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On-device Saliency Prediction based on Pseudo
Knowledge Distillation

Ayaz Umer, Chakkrit Termritthikun*, Tie Qiu, Philip H. W. Leong, and Ivan Lee

Abstract— Saliency prediction models aim to mimic the
human visual system’s attention process, and the research
has made significant progress due to recent advancements
in Deep Convolution Neural Networks (DCNN). However, the
high memory requirements and intensive computational
demands make these approaches less suitable for IoT
devices, and there’s a need for improved computational
efficiency and reduced memory footprint to facilitate dis-
tributed IoT intelligence. This paper proposes a Pseudo
Knowledge Distillation (PKD) training method for creating a
compact real-time saliency prediction model. The proposed
method can effectively transfer knowledge from computa-
tionally expensive once-for-all (OFA-595) as a single teacher
model and a combination of OFA-595 and EfficientNet-B7
as a multi-teacher model to an Early Exit Evolutionary
Algorithm network (EEEA-Net) student model by utilising
knowledge distillation and pseudo labelling. Five saliency
benchmark datasets are used to demonstrate PKD’s im-
proved prediction performance and its reduced inference
time without modifying the original student model.

Index Terms— Deep Learning, Pseudo Label, Knowledge
Distillation, Saliency Prediction.

I. INTRODUCTION

V ISION is an essential sense for human beings, and
tracking eye movement can be utilised for understanding

human visual behaviour. Humans have an amazing ability
to focus attention on certain areas instead of inspecting the
complete details for interpreting and understanding the scene.
The selective attention mechanism of the human visual system
(HVS), when mimicked by a computer through simulation, is
called saliency prediction or visual attention prediction. This
attention mechanism of HVS plays an important role in various
applications, including segmentation [1], surface detection [2],
image retargeting [3], and object tracking [4].

Artificial Intelligence (AI) for real-time monitoring and
surveillance has recently played an important role in industrial
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informatics, operating as a facilitator with varying degrees of
success and interests. Deployment of Internet of Things (IoT)
generates big data, subsequently raises the processing demand
on the central server, which represents a bottleneck. The avail-
ability of such big industrial data and recent advancements in
computational intelligence have resulted in a paradigm shift
toward AI utilisation. This paradigm change is the major
push towards completely autonomous intelligent systems with
lower computational complexity. Therefore, there’s a need for
innovative algorithms with reduced parameters, complexity
and latency to be operated on the IoT devices. To perform
visual tasks on such IoT devices require compact model,
which can be accomplished by model compression [5]. On-
device saliency prediction needs a compact model with low
computation cost. For real-time on-device saliency prediction,
an efficient visual saliency prediction system is critical. A
recent study [6] pre-trained a deep saliency detection model
on a cloud server, and the backbone of CNN is dynamically
chosen and fine-tuned for a particular IoT application based
on the processing capacity of fog devices. To analyse the
scene, Gao et al. proposed a saliency detection approach
that recognises common things (salient regions) in an image
collected from different IoT devices with a relatively high
computation cost [7]. Our main motivation for this research
is to develop a compact deep learning saliency prediction
architecture that is flexible and efficient to be deployed on
computationally constrained edge devices such as single-board
computers or smartphones.

A saliency prediction model receives an input image and
generates an output in the form of fixation distribution
(saliency map). The saliency map marks the regions of interest
with high intensity to indicate that they are more important
than others. In general, these models can be classified into
two categories based on the attention process they simulate:
bottom-up models and top-down models. Top-down attention
models are task specific, while bottom-up attention models
are for free-viewing when we do not have any objective or
task in our mind. The aim of this paper is to mimic the task-
free bottom-up visual attention process by predicting salient
regions on natural images.

Early saliency prediction models were biologically in-
spired [8], [9]. They primarily utilise multi low-level handcraft
features for instance colour, orientation, texture and intensity,
these models blend features in a heuristics way for computing
saliency. However, these models generally fail to incorporate
high-level features (contextual information, complex objects,
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etc.), resulting in creating a considerable gap between human
and computation model in terms of the prediction accuracy.
The saliency prediction domain has transformed from manual
feature extraction to automatic representation learning with the
help of deep neural networks. Due to this paradigm shift, deep
learning models have achieved substantial improvement over
traditional saliency prediction models [10].

Deep learning has recently become a popular strategy in
saliency prediction domain, recent saliency prediction models
utilise deep learning for delivering reasonable accuracy. Al-
though it improves the gap between ground truth and model
prediction but at the expense of higher computational cost.
They require a large number of parameters and tremendous
computational resources, such high resource requirements are
not suitable on IoT devices for edge computing.

