This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3445264

Highly-Parallel CNN Accelerator for RepVGG-like Network
Training on FPGAs

Chuliang Guo*, Binglei Lou*, David Boland*, Philip H.W. Leong*
* Harbin Institute of Technology, Harbin, China
t Zhejiang University, Hangzhou, China
! The University of Sydney, Sydney, Australia

Abstract—Training convolutional neural networks (CNNs) at the edge
has obtained growing significance for it enables adaptation to evolving
environments without frequent data communication between cloud GPU
clusters. However, edge-based training faces challenges regarding limited
computation resources and memory bandwidth. In this paper, we propose
a generic FPGA-based training accelerator tailored for RepVGG-like
networks [1], which strikes a balance between maximizing training-time
accuracy and minimizing inference-time latency. The proposed accelera-
tor leverages fine-grain channel-level parallelism within computational
units specially designed for multiple branches of the basic building
block within the RepVGG-like network. Specifically, we employ a Conv
block for forward Conv and backward deConv, along with a dilated
Conv block including a weight kernel partition scheme for efficient
weight gradient calculation. Furthermore, we aggressively exploit a 2-
stage coarse-grain task-level parallelism for low-latency CNN training:
(1) parallelism among multiple branches of the basic building block of
RepVGG, and (2) parallelism between error back-propagation and weight
gradient calculation in the backward path. This achieves an end-to-end
training throughput comparable to the peak performance of the most
computation-intensive Conv block. Through experiments on the CIFAR-
10 dataset using 16-bit fixed-point arithmetic, we demonstrate state-of-
the-art batch 1 throughput of 150 GOPs for training and 183 GOPs for
inference. This highlights the effectiveness and efficiency of CNN training
for lightweight networks on edge FPGAs.

Index Terms—CNN Training, RepVGG, FPGA, HLS

I. INTRODUCTION

Convolutional neural networks (CNNs) have found extensive de-
ployment in edge devices for various critical tasks including image
classification [2], object detection [3], language processing [4], and
autonomous driving [5]. The rise in concerns regarding latency,
energy efficiency, and data privacy has led to the increasing preva-
lence of lightweight CNN networks for edge devices. However,
these lightweight networks are often less adept at handling diverse
environments and applications without the need for fine-tuning or
re-training. GPUs are an excellent solution for many data-center
applications where maximum acceleration without extreme power
constraints is required. However, FPGAs have distinct advantages:
(1) for embedded applications combining some other functionality
with machine learning (ML) training, e.g. single FPGA solutions
integrating a video interface, video decompression, and ML which
utilize the FPGA’s massive on-chip bandwidth for low size, weight
and power, and (2) for applications where energy consumption is
more important than speed, e.g. battery-powered space applications
that do not require extremely high training speeds.

Multi-branch CNNs such as ResNet [6] are widely employed
in practice as they offer accuracy advantages over non-residual
approaches such as VGG [7]. In a previous publication, we pro-
posed a generic training accelerator BOOST [8], composed from
multiple computational units where the synthesis was to invoke a
single instance of each type of layer, e.g., convolution (Conv), fully
connected (FC), and normalization. This maximizes the reuse of
on-board DSP and LUT resources. Compared with prior work that
employed generic hardware for distinct layers, such a design strategy

*Chuliang Guo was formerly at Zhejiang University and is now with Harbin
Institute of Technology.

Modified ResNet VGG and RepVGG- inference Modified RepVGG- training

buf 0 & buf O buf_00 buf 01
BN BN BN BN
4 { 1 '
[RelU 1x1 Conv [ReLU ReLU RelU
;] buf O buf 0g buf 01
an)
BN &P
buf_3
3x3 Conv
! I buf-00: buf_O1- - - - ybuf-02
BN BN BN BN BN
] 4 ¥
ReLU RelLU ReLU | RelU | RelU
Y
: | buf_0
buf O buf_00 & buf_01
Conv latency- ResNet RepVGG- training
—
0000 F——0 O T—D- 1O

—~— 1x1 Conv idle —= 3x3 Conv idle

VGG & RepVGG- inference i tme) Lanal lang! Langltong | aug

—_ — —

0-0-0-0-0- L.@-

Fig. 1: In BOOST [8], 3x3 and 1x1 Conv are sequentially processed,
and one of the Conv blocks is idle at any time (left). This work uses
RepVGG to expose task-level parallelism among the branches. Three
groups of static buffers are employed to fully utilize the Conv blocks
(right).

balances hardware efficiency and resource consumption. Residual
connections, however, introduce data dependencies inside the basic
block, resulting in inefficient utilization of the computational units.
As shown in Fig. 1, we must process the 2 branches sequentially
due to data dependencies and different computation speeds for the
1x1 Conv compared with the 3x3 Conv. This leads to a reduction
in performance compared with simpler VGG-like networks.

