
Real-time FPGA-based Anomaly Detection for
Radio Frequency Signals

Duncan J.M. Moss∗, David Boland∗, Peyam Pourbeik†, Philip H.W. Leong∗
∗School of Electrical and Information Engineering

The University of Sydney, Australia 2006
Email: {duncan.moss,david.boland,philip.leong}@sydney.edu.au

†CEWD, Assured Communications, Defence Science & Technology Group, Australia 5111
Email: peyam.pourbeik@dsto.defence.gov.au

Abstract—We describe an open source, FPGA accelerated
neural network-based anomaly detector. The detector derives
its training set from observed exemplar data and performs
continuous learning in software via stochastic gradient descent,
thus proceeding in an unsupervised manner. Trained network
weights are then passed to the FPGA, which performs continuous
high-speed anomaly detection, combining parallelism reduced
precision, and a single-chip design to maximise performance and
energy efficiency. Our design can process continuous 200 MS/s
complex inputs, producing anomaly classifications at the same
rate, with a latency of 105 ns, an improvement of at least 4
orders of magnitude over a software radio such as GNU Radio.

I. INTRODUCTION

The processing of physical-layer radio-frequency (RF) sig-
nals remains challenging due to the very high data rates
involved. Over recent years, neural networks (NNs) have
achieved results surpassing all other approaches on difficult
pattern recognition problems such as image analysis, speech
recognition and machine translation. While previous work has
demonstrated the utility of applying NNs to RF applications,
little has been published on their real-time implementation.

NN-based algorithms are massively parallel in nature, and
amenable to computation using low-precision. Together, these
two properties make them very suitable for efficient digital im-
plementations. In this paper we describe a field-programmable
gate array (FPGA) implementation of an integrated anomaly
detection system which is energy efficient, parallel, integrated
on the same chip as the other processing hardware, and
customised to achieve high performance.

• The first reported single-chip RF physical layer NN-
based anomaly detector which is fully pipelined and can
produce an output every cycle.

• To the best of our knowledge, we achieve the highest
reported performance to date, supporting continuous 200
MS/s complex inputs with latencies of 105 ns (time-
domain) and 185 ns (frequency domain), at least 4 orders
of magnitude lower than the processing time in GNU
radio [1].

• A heterogeneous architecture which supports updating of
weights while inference proceeds, enabling simultaneous
learning and inference with the former conducted on a
processor or graphics processing unit (GPU).

Radio	Core Autoencoder
(Optional	FFT)

Crossbar

Ingress/Egress	Interface

Hardware	Driver

Ho
st
	P
C

FP
GA

Autoencoder
training

I/Q	samples

Autoencoder
Parameters	(W,	b)

Anomaly/Normal	(can	
be	used	by	FPGA	or	PC)

Fig. 1: Block diagram of system implementation. The Autoen-
coder module accepts the raw IQ data from the radio core.

• An open source design supporting reproducible research.
The implementation and scripts to generate all results are
available from https://github.com/djmmoss/autoencoder

While this paper focuses on anomaly detection on RF
signals, it is relevant to the general problem of real-time
neural network processing and can be generalized to other
applications domains and NN architectures. Additionally, this
anomaly detector could perform initial analysis of the signal,
passing its prediction onto a much larger and more computa-
tionally expensive algorithm.

II. BACKGROUND

There has been considerable recent interest in utilising
advances in NN technology for RF applications. The most
relevant to the present paper is by O’Shea et. al [2], who
applied a number of novelty detectors to RF signals. Starting
with Frequency Modulation (FM), Global System for Mobile
Communications (GSM), industrial, scientific, and medical
radio (ISM), and long-term evolution (LTE) band data; Short-
time Broadband Bursts, Brief Periods of Signal Non-Linear
Compression, Pulsed QPSK Signals and Pulsed Chirp Events
were introduced as anomalies. A comparison of a number of
algorithms: a 3rd order Unscented Kalman Filter/Predictor,
dense neural network, long short-term memory and Dilated
Convolutional Neural Network was conducted and it was
observed that in most cases, the NN approaches outperform the