The computational demand of saliency prediction inference
is one limitation to the widespread use of saliency prediction in
various applications. Thus, current saliency prediction models
need to evolve towards compact and computationally efficient
methods that can be deployed on edge devices. Motivated by
this, a new method is proposed called PKD for predicting on-
device saliency. The seminal work on knowledge distillation
[11] can be observed in various complex tasks across different
domains. However, relatively less research can be seen in
saliency prediction domain. Therefore, this paper focuses on:

• The computationally efficient approaches for saliency
prediction to achieve near state-of-the-art accuracy at a
reduced computational cost.

• The development of the model that has less number of
parameters and with good accuracy for saliency predic-
tion models. We evaluate the proposed method against
state-of-the-art in terms of accuracy metrics (AUC, NSS,
CC, etc.) and theoretical complexity (FLOPS, model
parameters and latency).

• To fulfil the requirements of on-device applications, a
new method is proposed PKD: Pseudo Knowledge Dis-
tillation for on-device saliency. This method provides
model performance comparable to many more complex
models for saliency prediction by transferring knowledge
from a computationally expensive teacher model to a
small student model by utilising knowledge distillation
and pseudo labelling.

• Various experiments performed on different datasets ver-
ify the effectiveness of the proposed method. Compared
with state-of-the-art approaches, the proposed method
achieves competitive accuracy with smaller model size.

II. RELATED WORKS

Saliency prediction models can be categorised into three
groups: classic (non-deep) saliency models, deep saliency
models and compact saliency models.

A. Classic (Non-deep) saliency models
Generally, traditional saliency prediction models are based

on hand-craft or manual features. One of the earliest compu-
tational models [9] for saliency prediction was proposed by
combining multi-scales low-level features (orientation, colour,
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Fig. 1. Block diagram of the Early Exit Evolutionary Algorithm.

and intensity) into a final saliency map for saliency predic-
tion. Following this foundational work, various techniques
investigated the similar concept such as a work proposed
graph-based visual saliency [8] by using Markov chains to
generate saliency maps. In classic saliency prediction models
researchers leverage their domain knowledge expertise to
construct these features manually, which may fail to replicate
the human visual system’s response to complicated nature
situations.

B. Deep saliency models
A recent trend shows that deep learning has been a popular

technique for saliency prediction. The first attempt to predict
visual saliency using convolutional neural networks was made
in 2014 [12]. They used ensemble of deep networks (eDN),
in which they blend information from various layers to train
a linear classifier for saliency prediction. Following that,
researchers began to use deeper models by introducing a
transfer learning approach, a variety of networks based on the
pre-trained backbone are proposed, including EML-Net [13],
SALICON [10] and SalED [14].

C. Compact saliency models
In a computationally constraint environment, fast and com-

pact models are crucial for embedded computer vision ap-
plications such as facial verification and image recognition.
MobileNetV2 [15] uses depth-wise or separable convolution
to reduce FLOPS which helps for on-device deployment.
MobileNetV3 [16] is further polished to reduce the compu-
tational complexity. GhostNet [17] was proposed to produce
additional feature maps from low-cost operations. EfficientNet
[18] propose a new scaling technique that evenly scales all
dimensions (resolution, width and depth). EEEA-Nets [19] are
suitable for on-device processors with constrained computing
resources.

Several approaches for the compact and fast saliency pre-
diction model have been proposed in the past. A work [20]
reported a faster gaze prediction model, developed by using
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knowledge distillation and fisher pruning. A recent work [21]
modified and utilised different efficient convolution neural
networks suitable for inference on constrained computing
devices such as MobileNetV2 [15] and EfficientNet [18] for
saliency prediction.

D. EEEA-Nets
An algorithm based on Early Exit Population Initialisa-

tion (EE-PI) and Evolutionary Algorithm (EA) was proposed
to create the EEEA-Net models [19], as shown in Fig. 1.
The work utilised the Network Architecture Search (NAS)
based method to search for a new model called EEEA-Nets,
suitable for on-device processors with constrained computing
resources. The aim of the EEEA algorithm is to discover a
CNN model that minimises error, FLOPS, and the number of
parameters, as shown in Eq. 1, where m is the subnet model
and S is the set of subnet models.

min {Error (m) , FLOPS (m) , Params (m)}

s.t. m ∈ S
(1)

The proposed method utilises EEEA-Net as the student
network for hierarchical feature extraction by adapting it for
saliency prediction. It is used as an encoder module and
there are five stages in encoder module, each stage having
four MBConv Blocks [16], for a total of 20 layers in the
encoder. The EEEA-Nets model has a similar block structure
to the MobileNetV3 model but differs in the size of the filter,
number of output channels, number of depth blocks, and input
resolution, these values are optimised in EEEA-Net.