To address the problem described, we consider RepVGG [1]
which decouples inference- and training-time network architectures
to achieve similar accuracy to ResNet. Training employs a residual
architecture for accuracy, but prior to inference, the resulting neural
network is transformed into an equivalent VGG-like network com-
prising only 3x3 Conv operations VGG [1]. In this work, our strategy
is based on optimizing the basic block to achieve high throughput
and high utilization of computational units. Specifically, each branch
of RepVGG’s basic block has at most one Conv, thus eliminating
data-dependent computations. As shown in Fig. 1, this allows us to
allocate 3 groups of 2 static buffers working in a double-buffered
manner. The 3x3 and 1x1 Conv operations are never idle, and full
utilization of the computational resources is achieved. We also off-
load input activations, weights, and momentum velocities to DDR
memory and, therefore, have adequate BRAM resources for static
buffers. This strategy overcomes limitations in batch size and on-chip
storage of input activations present in BOOST [8] and is thus capable
of complete full back-propagation-based training beyond transfer
learning. Therefore, this work has better utilization of processing
engines, and supports larger neural networks and batch sizes as
storage of weights and input activations is off-FPGA.

This is the first work to integrate RepVGG training on an FPGA.
Our main contributions are as follows:

Authorized licensed use limited to: University of Sydney. Downloaded on August 19,2024 at 23:39:02 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3445264

o We propose an FPGA-based generic training accelerator com-
prising distinct computational units with fine-grain channel-
level parallelism for various layer operations, which targets high
throughput and low latency for multi-branch networks.

e Two Conv blocks are introduced for efficient Conv/deConv
and dilated Conv respectively, enabling coarse-grain task-level
parallelism (1) within the multi-branch basic block, and (2)
between error back-propagation and gradient calculation, leading
to a computational throughput similar to the peak throughput of
3x3 Conv blocks.

« We evaluate the proposed RepVGG-like training accelerator on
the CIFAR-10 dataset [9] using 16-bit fixed-point arithmetic,
achieving the state-of-the-art normalized throughput at batch 1
of 150 GOPs for training and 183 GOPs for inference.

II. PRELIMINARIES

CNN training using the back-propagation algorithm [10] and SGD
optimizer [11] as in Fig. 2 includes (1) forward path, (2) backward
path, (3) gradient calculation, and (4) weight update.

Layer i Layer i+1
—’\ activation activation = -+ — out label
Forward
weight ?
<}
error error <+ .-+ error Backward

N Gradient Calculation
EB‘—[weight
Weight

Weight Update
Fig. 2: SGD-based back-propagation training workflow.

The forward path is known as inference which involves the flow
of input activations from the initial to the final layer. Convolution
(Conv) performs a sliding window dot product operation between
weight kernels and input activations, accumulating partial sums along
channels. Batch normalization (BN) applies an affine transformation,
and ReLU replaces negative values with zeros. AvgPool reduces the
size of the feature map by replacing pixels with their average. FC
applies a linear transformation on its input activations to generate a
predicted label to compare with the categorical ground-truth label.

The backward path propagates the error (i.e., neural gradient) in the
reverse direction to the forward path. During this process, backward
deConv follows the same connectivity pattern as the forward Conv
operation, but with 180°-rotated weights [12]. In cases with a non-unit
stride, errors are initially dilated with zeros between adjacent pixels.
Normalized input activations are reused in the BN layers. ReLU uses
the same 0/1 mask as in the forward path, while AvgPool replaces
a single pixel with multiple pixels representing their average. FC
maintains the same computational pattern as the forward path except
for the transposed linear weights.

Weight gradients are calculated by employing dilated Conv be-
tween forward input activations and backward errors [13], [14]. This
back-propagation method eliminates the need for repetitive gradient
derivation using the chain rule for each layer. When dealing with
non-unit stride, errors are dilated with zeros between neighboring
pixels and enlarged to match the receptive field size of the input
activations in the previous layer. Dilated Conv operates independently
on input/error feature maps from different channels.

