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S3CA: A Sparse Strip Spectral Correlation Analyzer
Carol Jingyi Li , Richard Rademacher , David Boland , Craig T. Jin , Chad M. Spooner , Philip H.W. Leong

Abstract—The spectral correlation density (SCD) is widely
used to characterize cyclostationary signals and the strip spectral
correlation analyzer (SSCA) is commonly used to estimate the
SCD. Although the SSCA utilizes the fast Fourier transform
(FFT) for computational efficiency, its real-time implementation
still poses challenges as large input sizes are often involved. In
this work, we present a sparse strip spectral correlation analyzer
(S3CA) based on the sparse fast Fourier transform (SFFT).
The S3CA approach involves computing a sparse, downsampled
channel-data product (CDP) which is then passed to a modified
SFFT implementation to obtain the spectral density. For an input
of length 2 million samples, the S3CA is 30× faster than the
conventional SSCA.

Index Terms—Spectral Correlation Density, Cyclostationarity,
fast Fourier Transform.

I. INTRODUCTION

IF the probability distribution of a time series exhibits
periodic variations, it is considered as cyclostationary [1],

[2]. Cyclostationary time series analysis applies to a wide
range of phenomena and is widely used in the analysis of
digital modulation types: noise in periodic time-variant linear
systems, synchronization problems, parameter and waveform
estimation, channel identification and equalization, signal de-
tection and classification, autoregressive modeling and predic-
tion, and source separation [1], [3].

The spectral correlation density (SCD) is the idealized
temporal cross correlation between all pairs of narrowband
spectral-component time-series, and reflects the correlation
distribution of the signal in terms of both spectral frequency
and cycle frequency. Since the 1990s, computationally efficient
algorithms for estimating the SCD have been studied [4], [5],
[6]. Building upon the fast Fourier transform (FFT), Roberts
et al. introduced the FFT accumulation method (FAM) and
the strip spectral correlation analyzer (SSCA) [5]. The FAM
method can suffer from degraded statistical performance due to
non-uniform cycle frequency resolution and variance, leading
to significant estimation errors and application limitations [5],
[7]. The SSCA method was considered to be limited to
smaller-size signals due to its larger memory requirements [5],
[8]. References [7], [9] introduced the Fast Spectral Correla-
tion technique using the short-time Fourier transform and [10]
developed a fast average cyclic periodogram method, which
overcomes memory limitations under certain conditions. The
SSCA is widely used due to its computational efficiency and
uniform frequency resolution.
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Fig. 1. The sparse strip spectral correlation analyzer (S3CA) technique accel-
erates the strip spectral correlation analyzer (SSCA) via: (1) the COMPIDX
block that evaluates a subset of the inputs and (2) replacing the N-point FFT
with the SFFT.

Fig. 1 with solid lines is a signal flow diagram for the
SSCA. In both the channelizer and FFT blocks, the primary
computational complexity involves executing FFTs: NP -point
FFTs for the former and N -point for the latter. In practice, the
value of N is commonly set within the range of 216 to 224. NP

represents the number of channelizer bands and is typically
chosen from 25 to 29. The cyclic spectrum is sparse in cycle
frequency for all known practical digital signal types [1]. It
is continuous in spectral frequency for each cycle frequency
exhibited by the signal. When the cycle frequencies are
unknown in advance of processing, the entire frequency/cycle-
frequency plane must be computed and searched over to find
the significant cycle frequencies.

The sparse fast Fourier transform (SFFT) is a recent al-
gorithm designed for efficiently computing a FFT where
the frequency domain is approximately κ-sparse, meaning κ
coefficients are non-zero [11], [12]. In this paper we present
the sparse strip spectral correlation analyzer (S3CA), which en-
ables fast and accurate estimation of the SCD. It is particularly
useful for real-time applications involving large signal sizes,
as computation and memory requirements are both reduced.

The main contributions of this paper are:
• An algorithm, based on the SFFT, that

reduces the computational complexity of the
SSCA from O(NNP (logNP + logN)) to
O(NP logNP logN 3

√
Nκ2 logN).

• An additional optimization in which only a subset of
channelizer outputs are computed and stored. This re-
duces space complexity of an intermediate matrix from
O(N ×NP ) to O(logN 3

√
Nκ2 logN ×NP ).

• A comparison of execution time and sparsity between the
S3CA and an SSCA using FFTW version 3.3.10 [13].

The remainder of this paper is organized as follows. In Sec-
tion II, we provide the background on SSCA analysis and the
sparse fast Fourier transform. Section III describes our sparse
strip spectral correlation analyzer. Section IV presents our
experimental results, and conclusions are drawn in Section V.
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II. BACKGROUND

A brief description of the SSCA algorithm and the SFFT
is given here. We refer readers to references [5], [8], [14] for
more detail on the SSCA and [11], [12], [15] for the SFFT.