There are a few factors that contribute to the selection of
EEEA-Net as an encoder in the student network. Since it has
been extensively evaluated on a broad range of tasks, including
image classification, object detection, image segmentation,
and human keypoint detection, and the findings indicate that
EEEA-Net-C2 outperforms MobileNetV3. Moreover, EEEA-
Net is a subnetwork of the OFA [22] supernet, so it is a
viable candidate for selection in our proposed model to achieve
performance similar to the OFA-595 subnetwork.

E. Evaluation metrics
Evaluation of different saliency prediction models is based

on the consistency between the predicted result and the ground
truth. Previous research on saliency evaluation metrics [23]
shows that for a fair comparison of the saliency prediction
model, a single evaluation metric is not sufficient. Therefore,
this paper adopts widely accepted evaluation metrics, includ-
ing CC, KLD, NSS, SIM, and AUC. These metrics can be
divided into two categories: location-based (AUC and NSS)
and distribution-based (CC, KLD, and SIM). The difference
between these two categories is the way each type uses the
ground truth. Location-based metrics treat saliency map values
at discrete fixation points, and distribution-based metrics treat
both saliency map and ground-truth as a continuous distribu-
tion. We denote the predicted saliency map as P , the ground-
truth saliency map as G and the ground-truth fixation map as
Q.

1) Area Under ROC Curve (AUC): Predicting the fixation
location on an image, a saliency map, can be treated as
a classifier problem. AUC quantifies the saliency prediction
model performance based on fixated and non-fixated locations.
Given an image and its ground-truth eye fixation map Q,
AUC evaluates the classification performance of the predicted
saliency map P . Fixation points and non-fixation points are
considered as positive and negative sets, respectively. The
computed saliency map P is binary classified into salient and
non-salient regions by a threshold. By varying the threshold
from 0 to 1, ROC is generated by plotting the true positive vs
false positive rate.

2) Normalised Scanpath Saliency (NSS): This evaluation
metric is specifically introduced [24] to evaluate the saliency
prediction model. It computes the measure of correspondence
between saliency maps and ground-truth by taking the mean
between model prediction (saliency map) and eye fixations.

NSS(P,Q) =
1

N

∑
i

P̄i ×Qi (2)

where P̄ is the unit normalised saliency map P (zero mean
and unit standard deviation) and N denotes the total number
of human eye fixations.

3) Linear Correlation Coefficient (CC): It is a statistical
measure that is utilised to evaluate how closely two random
variables are related. For saliency prediction it quantifies the
linear correlation between two distributions (model prediction
and ground-truth) for the purpose of evaluation. It is computed
by using following equation:

CC(P,G) =
covar (P,G)

σ (P )× σ (G)
(3)

where covar and σ refer to the covariance and standard
deviation, respectively. CC score close to +1 indicate a perfect
linear relationship between the maps.

4) Similarity Metric: SIM (also known as histogram inter-
section) is a similarity metric [25] that quantifies the simi-
larity between two histogram-based distributions. In saliency
domain, it performs a comparison between two saliency maps
by calculating the similarity between two distributions. The
similarity metric can be computed by using following equation

SIM (P,G) =
∑
i

min(Pi, Gi) (4)

A SIM of one indicates that the distributions are identical,
while a SIM of zero indicates that there is no overlap between
distributions.

5) Kullback-Leibler Divergence (KLD): To quantify the statis-
tical distance D between an estimated and a target distribution,
KLD is a suitable metric based on information theory. The
distribution P is used to approximate the distribution G, KLD
evaluates the loss of information, resulting in a probabilistic
interpretation of saliency and ground-truth density maps. The
equation for KLD is computed by using the following equa-
tion:
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Fig. 2. The overall architecture of the proposed saliency prediction model.

KLD (P,Q) =
∑
i

Qilog

(
ϵ+

Qi

Pi + ϵ

)
(5)

where i denotes the ith pixel of an image and ϵ is a regularisa-
tion constant. A lower value of KLD shows that the predicted
saliency map is more accurate representation of the ground
truth.

III. PROPOSED METHOD

A. The framework
The proposed PKD method for saliency prediction is shown

in Fig. 2. It consists of four major components: teacher net-
work (large), student network (small), pseudo labels and loss
function. The proposed method utilises knowledge distillation
by training a small model to mimic a larger pre-trained model.
The overall model loss is the combination of teacher and
student loss. The proposed method utilises pseudo labels with
knowledge distillation by providing the student network with
the teacher prediction (pseudo labels). Finally, the total loss is
calculated by adding teacher loss and student loss.