Once the weight gradients are generated, network parameters,
including weights and biases, can be promptly updated. The SGD
optimizer with momentum is utilized, considering both current and
past gradients to determine the subsequent direction of gradient

descent. Momentum velocities accumulated by weight gradients per
iteration are also stored off-chip.

III. PROPOSED ACCELERATOR
A. Overall Architecture

To maximize the hardware reuse and flexibility to support various
CNNs, the proposed training accelerator adopts a general architecture
with at most one instance of specified computation block for each
layer operator of the RepVGG-like, including 3x3 and 1x1 Conv,
deConv, and dilated Conv in stride 1 and 2 (as down/up-sampling
blocks when layer switching), AvgPool, FC, BN, ReLU, and shortcut
addition. Note that although we target a RepVGG-like network as an
example, our accelerator can be employed for various networks such
as VGG and ResNet as we support all their arithmetic operators.

Basic block processing- forward

3x3 T‘
Conv

| buffer |

act

1x1 " line ‘
| buffer |

shortcut
addition oo

AXI
AXl4
interface

controller

window
buffer

Task-level parallelism

Basic block processing- backward
s e 3x3
}\ uﬁgge)7L gra“d’}ent/‘ dilated
Conv
buffer wt

Gradient calc & weight update

—

updated wt & mom

line
buffer act

window
buffer act

3x3 [output
deConv buffer

error

BN &
ReLU

Error baék—propagation

K]
B BN & shnrtcjh
< s ReLU addition

1x1 [output
i deConv | buffer

line
buffer act
window
buffer act
1x1
[seD ‘H' wt | dilated
|__update | gradient | Conv

Fig. 3: Overall architecture of the HLS-based RepVGG-like train-
ing accelerator. Besides fine-grain channel-level parallelism within
computational blocks, we arrange coarse-grain task-level parallelism
within multi-branch RepVGG-like basic blocks, and sequentially pro-
cess Conv, fused BN&ReLU, and shortcut addition. In the backward
path, the 2nd-stage coarse-grain task-level parallelism is implemented
for weight gradient calculation and error back-propagation, where
dilated Conv and deConv are simultaneously executed.

We facilitate coarse-grain task-level parallelism among 3x3 Conv,
1x1 Conv, and identity branches by employing 3 groups of static

Authorized licensed use limited to: University of Sydney. Downloaded orpAugust 19,2024 at 23:39:02 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3445264

buffers for the RepVGG-like basic block. 3x3 Conv and deConv
dominate the critical path in the RepVGG basic block, and therefore,
the critical latency could be hidden in the main 3x3 Conv branch.
Fine-grain channel-level parallelism is employed within computa-
tional blocks such as Conv blocks that simultaneously execute
multiple input channels and produce corresponding output channels.
This minimizes the initiation interval and has a minor impact on
throughput when processing a small batch size or feature map [15].

We further implement the 2nd-stage task-level parallelism between
error back-propagation and weight gradient calculation. This allows
the latency in the backward path to be halved compared with
sequential processing in prior works [13], [14]. Fig. 3 illustrates the
execution of the modified basic building block in the forward path
with a 2-stage coarse-grain task-level parallelism. In both forward
and backward paths, the RepVGG-like network is processed layer-
by-layer with 3x3 Conv and BN&ReLU, 1x1 Conv and BN&ReLU,
and identity BN&ReLU being executed concurrently using 3 groups
of static buffers. Shortcut addition is performed after processing the
three branches and accounts for a significant portion of the overall
latency throughout the training time.

On the other hand, BN in the backward path has a much longer
latency since it is not a simple affine transformation. To balance
the forward and backward latency and reuse computation blocks as
much as possible, we move the ReLU in the basic building block of
RepVGG before the shortcut addition and thus fuse BN and ReLU.
No accuracy degradation is observed by such a modification.

In BOOST [8], we utilize unified bm(2,5) as a special case for
transfer learning, while for more general cases with higher dynamic
range, bm(4,3) and bm(5,2) are favored in backward [16]. However,
such hybrid precision requires a multiplier/adder/MAC capable of
handling all these data formats or separate ones, which would result
in idle components for a significant proportion of the time. We
therefore employ a more general 16-bit fixed-point that has been
natively supported by the AMD Xilinx HLS math library with similar
accuracy to FP32 in the RepVGG-like network, i.e., 89.69% top-1
accuracy on CIFAR-10 at batch 4, compared with 89.93% of FP32.