https://github.com/djmmoss/autoencoder


W
in

d
o
w

e
r

T
h
re

sh
o
ld

Weights

32 bit
16x32 bit

1 bit

FFT NN
Autoencoder

32 bit

16 bit

address

value

Memory Mapped Interface 
for Weight Update

AXI-Stream Interface AXI-Stream Interface

16x16 bit

32x16 bit

16 bit

Inference

IQ Data
(16 bit Real, 16 bit Imag)

I

Q
IQIQ L2

2

Fig. 2: Block diagram of the anomaly detector FPGA implementation.

Kalman-based approach. This work did not address the issue
of real-time implementation. Moss et. al [3] presented an O(1)
time-complexity spectral anomaly detector that can handle
uniform or irregularly sampled data that achieved throughput
of 40 ns and latency of 68 ns. This employed an incremen-
tal algorithm to compute the power spectral density and a
much simpler anomaly detector operating on the distribution
of quantised signal levels. Latency in GNU radio/Universal
Software Radio Peripheral platform (USRP - they measured
USRP1 and USRP2 whereas our device is a newer USRP3)
was thoroughly analyzed by Trong et. al [1]. They concluded
that the time for processing at the host computer dominates
the communication bus latency and measured values well in
excess of 1 ms.

In the past, FPGA devices did not have sufficient capacity
to implement entire neural networks on-chip, and single-
chip radio and machine learning applications were intractable.
However, in recent years, high-performance FPGA implemen-
tations of neural networks for inference have been reported.
An illustrative example by Zhang et. al in 2015, achieved 62
GFLOPS in single precision floating-point [4], using a roofline
model to balance computational resources and memory band-
width. Very low precision implementations have also been
reported. For example, binarized (1-bit) implementations of
neural networks can achieve 12.3 million image classifications
per second with 0.31µs latency on the MNIST dataset with
95.8% accuracy [5]. By reducing precision, it is possible to
keep all weights on-chip, allowing higher performance with
lower energy consumption. In a manner similar to the present
design, both implementations used high level synthesis from
a C description.

Our paper extends the previous work reviewed by demon-
strating, for the first time, an ultra-low latency, single-chip
anomaly detector for processing of physical layer RF data.

III. IMPLEMENTATION

A. System Architecture

Fig. 1 illustrates the system level implementation of our
design. The host PC is responsible for training, i.e. comput-
ing new parameters from the raw inphase/quadrature (I/Q)
samples. Initial and/or updated biases and weights thus com-
puted are downloaded to the FPGA which implements the

x00

x01

x02

x10

x11

x40

x41

x42

x30

x31

x20

w1
00

w0
01

w1
10

w1
11

w1
20

w1
21

w2
00

w2
01

w3
00

w3
01

w4
00

w4
01

w4
02

w4
10

w4
11

w4
2

b1 b2 b3 b4

X0

X1

X2

x0

x1

x2

~

~

~

Fig. 3: Simplified 4-layer (3,2,1,2,3) autoencoder signal flow
diagram.

autoencoder, operating independently of the host PC. The
hardware autoencoder operates at the baseband sampling rate,
maximising the probability of detecting transient anomalies,
and ensuring the system is able to react as soon as possible.
Training on the PC allows the anomaly detector to adapt
to changing environmental conditions, while avoiding the
problem of training on the FPGA, which impacts performance.

Fig. 2 shows a block diagram of our fully pipelined spectral
anomaly detection architecture that supports 200 MS/s input
and output. This first stage of this design is the Windower,
which accepts complex I/Q samples from the source and uses
a shift register to produce a sliding window of past inputs
to the next stage. This is followed by an optional FFT stage,
enabling anomaly detection in either the time or frequency
domain. The FFT is implemented using a 5-stage radix-2 based
algorithm derived from reference [6]. It was not possible to
use the FPGA vendor’s cores for this as they are not capable of
accepting an entire input vector per cycle. The window is then
passed to an autoencoder [7], which is trained to reconstruct
an input window after performing dimensionality reduction. If
anomalies occur, the autoencoder will be unable to reconstruct
the input. Therefore, comparing L22 to a threshold yields a
binary anomaly/normal result.