B. Computationally efficient model through knowledge
distillation and pseudo labels

Commonly used methods for reducing the size of over-
parameterised neural network are pruning [26] and knowledge
distillation [11]. Reducing the parameters of neural network by
using pruning has some limitations, for instance after pruning
the final network has usually similar network structure, which
is not desirable for edge devices with constrained compu-
tational capacity. On the other hand, knowledge distillation
is widely utilised to transfer learned information from one
model to another using the student-teacher learning frame-
work. This paper adapts the idea of knowledge distillation to
solve saliency prediction problems.

The proposed method utilises knowledge distillation as
shown in Fig. 2. OFA-595 [22] is used as a teacher (large)

Data (X)

Teacher (t) Student (t)

Label (Y)

...
Pseudo Label

Step t

Fig. 3. Pseudo Knowledge Distillation (PKD) method. Each timestamp
t of the training process involves few steps, which include X as input
data (input image), Y represents a label (saliency map or fixations) and
pseudo labels generated by the teacher network are given to the student
network for knowledge distillation.

network, while EEEA-Net [19] is used as a student (small)
network. For on-device saliency prediction OFA-595 subnet-
work from supernet is adapted by utilising it as the backbone
(pre-trained with ImageNet1k) for the teacher network. In OFA
it trains one network and specialise that network for efficient
deployment by allowing it to be deployed under diverse
architectural configurations. It employs a novel progressive
shrinking algorithm that reduces the model size across various
dimensions (depth, width, kernel size and resolution). It can
generate many subnetworks that are compatible with a variety
of hardware platforms and latency limitations while retaining
a high level of accuracy. The proposed method adapts the
EEEA-Net model to the saliency prediction problem by using
it as a backbone (pre-trained with ImageNet1k) of the student
network. The same decoder and ReadOut module are utilised
in both the teacher and student networks. More information on
the decoder and ReadOut module can be found in the sections
III-D and III-E respectively.

A recent trend shows that pseudo labels have been utilised
extensively for computer vision. The proposed method utilises
pseudo labels as shown in Fig 3. The training step involves
X as input data (input image) and Y represent a label
(saliency map or fixations). Both the teacher and student
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Algorithm 1 Pseudo-Knowledge Distillation
1: Input: Teacher Network T , Student Network S.
2: Output: Student Network S
3: Pt is the prediction of teacher network, Ps is the prediction

of student network, G is the corresponding ground truth,
Gp is the pseudo ground truth, Wts is the weights of
teacher and student networks, L is the loss values, D is
the dataset.

4: for each batch in D do
5: Train T with the input images;
6: Calculate teacher loss LT with Pt, G; (see Eq. 8)
7: Gp ← Pt;
8: Train S with the input images;
9: Calculate student loss LS with Ps, Gp; (see Eq. 8)

10: Calculate Ltotal with LT , LS ; (see Eq. 7)
11: Backpropagation T and S by Ltotal

12: end for
13: Evaluate T and S on D
14: Return S

networks receive same data (input image) and they generate
their respective predictions, however the teacher prediction
(saliency map or fixations) is provided to the student network
as a pseudo label. This pseudo label is treated as ground truth
by the student network, and the student loss is calculated
based on student prediction and ground-truth (pseudo label),
implying that the student network will learn from the teacher
network by using pseudo labels. Further detail of pseudo labels
working can be seen in Algorithm 1.

As illustrated in Fig. 2, the proposed teacher and student
models receive an input image from the SALICON dataset.
Both teacher and student networks will predict their respec-
tive saliency map. Let the teacher predicted saliency map
be denoted as Pt, ground truth as G and student predicted
saliency map as Ps. The teacher loss function will calculate
the difference between the teacher’s prediction Pt and ground
truth G. On the other hand, student loss will be calculated
by the loss function with student prediction Ps and pseudo
ground truth Pt (teacher’s prediction).

The proposed method utilises knowledge distillation to train
the student network. The total loss Ltotal is the weighted sum
of teacher loss and student loss.

Ltotal = WtsLT (Pt, G) + (1−Wts)LS (Ps, Pt) (6)

where Pt is the predicted saliency map of the teacher
network, the proposed method utilise Pt in teacher and student
loss functions. In the teacher loss function it is utilised as
teacher prediction, however in the student loss function, Pt is
used as a pseudo label. Where L(·) represents the combined
loss function.