B. Conv Block Designs

As illustrated in Alg. 1 and Fig. 3, there are 3 Conv patterns during
forward, backward, and gradient calculation, referred to as Conv, de-
Conv, and dilated Conv respectively [12]. Conv and deConv share the
same connectivity pattern between feature maps and weights where
partial sums from different input channels are accumulated, while
different weight filters correspond to independent output channels.
However, dilated Conv exhibits a different convolution pattern from
Conv and deConv:

« Dilated errors as weights are in the same size as input feature

maps, e.g., from 4x4 to 32x32 for RepVGG-like on CIFAR-10;

o Partial products from different mini-batches (instead of input

channels) are accumulated, and thus dilated Conv usually fea-
tures batch-level as opposed to channel-level parallelism.

This highlights the necessity to employ separate Conv blocks for
Conv/deConv and dilated Conv. We first propose a Conv block han-
dling both patterns to maximize hardware reuse, by employing zero
dilation before discrete Conv in the backward path. Using the HLS
pipeline and HLS array_partition optimization directives,
feature map dimensions (i.e., width and height of activations) are out-
side the unrolled HLS for loops and output stationary dataflow [17]
is adopted for reduced data communications. To minimize the latency
and energy consumed during data fetching, we utilize line buffer and
window buffer techniques to locally buffer input activations as shown
in Fig. 4(a). For non-unit stride circumstances, we conduct unit-stride
Conv and discard output feature map pixels every stride steps in the

Algorithm 1: Conv patterns in SGD-based back-prop training.

Require: activation A, weight W, error E, weight gradient G, stride

s, padding p.
/* Forward- Conv */
Al [co][h][w] = HoutsWout:Cin,Cout s Hwt, Wt

h,w,eci,co,hp, wp=0

W col[ei)[hi] [wk] ¥ A~ eil[h * s + hiy — pl[w * s + wy, — pl;
/* Backward- deConv %/
Elil[co][h}[’w] _ EHoutaWoutacinycout:Hwtwat

h,w,c;,co,hp w,p=0
W gileol[eillh][wr] * E'[ei][h/s + hi — plw/s + wy, — pl;
/+ Weight gradient- dilated Conv */

HowtsWout,CinsCoutsHuwt, Wi
Gl[co][ci][h][w] :th{uu,tq’cz'j}tlbg;:gut wt Wt

B [co] [hie][wi] * A Heg][h/s + ha — pllw/s + wi — pl;

forward direction, dilate stride number of zeros between the error,
and then perform unit-stride Conv in the backward propagation. This
method guarantees a balanced latency between the forward Conv and
backward deConv while processing equal-size feature maps.

For weight gradient calculation, we propose a dilated Conv block
aiming at optimized data communication and low latency. As shown
in Alg. 1, when the error (i.e., convolutional weight in dilated Conv)
is same-sized as the input feature map, loading in the entire error at
an initiation interval of one is impractical because 1/O ports can only
read/write once per clock cycle. To solve this problem we present
a weight kernel partition scheme for dilated Conv and utilize an
additional group of line buffers and window buffers for local buffering
of errors. Taking the final-layer feature maps of the RepVGG-like in
CIFAR-10 training as an instance, as illustrated in Fig. 4(b), an 8x 8-
sized error is mapped into multiple non-overlapping 4x4 smaller
regions for local buffering. The partition region could be principally
determined with an arbitrary size. A small region requires frequent
window buffer updates and results in the under-utilization of MAC
units, while a large region would consume significant 1O resources in
pipeline allocation and make the initial interval of one non-trivial. We
select a partitioning kernel size of 4 x4 to achieve a similar latency as
forward Conv and backward deConv when processing the same-size
input feature maps. This ensures neither of the Conv blocks degrades
the backward performance of the coarse-grain task-level parallelism
between error back-propagation and weight gradient calculation.

> error activation weight
Feature ma Window . EEEECT L T— gradient
buffer . < BRI -~ -~
Line buffer :: 1]
[EEEEEEEn 1]
T vl M
LTI TT T
S A .
B I e I I I I =Ry - = |

(a) Local buffering. (b) Weight kernel partition.
Fig. 4: Conv block details: (a) local buffering of input activations
(and partitioned error as weight kernels) in Conv and dilated Conv
blocks, consisting of 8 parallel channels of line buffers and window
buffers; (b) weight kernel partition in dilated Conv. Error as weight
kernel is partitioned into four 4x4 smaller ones for dilated Conv.