A. Spectral Correlation Density Function

As shown in Fig. 1, the initial step involves computing the
complex demodulate, XT , at frequency f , from the discrete-
time input values x(n) ∈ C,

XT (n, f) = [

NP /2−1∑
r=−NP /2

a(r)x(n+ r)e−i2πfrTs ]

︸ ︷︷ ︸
NP−point FFT

e−i2πfnTs︸ ︷︷ ︸
down conversion

(1)
where n is a sample index, a(r) is a length T = NPTs

data tapering window function, Ts is the sampling period and
NP is the number of samples [14]. The computation of the
summation is performed using an NP -point FFT, followed by
the down conversion step.

Next, the complex demodulate XT is multiplied by the
conjugate input x∗(n) [16] and windowed to produce the
channel-data product (CDP) for k ∈ [−NP /2, NP /2− 1].

Xg(n+m, k) = XT (n+m, fk)x
∗(n+m)g(m) (2)

where the ∗ operator is a complex conjugate, g(m) is a length
∆t = NTs windowing function, and m ∈ [−N/2, N/2 − 1].
The center frequencies of XT are set to fk = k(fs/NP ) for
fs = 1/Ts.

Finally, the N -point FFT of each of the NP CDP values is
computed resulting in the SCD estimate

Sfk+q∆α
X (

fk
2
− q

∆α

2
)∆t =

N/2−1∑
m=−N/2

Xg(n+m, k)e−i2πqm/N

(3)
where cycle frequency α = fk + q∆α, ∆α = fs/N , q ∈
[−N/2, N/2 − 1], and f = (fk − q∆α)/2 [14], [17]. In the
implementation, both f and α are normalized based on fs = 1,
which maps the Sα

X(f) to a range f ∈ [−0.5, 0.5] and α ∈
[−1, 1].

B. Sparse Fast Fourier Transform

For an input u ∈ CN , we use the notation û ∈ CN for its
FFT. The SFFT û′ is an approximation to û and assumed κ-
sparse. Reference [15] proposes a number of different SFFT
algorithms [18]. Although our technique could be applied to
any of them, the description that follows refers to SFFT 2.0.

The SFFT 2.0 algorithm applies two randomized inner
loops to obtain high probability of achieving an error bound:
1) Frequency bucketization involves using a random hash
function to hash the κ non-zero Fourier coefficients of û into a
small number of buckets, and 2) Frequency estimation finds the
frequency locations of non-zero Fourier coefficients and their
corresponding magnitudes. Information obtained from the two
inner loops is combined in an outer loop to form the final
output.
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Fig. 2. An example of the SFFT with N = 8, σ = 3, τ = 6, w = 3, B = 2
and κ = 2. (a) shows the input signal u, N = 8; (b) is the permuted u
(P3,6u); (c) after filtering with G to restrict the time domain length of P3,6u
to 3; (d) subsampled P3,6u to 2 buckets to get v; (e) v̂. the FFT of v; (f)
The 2-sparse approximation of û that is bucketized into subfigure (e).

Fig. 2(a) to (e) illustrates the steps involved in frequency
bucketization (FB). Let B be the number of buckets and is
an integer that divides N ; σ an integer invertible mod N ;
and κ the number of non-zero Fourier coefficients desired
in the output. Fig. 2(b) is the permuted frequency spectrum,
achieved via the time domain permutation operator Pσ,τ ,
τ ∈ [0, N − 1]. If (Pσ,τu)(i) = u((σi + τ) mod N), then
(P̂σ,τu)(σi) = û(i)e−i2πτ [11]. Fig. 2(c) represents the output
of a w-dimensional filter function G, which is restricted to a
subset of the input in both the time and frequency domain. In
this work, a Dolph-Chebyshev function is used which has little
leakage between buckets and this restricts the time-domain
region of interest to w = O(B log N

δ ) coordinates (δ is the
maximum ripple in the passband or stopband), and performs
bandpass filtering in the frequency domain [11].1 Fig. 2(d) to
(e) shows that the subsampled FFT v̂ = û(iN/B) of an N -
dimensional vector u can be computed via the B-point FFT
of v =

∑N/B−1
j=0 u(i+Bj) for i ∈ [0, B − 1] [11].

III. S3CA ALGORITHM

This section presents the S3CA technique. A naive S3CA
implementation can be implemented by simply replacing the
Np N -point FFTs with SFFTs, with the input to the kth FFT
being the Xg(:, k) vector. This is shown by the solid line block
diagram of Fig. 1, which would involve computing the entire
matrix Xg , but not using all of it.