Weights are fixed for the proposed method, after performing
various experiments it is observed that weights value Wts =
0.5 is the optimal weight for teaching the student network
(EEEA-Net-C2) by a teacher network (OFA-595). The loss
formula at Wts = 0.5 can be formulated as:

Ltotal = LT (Pt, G) + LS (Ps, Pt) (7)

where LT is teacher loss and LS is student loss. For more
detail, see Algorithm 1.

C. Loss function
In the literature, many evaluation metrics have been pro-

posed for saliency prediction, as described in Section II-E.
In the proposed method, evaluation metrics are used as a
loss function for both teacher and student networks. Recently,
some work demonstrates that combining loss functions can
improve model efficiency [13], [14]. It is due to the fact that
each saliency assessment metrics has a distinct emphasis, a
single loss may not be adequate to thoroughly acquire saliency
information. By testing various loss combinations, it was learnt
that the combination of KLD + CC + AUC gives the best
performance. Thus, a loss combination is utilised for the
proposed method.

Loss (P,G) = KLD (P,G) + CC (P,G) +AUC (8)

where P and G indicate the predicted saliency map and the
ground truth, respectively.

D. A simple and compact decoder
After the encoder output, a decoder network is required for

saliency map generation, a simple decoder [27] is used in both
teacher and student networks, for simple and computationally
efficient output generation. Starting at the last layer of the
encoder, the decoder network symmetrically increases the
spatial resolution of features for accurate localisation. Our
decoder expansion can be divided into different stages for
recovering the target resolution, the stage-wise spatial reso-
lution enhancement is given as 1/16, 1/8, 1/4, 1/2, 1. Each
stage of the decoder expansion involves concatenation from
the corresponding encoder layer, convolution, activation, and
upsampling. Finally, the output is then resized to the input size
by using bilinear upsampling.

E. ReadOut module
Generally, in the ReadOut module [27], there are few

convolution layers along with activation functions, followed
by 1× 1 convolution to adjust the size of the output saliency
map, making the model simpler and more effective. The
proposed model’s readout architecture comprises two 3 × 3
convolutional layers; the first convolution layer is followed by
ReLU activation function, while the second utilises sigmoid
activation function to produce the saliency map.

IV. EXPERIMENTS AND RESULTS

A. Datasets
Five widely used datasets are utilised for model evalua-

tion, including SALICON, CAT2000, MIT1003, OSIE, and
PASCAL-S. SALICON is the largest publicly available dataset
for saliency prediction [10], [13], [28], including 10,000
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Fig. 4. Distribution of human fixation points. The baseline utilises
EEEA-Net-C2 without knowledge distillation, and Ours employs Pseudo
Knowledge Distillation on EEEA-Net-C2.

TABLE I
RESULT OF OUR MODEL ON SALICON VALIDATION DATASET WITH

COMBINATION LOSS. ARROWS INDICATE THE ASSESSMENT OF

SIMILARITY (↑ ) OR DISSIMILARITY (↓) BETWEEN PREDICTIONS AND

TARGETS. THE ENTRIES IN BOLD INDICATE THE BEST RESULTS.

Teacher CC ↑ KLD ↓ NSS ↑ SIM ↑ AUC ↑
- 0.9007 0.2021 1.9203 0.7932 0.8544
TResNet-M [29] 0.9056 0.1922 1.9320 0.7967 0.8554
OFA-595 [22] 0.9062 0.1907 1.9298 0.7987 0.8559
MobileNetV3 [16] 0.9034 0.1965 1.9210 0.7939 0.8550
EfficientNet-B0 [18] 0.9041 0.1937 1.9265 0.7956 0.8549
PNASNet-5 [30] 0.9044 0.1956 1.9319 0.7968 0.8552
VGG-16 [28] 0.8949 0.2131 1.9119 0.7833 0.8535
EfficientNet-B4 [18] 0.9055 0.1924 1.9346 0.7980 0.8550

training images, 5,000 validation images, and 5,000 testing
images. CAT2000 has 2,000 training and 2,000 testing images,
MIT1003 have 1,003 images, OSIE contains 700 images, and
PASCAL-S consists of 700 images.

B. Implementation details

Our proposed method is implemented using PyTorch. For
training, teacher and student network backbones are initialised
with the ImageNet1k weights. The decoder module weights are
initialised randomly with the default setting of PyTorch. Adam
optimiser is used for both the teacher and student networks.
Finally, the model is trained using the SALICON, CAT2000,
MIT1003, OSIE, and PASCAL-S training set and monitored
convergence using the respective validation set. The model is
first trained on the SALICON dataset before being fine-tuned
on other datasets.

