications, and is an Associate Editor for the ACM Transactions on
Reconfigurable Technology and Systems. He was the recipient of the FPT
Conference Best Paper Award in 2005 as well as the FPL Conference Stamatis
Vassiliadis Outstanding Paper Awards in 2007 and 2008.

Kong-Pang Pun (S’97–M’01–SM’09) received the
B.Eng. and M.Phil. degrees in electronic engineering
from the Chinese University of Hong Kong (CUHK),
Hong Kong, in 1995 and 1997, respectively, and the
Ph.D. degree in electrical and computer engineering
from the Institute Superior Técnico, Technical Uni-
versity of Lisbon, Lisbon, Portugal, in 2001.

He is currently an Associate Professor with the
Department of Electronic Engineering, CUHK. He
was a Visiting Scholar with the Department of Elec-
trical Engineering, Columbia University, New York,

NY, and the Institute of Microsystems Engineering, University of Freiburg,
Breisgau, Germany, in 2004 and 2011, respectively. His current research
interests include the circuits for complex signal processing, continuous-time
filters, delta-sigma modulators, and ultralow-voltage circuits.

Prof. Pun was a General Co-Chair of the IEEE International Conference
on Electron Devices and Solid-State Circuits in 2008 and a member of the
International Technical Program Committee of the IEEE International Solid-
State Circuits Conference from 2008 to 2011. He was a recipient of the Faculty
Exemplary Teaching Award from the Faculty of Engineering, CUHK, in 2005
and 2010.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