However, as described in the previous section, the FB step
within each SFFT only requires w inputs, based on Pσ,τ , where
σ an integer invertible mod N , and τ ∈ [0, N − 1], are both
drawn from a random distribution. The indices of the w inputs
form a set W = {i ∗ σ + τ mod N | i ∈ [0, . . . , w − 1]}.
We denote the union of all sets of indices required for the Np

SFFTs by W ′. Our approach involves only computing W ′,
which is significantly smaller than N .

1The support of the G filter, i.e. the coordinates of the non-zero coefficients,
is limited to the interval [−(w−1)/2, (w−1)/2], and computations outside
of this interval are removed.
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Algorithm 1 Modified SFFT pseudocode.
function FB(u,σ,τ,w,B,G,N ) ▷ Frequency Bucketization

for i = 0 to w − 1 do
v[i mod B] += u[(i ∗ σ + τ) mod N ]G[i]

v̂ ← B-dimensional FFT(v)
return v̂

function SFFT(u, κ,B, L,G, d,N,Σ,Υ )
for r = 0 to L− 1 do

v̂ ←FB(u, N
B ,Υ(2,r), B,B, ones(B, 1), N)

Tr ← indices of 2κ largest elements of v̂
▷ Tr ⊂ [0, B − 1]

T = T0 ∪ · · · ∪ TL−1

for r = 0 to L− 1 do ▷ location loop
v̂ ← FB(u,Σ(0,r),Υ(0,r), w,B,G,N)
J ← indices of dκ largest elements of v̂
Ir ← {i ∈ [0, N − 1] | hσ(i) ∈ J, i mod B ∈ T}

▷ hσ(i) = round(Σ(0,r)iB/N)

I = I0 ∪ · · · ∪ IL−1

I ′ ← i values that occur frequently in sets I
for r = 0 to L− 1 do ▷ estimation loop

v̂ ←FB(u,Σ(2,r),Υ(2,r), w,B,G,N)
ûr
I′ ← estimate frequency spectrum from v̂, I ′ [11]

û′
i = median({ûr

i | i ∈ I ′})
return û′

To achieve this, we describe a procedure COMPIDX, which
precomputes a subset of indices W ′ for the channelizer, and
corresponding arrays Σ of σ and Υ of τ for the SFFT.
The channelizer now only computes the outputs XT (W

′, k)
instead of XT (n, k), then the CDP, X ′

g = Xg(W
′, k), using

Eq. (2). All CDP outputs are then used by the subsequent
Np N -point SFFTs. The output of S3CA is a sparse matrix
and only returns non-zero values and corresponding location
information. An equivalent approach is using lazy evaluation
to avoid computing unnecessary inputs to the SFFT.

Alg. 1 shows how we modified FB to use the precomputed
σ and τ , with the SFFT updated to make use of this function.
Alg. 2 gives the pseudocode for COMPIDX and S3CA. x is
the input signal with length of N , and NP is the number of
channelizers. COMPIDX, which is the dashed block in Fig. 1,
randomly selects σ and τ required by our modified FB to
compute W for each new input window. It then returns the
set W ′ of all required indices, the array Σ of σ and the array
Υ of τ .2 In Fig. 1, each channelizer performs an independent
N -point FFT. Consequently, in our implementation, in each
of the different FB calls, the same σ and τ values are used
for all k and the w inputs are Xg(W,k). This necessitates a
modified SFFT that can accommodate the shared σ and τ .

Table I compares the computational complexity of SSCA
and S3CA. Referring to Fig. 1 the SSCA channelizer requires
a total of N evaluations of Eq. (2); and the FFT block
NP evaluations of Eq. (3) (using the FFT). In contrast for
the S3CA channelizer, the required number of Np-point FFT

2In Alg. 1 and 2, we present the loop value L and buckets value B for
simplicity; performance can be improved with different values of L and B
for the three for loops in SFFT.