Each dataset is divided into training and validation sets, with
10,000 training images and 5,000 validation images for the
SALICON dataset, 1,600 training images and 400 validation
images for the CAT2000 dataset, 800 training images and
200 validation images for the MIT1003 dataset, 500 training
images and 200 validation images for OSIE dataset and 650
training images and 200 validation images for PASCAL-S
dataset. The input image resolution is maintained at 384×384
for all datasets. All the experiments are conducted using four
NVIDIA V100 GPUs (32 GB), and Adam optimiser is utilised.

TABLE II
MODEL ABLATION ANALYSIS FOR THE SALICON VALIDATION DATASET.

THE BASELINE STUDENT MODELS DO NOT USE KD, WHEREAS THE

MODELS LABELLED WITH † USE OFA-595 AS THE PKD TEACHER.

Student CC ↑ KLD ↓ NSS ↑ SIM ↑ AUC ↑
EEEA-Net-C1 [19] 0.8930 0.2213 1.9120 0.7853 0.8522
EEEA-Net-C1† 0.8995 0.2015 1.9168 0.7908 0.8546
EEEA-Net-C2 [19] 0.8978 0.2032 1.9233 0.7889 0.8548
EEEA-Net-C2† 0.9062 0.1907 1.9298 0.7987 0.8559
MobileNetV2 [15] 0.8859 0.2254 1.8995 0.7769 0.8518
MobileNetV2† 0.8915 0.2176 1.9030 0.7808 0.8540
MobileNetV3 [16] 0.9018 0.2030 1.9250 0.7948 0.8540
MobileNetV3† 0.9024 0.1987 1.9293 0.7941 0.8557
GhostNet [17] 0.8963 0.2087 1.9107 0.7885 0.8534
GhostNet† 0.9014 0.1994 1.9189 0.7926 0.8547
EfficientNet-B0 [18] 0.9008 0.2173 1.9296 0.7946 0.8538
EfficientNet-B0† 0.9061 0.1950 1.9347 0.7982 0.8560

TABLE III
LOSS COMBINATION ON SALICON VALIDATION DATASET WITH

EEEA-NET-C2 AS BASELINE.

Combination CC↑ KL↓ NSS↑ SIM↑ AUC↑
CC+KL 0.8960 0.2101 1.9142 0.7883 0.8635
CC+AUC 0.8960 1.0687 1.9175 0.7809 0.8632
SIM+AUC 0.8947 1.0502 1.9101 0.7880 0.8611
CC+KL+SIM 0.8956 0.2154 1.9157 0.7886 0.8635
CC+KL+AUC 0.8960 0.2099 1.9141 0.7883 0.8636

C. Performance analysis of various teacher models

Table I depicts the performance of PKD teacher and PKD
student, state-of-the-art networks are used as PKD teacher
network to teach PKD student network, the PKD teacher
networks used in the experiments are TResNet [29], OFA-595
[22], MobileNetV3 [16], EfficientNet [18], PNASNet [30], and
VGG [28]. While preserving high-performance criteria and
minimal computational cost, the proposed method effectively
transferred knowledge from teacher to student. Experimental
results show that OFA-595 is the best PKD teacher network
for teaching the proposed PKD student network (EEEA-Net-
C2), with increased performance across four metrics, including
CC, KL, SIM, and AUC. Experimental results demonstrate
that PKD method is not only accurate but also competitive in
terms of computational efficiency. Fig. 4 shows sample output
of fixation distribution (saliency map).

D. Ablation analysis

This section explains the ablation analysis by showing
results on the SALICON validation dataset. We measure the
efficiency of the proposed PKD model by determining how
well the knowledge is transferred to the student by teacher
network by utilising pseudo knowledge distillation. Table II
summarises all the findings for ablation analysis. In experi-
ments OFA-595 is used as a teacher network to train various
student models. From the results, it is found that when the
PKD teacher network is used, the model achieves continuously
improved progress across all five metrics, which demonstrates
the effectiveness of our proposed method.

1) Combining loss function: Combining evaluation metrics
show improved performance compared to when single metric
is utilised. Table III illustrates the combination of various
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TABLE IV
RESULT OF MULTI-TEACHER METHOD FOR STUDENT (EEEA-NET-C2) WITH TRAINING TIME ON SALICON VALIDATION DATASET WITH