B. Autoencoder

An example autoencoder is illustrated in Fig. 3 for a
(3,2,1,2,3) 4-layer network. The inputs are given by the vector
x ∈ Rn, and the outputs are x̂ ∈ Rn, where n is the length
of the input vector. It is trained on the identity mapping,
enabling unsupervised training. Each layer implements the



(a) Frequency domain anomaly detection example. (b) Time domain anomaly detection example.

Fig. 4: Anomaly detection example. The top panel displays the signal in the (a) frequency or (b) time domain. The 3 different
types of anomaly can clearly be seen from left to right: pulsed sinusoid, chirp and Gaussian. The bottom panel shows L22

and the anomaly threshold.

vector function F l : Rml → Rml+1 (ml is the number of
inputs of the layer):

xl+1 = σl(W lxl + bl) (1)

where L is the number of layers, 0 ≤ l ≤ L the layer number,
W l ∈ Rml+1×ml the weight matrix, bl ∈ Rm

l+1 the bias and
σ is the activation function (the identity function for the 0’th
layer and the element-wise rectified linear unit (relu(x) =
max(0, x)) otherwise).

Dimensionality reduction is performed since the number of
neurons in the middle layers are fewer than the input/output,
e.g. in Fig. 3 the first 2 layers act as an encoder which com-
presses the input to 1-dimension. Similarly, the final 2 layers
act as a decoder by taking the compressed representation and
reproducing the output. A squared L2 error norm similarity
measure

L22(x, x̂) =

n∑
i=0

(xi − x̂i)2

(subscripts denote a vector element) is used to evaluate re-
construction error. During training, the mean reconstruction
error over all patterns is minimised using standard backprop-
agation [7].

(a) Frequency Domain Detection (b) Time Domain Detection

Fig. 5: FM Anomaly Detection: Sample using the Ettus X310

C. Precision and Interface

All processing is done using 16-bit fixed point numbers with
truncated rounding and saturating arithmetic [8]. This maps ef-
ficiently to the FPGA device’s digital signal processing (DSP)
blocks, which include dedicated 18-bit multiply-accumulate
blocks. The FFT block operates with complex inputs and
outputs, while the autoencoder uses real values. This relatively
high precision for inference ensures that our fixed-point results
will achieve similar accuracy to floating-point [9]. The real
and imaginary outputs of the FFT are concatenated to form
the inputs of the autoencoder.

Our implementation allows the NN weights and biases, as
well as the threshold value, to be updated during operation via
a memory mapped register interface. This allows the FPGA
to continuously perform inference, with continuous training at
a lower speed on a microprocessor. Periodic updates of the
weights and biases are made to the FPGA.

The entire implementation is generated from a Python
description using standard module generation techniques to
produce a synthesisable C output. Google’s TensorFlow pack-
age is used on the host machine for training.

IV. RESULTS

Our implementation is configurable so that arbitrary sized
FFT and NNs can be implemented. In this section, we study
a 16-point complex FFT and a 32-input, 4-layer network
(32,16,8,16,32). The radio platform was an Ettus X310 soft-
ware defined radio, which supports DC-6 GHz operation with
up to 160 MHz of baseband bandwidth; PCIe, dual 10 GigE,
and dual 1 GigE interfaces; and utilises a Xilinx Kintex-7
xc7k410tffg900-2 FPGA. The design was synthesised from C
to register transfer language (RTL) using the Xilinx Vivado
HLS tool [8] and a bitstream generated using the Xilinx
Vivado 2015.4 Design Suite. Verification of the hardware
implementation was completed at three levels: C simulation,
register transfer level simulation and testing on the Ettus X310.