The indexing of feature maps determines whether to incorporate
partial sums of partitioned errors, a process commonly utilized in
HLS for loops of the sliding window Conv. As a unit-stride instance
in Fig. 4, the partial sum in blue at step O contributes to the
weight gradient pixel [0][0], while at the next sliding window step, it
contributes to the weight gradient pixel [0][1]. The partitioned error
in yellow further contributes to the weight gradient pixel [0][0] after
4 sliding window steps (i.e., partitioned kernel size). Weight gradient
buffers are reinitialized right after velocity accumulation following
the pipeline processing of dilated Conv and weight update. To hide
the latency of multiple branches of the RepVGG-like network, we

Authorized licensed use limited to: University of Sydney. Downloaded orBAugust 19,2024 at 23:39:02 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3445264

TABLE I: Performance comparison with prior FPGA-based CNN training accelerators.

[18] [19] [13] [20] [14] [8] Ours
FPGA Device ZU19EG ZCU111 Stratix 10 MX MAXS VC709 ZCU102 ZCU102
Data Format FP32 INT8 FP16 INTS PINT8 BMS8 Fixed16
Freqency (MHz) 200 180 185 200 200 225 225
CNN Network LeNet10 VGG16 VGG-like ResNet20 VGG-like ResNet20 ‘ VGG-like VGG-like ResNet20 RepVGG-like
DSP 1500(76%) | 1037(25%) 1046(26%) 1040(26%) 6241(91%) 1728(48%) 373(15%) 502(20%) 864(34%)
LUT/ALM 33K(63%) T3K(17%) | 221K(31%) | 239K(34%) | 679K(57%) 132K(30%) 147K(54%) | 189K (69%) 158K (58%)
BRAM/M20K 174(18%) 1045(97%) | 2998(44%) 2558(37%) 1232(29%) 240(14%) 1255(69%) 1735(95%) 818(45%)
Normalization - - - - - L1-FRN L1-FRN BN BN BN
Batch Parallelism - 1 1 1 128 16 16 1 1 1
Batch 1 Tput. (GOPs) 86 20 160 180 11 14177y | 38 (611T) | 41 (659T) 209 131 150 (183%)
Power (W) 14.2 - 20 20 13.5 8.4 8.6 7.7 8.7 7.2 (4.9%)
Eff. (GOPs/W)* 6.1 - 8 9 0.8 4.5 47 27.1 15.1 20.8 (37.3%)
Eff. (GOPs/#DSP)* 0.057 0.019 0.15 0.17 0.002 0.02 0.02 0.56 0.26 0.17 (0.23*)

 Total throughput of parallel mini-batches.
* Normalized throughput at batch 1.
* Inference-time RepVGG-like network.

also apply task-level parallelism to 3x3 and 1x1 dilated Conv of
channel parallelism and output stationary dataflow.

IV. EXPERIMENTAL RESULTS

We synthesize and implement the proposed training accelerator
using Vivado Design Suite 2019.2 and evaluate the on-board perfor-
mance on an AMD Xilinx ZCU102 FPGA. This board is equipped
with an embedded ARM CPU, 274K LUTs, 2520 DSPs, and 64 Mb
BRAM:s. The representative RepVGG-like network is in a hierarchy
of 16C-16C-32C-32C-32C-64C-64C-64C-64C-AvgPool-FC. Channel
parallelism is explored and images from different batches are sequen-
tially processed, i.e., at batch parallelism of 1. Off-FPGA storage of
weights and input activations delivers the same throughput at arbitrary
batch sizes.

Algorithm 2: Channel tiling and task-parallelism in RepVGG.

Require: activation, A; error, E; weight, W; velocity, V;
#input/output channel, ch_in, ch_out; channel parallelism,
ch_t =8;

/+ layer_1_0 Convl forward */

ch_in = ch_out = 16;

for c_out = 0 to ch_out/ch_t — 1 do

activation index update;

for c_in =0 to ch_in/ch_t — 1 do
function load_weight (W);
/* task-level parallelism
function 3 x 3 Conv (A, W);
function 1 x 1 Conv (A, W);
% identity branch (A);

end

function BN&ReLU (A);

*/

end

function shortcut_addition (A, A);

/* layer_1_0 Convl backward */

ch_in = ch_out = 16;

for ch_out/ch_t — 1 to c_out = 0 do

activation index update;

function BN&ReLU (A);

for ch_in/ch_t — 1 to c_in = 0 do
function load_weight (W, V);
/* task-level parallelism
function 3 x 3 deConv (E,W);
function 1 x 1 deConv (E, W);
function 3 x 3 dilated Conv (A, E);
function 1 x 1 dilated Conv (A, E);
% identity branch (A);

end

*/

end
function shortcut_addition (A, A);