COMBINATION LOSS. THE ENTRIES IN BOLD INDICATE THE BEST RESULTS

Method Teacher CC↑ KL↓ NSS↑ SIM↑ AUC↑ Time (min) Speedup
Baseline - 0.9007 0.2021 1.9203 0.7932 0.8544 24 1×
Single Teacher PKD OFA-595 [22] 0.9062 0.1907 1.9298 0.7987 0.8559 45 1.9×
Single Teacher PKD EfficientNet-B4 [18] 0.9055 0.1924 1.9346 0.7980 0.8550 50 2.1×
Single Teacher PKD PNASNet-5 [30] 0.9044 0.1956 1.9319 0.7968 0.8552 68 2.8×
Multi-Teacher PKD EfficientNet-B4 [18] + OFA-595 [22] 0.9079 0.1879 1.9360 0.7998 0.8558 68 2.8×
Multi-Teacher PKD PNASNet [30] + OFA-595 [22] 0.9072 0.1896 1.9367 0.7994 0.8566 88 3.7×
Multi-Teacher PKD PNASNet [30] + EfficientNet-B4 [18] 0.9068 0.1912 1.9372 0.7989 0.8556 93 3.9×
Multi-Teacher PKD EfficientNet-B7 [18] + OFA-595 [22] 0.9080 0.1879 1.9367 0.8002 0.8555 78 3.3×

TABLE V
COMPARISON PERFORMANCE OF TEACHER (LRT ) AND STUDENT

(LRS ) LEARNING RATES BY UTILISING OFA-595 AS TEACHER AND

EEEA-NET-C2 AS STUDENT ON SALICON VALIDATION DATASET.

LRT LRS CC↑ KL↓ NSS↑ SIM↑ AUC↑
0.001 0.001 0.9052 0.1957 1.9360 0.7982 0.8555
0.0001 0.0001 0.8969 0.2075 1.9097 0.7883 0.8538
0.0001 0.001 0.9057 0.1916 1.9317 0.7975 0.8561
0.001 0.0001 0.8975 0.2065 1.9131 0.7891 0.8539

evaluation metrics and its performance on the EEEA-Net-C2
model. There are two sorts of combinations considered: two
metrics combinations and three metrics combinations. it is
learnt that the EEEA-Net-C2 model produces best results when
KLD+CC+AUC metrics are combined. All the summarised
results are generated by combining loss functions.

2) Multi-teacher learning: Multiple teacher model training
may be used to increase the efficacy of knowledge distillation
employing teacher student training for developing accurate and
compact neural network. We used a multi-teacher approach to
distil knowledge from two teacher models to a single compact
student model EEEA-Net-C2. Table IV shows the effectiveness
of multi-teacher training approach, the multi-teacher training
method yields an increase in performance, for instance when
EfficientNet-B7 and OFA-595 are used as multi-teacher to
train compact student model EEEA-Net-C2 an improvement
across three metrics is observed.

Although multi-teacher training improves accuracy across
metrics, it comes at a cost of high training time. Table IV
compares the training time of single teacher and multi-teacher
PKD. When compared to the baseline, single teacher PKD
utilises 1.9 to 2.8 times more training time, while multi-teacher
PKD consume 2.8 to 3.9 times higher training time.

3) Comparison performance of learning rate and weights of
teacher and student models: Experimental results support the
reason for keeping a different learning rate for the teacher and
student models; various combinations of teacher and student
learning rates are examined and the best one is selected among
several combinations. Table V compares the performance of
various learning rates combinations for teacher (OFA-595) and
student (EEEA-Net-C2) models.

Model averaging is an approach with multiple models con-
tributing toward the final prediction. Weight averaging involves
weighted sum of multiple models to predict the outcome. The
model weights are small positive values, and the sum of all
weights values is equals to 1, indicating that the weights repre-

TABLE VI
COMPARISON PERFORMANCE OF Wts OF TEACHER AND STUDENT

LOSSES (EQ.6) FOR SALICON VALIDATION DATASET BY USING PKD
(OFA-595 AS TEACHER AND EEEA-NET-C2 AS STUDENT).

Wts CC↑ KL↓ NSS↑ SIM↑ AUC↑
0.1 0.9058 0.1914 1.9332 0.7980 0.8558
0.2 0.9057 0.1915 1.9319 0.7977 0.8564
0.3 0.9058 0.1914 1.9333 0.7980 0.8561
0.4 0.9059 0.1915 1.9336 0.7981 0.8562
0.5 0.9059 0.1913 1.9326 0.7979 0.8561
0.6 0.9059 0.1919 1.9323 0.7977 0.8562
0.7 0.9058 0.1913 1.9330 0.7979 0.8561
0.8 0.9051 0.1928 1.9319 0.7970 0.8562
0.9 0.9049 0.1927 1.9295 0.7967 0.8558

TABLE VII
RESULT ON FOUR VALIDATION DATASETS WITH COMBINATION LOSS. †

REPRESENTS MULTI-TEACHER PKD (OFA-595 AND

EFFICIENTNET-B7) TRAINING EEEA-NET-C2 NETWORK AND BASELINE

ONLY UTILISE EEE-NET-C2.