20 15 10 5 0 5 10 15 20
Signal-to-Anomaly Ratio (dB)

0.0

0.2

0.4

0.6

0.8

1.0
Pr

ob
ab

ilit
y 

of
 C

or
re

ct
 D

et
ec

tio
n

Complex Sinusoid (Freq)
Chirp Event (Freq)
Gaussian Band (Freq)
Complex Sinusoid (Time)
Chirp Event (Time)
Gaussian Band (Time)

Fig. 6: Probability of detection. Multiple signals with anoma-
lies of varying amplitude were generated for the frequency and
time domains. The figure displays the average probability of
making a correct detection.

A. Detector Performance

A synthetic signal was generated by modulating a sine
wave with a randomly modulated tone and an FM signal was
recorded using the Ettus X310 SRD. Three types of anomalies,
similar to those in [2], were introduced across each signal.
The anomalies have a given amplitude, A, and exist over time
window t ∈ [ts, te), where ts and te are the start and end time:

• Period of Gaussian Noise across the entire bandwidth:
Modeled as n(t) = Gaussian(−A,A).

• Pulsed Complex Sinusoid: n(t) = A∗exp(2πtFn) where
Fn = Uniform(−Fs/2, Fs/2)/Fs.

• Pulsed Chirp Event: n(t) = A ∗ exp(2πtFn) where Fn

ranges linearly from Fc1 to Fc2. Both Fc1 and Fc2 are
sampled from Uniform(−Fs/2, Fs/2)/Fs.

Fig. 4a and Fig. 4b respectively demonstrate successful
detection of different anomalies in the frequency and time
domains respectively, the top panel being the signal and the
bottom the similarity value from the anomaly detector. In
both cases we used 1.1× the running average of L22 as the
threshold value, as illustrated in the figures. This performs very
well and allows all anomalous events to be detected. Fig. 5a
and Fig. 5b illustrate the anomaly detector operation on real
FM signals. The performance is similar to the synthetic case,
resulting in correct identification of the anomalies.

In a practical application, the choice of threshold should be
guided by the value of L22, and an analysis over different
signal-to-anomaly ratios (SAR), similar to Fig. 6, should be
performed.

Fig. 6 shows probability of correctly detecting an anomaly
at different SARs. In this particular case, windows were
identified as anomalous if L22 is 10% over its running average.
The SAR is calculated using the power, P = 1

N

∑N
i=0(x

2
i ),

and (2).

SAR = 10 log10(
PSignal

PAnomaly
) (2)

TABLE I: Raw anomaly detection performance.

Operation Throughput Latency

Inference(FFT+NN) 5ns 185ns
Inference(NN) 5ns 105ns
Weight Update 1290ns 1285ns

TABLE II: Breakdown of autoencoder performance and re-
source utilisation

Module II Latency BRAM DSP FF LUT
(cycles)

Windower 1 0 0 0 1511 996
FFT 1 8 0 48 4698 2796
NN 1 17 4 1280 213436 13044
L22 1 4 0 32 1482 873
Thres 1 0 0 0 3 21
Weight Update 258 257 0 0 21955 4528

Inference (FFT+NN) 1 37 1068 1360 241522 45448
Inference (NN) 1 29 1068 1312 236824 42652

Total N/A N/A 1068 1360 263477 49976
Total Util. N/A N/A 67% 88% 51% 19%

Most BRAMs are contained within the top-level, ‘Inference’, module

As the power of the anomaly becomes proportionally smaller
to the signal power, the probability of detecting it also de-
creases. As illustrated in Fig. 6, Detection in the frequency
domain is slightly more resilient to decreasing anomaly power,
however the impact is only marginal and may be overcome
with different thresholding schemes.