Algorithm 2 S3CA pseudocode.
procedure COMPIDX(L,w,B,N )

▷ Compute Indices for X ′
g

Υ← zeros(3, L), Σ← zeros(2, L)
for r = 0 to L− 1 do

Υ(2,r) ← uniform(0, B − 1)
Υ(0,r),Υ(1,r) ← uniform(0, N − 1)
Σ(0,r),Σ(1,r) ← 2∗uniform(0, N/2− 1) + 1
W r

0 ← {i ∗Σ(0,r) +Υ(0,r) mod N | i ∈ [0, w − 1]}
W r

1 ← {i ∗Σ(1,r) +Υ(1,r) mod N | i ∈ [0, w − 1]}
W r

2 ← {i ∗N/b2 +Υ(2,r) | i ∈ [0, B − 1]}
W ′ ← {W r

j | j ∈ {0, 1, 2}, r ∈ [0, L− 1]}
return W ′,Σ,Υ

procedure S3CA(x,N,NP , L, w,B,N,G )
W ′,Σ,Υ← COMPIDX(L,w,B,N)
X ′

g ← Xg(W
′, k) ▷ Eq. 2, k ∈ [−NP

2 , NP

2 − 1]

for k = −NP

2 to NP

2 − 1 do
û′
k ← SFFT(X ′

g, κ,B, L,G, d,N,Σ,Υ)

value, α, f ← map(û′)
return value, α, f

TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY BETWEEN SSCA AND

S3CA.

SSCA S3CA
Channelizer O(NNP logNP ) O(NSFFTNP logNP )
Np× FFT O(NPN logN) O(NPNSFFT )
Sα
X(f) O(NNP (logNP + logN)) O(NSFFTNP logNP )

evaluations is equal to the sampling complexity of the SFFT,
NSFFT = O(logN 3

√
Nκ2 logN) [15].

IV. RESULTS

We implemented the SSCA and S3CA using the C pro-
gramming language and the FFTW library [19]. Experiments
were conducted using Ubuntu 20.04.6 LTS on an Intel(R)
Xeon(R) Silver 4208 CPU running @ 2.10GHz with 256 GB
of memory. All the code was compiled using g++ version 9.4.0
with “-O2” optimization flag.

A. Accuracy

Accuracy was tested using a direct-sequence spread-
spectrum (DSSS) binary phase-shift keying (BPSK) signal
with 10 dB signal-to-noise ratio (SNR), processing gain of
31, chip rate 0.25 and sample rate normalized to 1, in which
case the cycle frequencies are multiples of the data rate
(0.25/31). The Fig. 3 shows the SCD estimates with N = 220

and NP = 26. We configure the remaining parameters of
S3CA in accordance with the default parameters outlined in
the SFFT library [11]. Fig. 3(a) shows a 3-D plot of the
largest κNP magnitude SSCA outputs, SXSSCA

, with its alpha
profile corresponding to the largest alpha value over all fre-
quencies below. Due to symmetry, the non-redundant interval
of normalized cycle frequency, α, is in [0, 1]. To highlight
the important details, the display area of the alpha profile
is restricted to [0, 0.25]. Fig. 3(b) shows the S3CA output,
SXS3CA

, with sparsity parameter κ = 80, and its alpha profile
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Fig. 3. SCD estimates and alpha profiles using SSCA (a) and (b), and S3CA (c) and (d), their residual (e), and L1-norm of the residue for different κ (f).

Fig. 4. (a) Speedup of the naive S3CA and S3CA compared with the conventional SSCA. (b) Speedup and X′
g sparsity of S3CA for different values of κ.

in Fig. 3(d). In Fig. 3(c), the residual, r = SXSSCA
−SXS3CA

,
is shown together with the average L1-norm of the residue,∑

i |ri|/(κNP ), below in Fig. 3(f). Again, good correspon-
dence between the SSCA and S3CA is observed.3

B. Speedup and storage optimization

The baseline in Fig. 4 is the conventional SSCA. The figure
compares the speedup achieved by replacing the FFT with
SFFT in SSCA, labeled as naive S3CA, and the speedup
obtained by S3CA, for input window sizes from 216 to 224.
For an input size of 224, the S3CA achieves a speedup that
surpasses a factor of 90 when κ is 80, and more than 100 when
κ is 50. The naive S3CA achieves a more modest speedup of
2. The baseline runtime on our test computer is also provided.

3Verification based on a BPSK signal. The SCD estimate can be found in
https://github.com/Jingyi-li/S3CA.

The sparsity of X ′
g is S = |W ′|/N , where |.| denotes the

number of indices in W ′, hence the storage savings over the
full Xg is approximately 1 − S. The Fig. 4(b) shows the
speedup and the sparsity ratio of S3CA for different κ. The
output of the SSCA, has N ×NP values, whereas the output
of S3CA only has κ×NP values.

V. CONCLUSION

In this paper, we presented a novel S3CA method that
utilizes the SFFT to achieve significant acceleration over the
conventional SSCA, particularly for digital radio signals that
are always sparse in cycle frequency. The speedup achieved
was more than 30 for input windows of 2 million samples.
Our S3CA avoids unnecessary computations and employs a
sparse CDP matrix to reduce memory requirements.

https://github.com/Jingyi-li/S3CA
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