Dataset CC ↑ KL ↓ NSS ↑ SIM ↑ AUC ↑
CAT2000 0.8644 0.3082 2.4230 0.7394 0.8958
CAT2000 † 0.8715 0.2964 2.4161 0.7450 0.8956
MIT1003 0.7574 0.5998 2.6836 0.6167 0.8928
MIT1003 † 0.7686 0.5732 2.7450 0.6246 0.8878
OSIE 0.8097 0.5078 3.4447 0.6530 0.9437
OSIE † 0.8260 0.4766 3.4713 0.6555 0.9466
PASCAL-S 0.8314 0.4490 2.8201 0.6759 0.9053
PASCAL-S † 0.8383 0.4395 2.8589 0.6802 0.8979

sent the proportion of predicted performance from each model.
Table VI show different weights Wts and their performance
across various evaluation metrics, the calculation is based on
Eq. 6 with OFA-595 as the teacher and EEEA-Net-C2 as the
student model on the SALICON dataset, the result indicates
that weight values from 0.4-0.6 have better results.

E. Architecture Transfer

Additionally, quantitative analysis is performed on other
datasets such as CAT2000, MIT1003, OSIE, and PASCAL-
S, and the results are summarised in Table VII. The findings
indicate that the combination of OFA-595 and EfficientNet-B7
is an effective multi-teacher since CAT2000 increases accuracy
across three metrics, MIT1003 increases accuracy across four,
OSIE increases accuracy across five, and PASCAL-S increases
accuracy across four.
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TABLE VIII
ON-DEVICE RESULTS FOR PKD STUDENT MODELS. WHERE LAT

REPRESENTS LATENCY.

Model FLOPS
(G)

Params
(M)

Memory
(MB)

Size
(MB)

Lat
(ms)

VGG16 [28] 60.81 24.93 250 87.0 1411
OFA-595 [22] 3.29 7.41 200 28.6 371
EEEA-Net-C1 [19] 1.44 3.64 94 14.0 211
EEEA-Net-C2 [19] 1.77 4.57 134 17.6 301
MobileNetV2 [15] 2.76 3.41 164 13.2 266
MobileNetV3 [16] 1.56 4.05 113 15.6 211
GhostNet [17] 1.32 3.75 93 14.5 247
EfficientNet-B0 [18] 3.73 5.44 202 21.0 407

F. On-device evaluation

Table VIII shows the computational performance of the
PKD student models. The experiments are conducted using
Intel Core i7-6700HQ CPU, running the student model 100
times, and taking the average values. Table VIII shows that the
proposed PKD student model (EEEA-Net-C1) has the lowest
average latency among all models. Along with the latency
other on-device evaluation assessment measures are also con-
sidered to evaluate run time performance, such as computa-
tional complexity (FLOPS), parameters (Params), model size
and memory usage. Findings indicate that EEEA-Net-C1 is a
competitive model compared to other state-of-the-art models
by only having marginal difference. For instance, EEEA-Net-
C1 has a marginal increase in the computational complexity
(FLOPS), parameters, memory usage and model size which
is 9.1%, 6.7%, 1.1% and 6.1% compared to GhostNet and
MobileNetV2 respectively. Overall, the findings indicate that
EEEA-Net-C1 is a promising candidate model for on-device
edge computing applications.

G. Limitation

One limitation of the proposed work is that knowledge
distillation in teacher student framework requires a significant
amount of processing time and GPU memory during the
training process. The second limitation is the selection criteria
of the teacher network, which is done manually, it may be
replaced with an automated method in the future work. Finally,
scalability of the proposed model with increased dataset size
can be investigated in the future.

V. CONCLUSION

This paper proposes PKD for on-device saliency prediction,
a new computationally efficient model suitable for on-device
platforms. Traditional saliency prediction models suffer from
large parameters and high floating-point operations, which
makes them not suitable for hardware constrained real-time
applications. We utilised knowledge distillation and pseudo la-
belling technique for knowledge transfer from a single teacher
(OFA-595) and multi-teacher (OFA-595 and EfficientNet-B7)
to a compact student model (EEEA-Net). Furthermore, we
introduce the loss combination technique for improving the
accuracy of the proposed model. Experimental results show
that the proposed PKD algorithm achieves the best saliency
prediction accuracy in 84% of the experiments over five

validation datasets and five evaluation metrics. The EEEA-
Net student network also achieves minimal latency (211 ms)
with comparable FLOPS and number of parameters against
seven benchmark student models. We conclude that PKD is an
effective technique for saliency prediction on computationally
constrained devices.
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