B. Hardware Performance

The results presented in Tab. II show the latency, initiation
interval (II) and resource utilisation of our design. Importantly,
all modules to perform inference (Windower, FFT, NN, L22

and Thres) have an II of 1, meaning it is fully pipelined, and
a total latency of only 37 cycles. Since the implementation
operates at 200 MHz, the throughput and latency are 200
(complex) MS/s and 185 ns respectively. As both the FFT and
NN require multiply-accumulate operations, the DSP resources
constrain the parallelism of our design. The implementation
is configurable so that arbitrary sized FFT and NNs can
be implemented. On-chip block rams (BRAM) are the next
resource constraint, this being because all weights and biases
are stored on-chip. This could be addressed by using off-chip
memory, at the cost of greatly increased latency as it would
become the bottleneck in our design.

V. CONCLUSION

In this paper we demonstrated the feasibility of single-chip,
200 MHz sample-at-a-time anomaly detection, resulting in
high throughput and ultra-low latency. This paves the way for
the inclusion of real-time neural networks in sophisticated soft-
ware defined radio systems, with potential applications in fault
diagnosis, spectrum enforcement and collaborative spectrum
sharing. Future work will involve improving capacity, careful
comparison of accuracy with other techniques, and exploring
the utility of simultaneous learning and prediction.



REFERENCES

[1] N. B. Truong, Y. J. Suh, and C. Yu, “Latency analysis in gnu radio/usrp-
based software radio platforms,” in MILCOM 2013 - 2013 IEEE Military
Communications Conference, Nov 2013, pp. 305–310.

[2] T. J. O’Shea, T. C. Clancy, and R. W. McGwier, “Recurrent neural
radio anomaly detection,” CoRR, vol. abs/1611.00301, 2016. [Online].
Available: http://arxiv.org/abs/1611.00301

[3] D. J. Moss, Z. Zhang, N. J. Fraser, and P. H. Leong, “An FPGA-based
spectral anomaly detection system (with errata),” in FPT ’14, 2014,
pp. 175–182. [Online]. Available: http://ieeexplore.ieee.org/document/
7082772/

[4] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong,
“Optimizing FPGA-based accelerator design for deep convolutional
neural networks,” in Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’15.
New York, NY, USA: ACM, 2015, pp. 161–170. [Online]. Available:
http://doi.acm.org/10.1145/2684746.2689060

[5] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. H. W. Leong,
M. Jahre, and K. A. Vissers, “FINN: A framework for fast, scalable
binarized neural network inference,” CoRR, vol. abs/1612.07119, 2016.
[Online]. Available: http://arxiv.org/abs/1612.07119

[6] Freescale, “Complex fixed-point fast fourier transform optimization for
altivec,” vol. Applications Note AN2114, 2015. [Online]. Available:
https://www.nxp.com/docs/en/application-note/AN2114.pdf

[7] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[8] X. Inc., “Vivado design suit user guide, high-
level synthesis,” vol. UG902 (v2015.4), 2016. [Online].
Available: http://www.xilinx.com/support/documentation/sw manuals/
xilinx2016 1/ug902-vivado-high-level-synthesis.pdf

[9] V. Vanhoucke, A. Senior, and M. Z. Mao, “Improving the speed of neural
networks on cpus,” in Deep Learning and Unsupervised Feature Learning
Workshop, NIPS 2011, 2011.

http://arxiv.org/abs/1611.00301
http://ieeexplore.ieee.org/document/7082772/
http://ieeexplore.ieee.org/document/7082772/
http://doi.acm.org/10.1145/2684746.2689060
http://arxiv.org/abs/1612.07119
https://www.nxp.com/docs/en/application-note/AN2114.pdf
http://www.deeplearningbook.org
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug902-vivado-high-level-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx2016_1/ug902-vivado-high-level-synthesis.pdf

	Introduction
	Background
	Implementation
	System Architecture
	Autoencoder
	Precision and Interface

	Results
	Detector Performance
	Hardware Performance

	Conclusion
	References