For functional verification, we present the training loss curve on
the CIFAR-10 dataset for 200 iterations, as shown in Fig. 5, with
streaming CIFAR-10 images using a learning rate of 0.05 and a

momentum of 0.9 for the RepVGG-like network. The software
plots the GPU simulation with FP32 numerical precision and generic
algorithm description of Conv patterns, which computes BN for the
entire output channels in the Conv layer at once. The hardware plots
the execution of the proposed accelerator using 16-bit fixed-point
arithmetic in end-to-end SGD-based back-propagation training. Each
layer of the RepVGG-like network is processed sequentially using
channel tiling, as shown in Alg. 2. The hardware and channel-tiling
converge slightly faster since BN is performed after each tiled output
channel group of Conv. i.e., partial sums from 8 Conv channels are
normalized and added to other normalized channel groups, and the
use of 16-bit fixed-point arithmetic uses half the bandwidth and much
simpler arithmetic units.

w3 : ; :
3 —software- FP32
2 ——hardware- Fixed 16
£2F channel tiling- FP32 |
= 0.
[} A
= go
O1f :’DA\
O] | 02
2 Ao w0 w00
Q F—
®o
0 50 100 150 200
iterations

Fig. 5 Tralmng loss usmg streaming CIFAR-10 images.

Total
20% o
° 5% 6% |[EEEMAC
18% [BN
12% [wt riw
o, | act riw
61% Ty, S1% 53% 15% [<ys ops

16%

Fig. 6: Latency breakdown of the RepVGG-like training accelerator
at 225 MHz, including computation and external memory access.

Constrained by the limited scale of pipeline regions in Vivado HLS
tool, the highest achievable channel parallelism is 8, although suffi-
cient resources are available to exceed 8. This implies simultaneous
processing of 8 input channels and 8 output channels, and therefore,
requires 8x8x3x3 PEs in 3x3 Conv block as shown in Fig. 3.
This configuration achieves a peak throughput of approximately 250
GOPs. DSP48E2s are primarily used for MAC units in computational
blocks 3x3 Conv and 1x1 Conv and index calculations. Dilated
Conv blocks are primarily synthesized with LUTs for addition and
multiplication to save DSP resources (as dilated Conv blocks remain
idle during inference). However, with a maximum bandwidth of 38.4
Gbps on the ZCU102 board, the design becomes memory-bound
and incurs additional latency for external memory access. To address
these challenges, we employ task-level parallelism and organize the
3x3 and 1x1 Conv branches accordingly. Weights, activations, and
momentum velocities are packed in 128 bits and read/written through
different AXI4 bundles and buses, which fully saturates the DDR4
bandwidth and prevents undue data access delays.

Authorized licensed use limited to: University of Sydney. Downloaded orjAugust 19,2024 at 23:39:02 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edi

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3445264

Fig. 6 illustrates the latency breakdown during back-propagation
training for processing the last training image of a batch in the
RepVGG-like network, as it minimizes iteration latency from when
an event occurs to the weight update. The breakdown components
include the forward path, backward path (involving error back-
propagation, weight gradient calculation, and weight update), and the
total latency. Additionally, the total latency considers the time for
reading/writing weights (i.e., wt r/w) and activations (i.e., act r/w)
from/to off-chip DDR4 memory and the system operation (i.e., sys
ops) time related to the communication with the ARM processor. The
latency is measured directly on the ZCU102, and the proportion of
time for MAC (including Conv and element-wise shortcut additions)
and BN is obtained from the co-simulation report.

External memory access in the forward path includes reading
Conv weights from DDR4 in the PS logic and writing inputs of
Conv and BN layer to off-chip. While during the backward path, it
takes time for reading and writing weights and momentum velocities,
and reading BN and Conv inputs. Backward BN takes more time
than forward as gradients of BN weights and biases are generated
before error back-propagation, and used for weight update. The total
latency additionally accounts for Zynq system operations, such as
communications with the ARM processor through the AXI4 bus.

Training-time MAC computation achieves a batch 1 throughput of
150 GOPs with external memory access in an end-to-end iteration.
During inference, 1x 1 Conv and identity branches, as well as shortcut
additions, are by-passed where weights and biases are structurally re-
parameterized to the main branch as in [1], e.g., a plain structure in
the forward path with merely 3x3 Conv followed by BN&ReLU.
The inference-time RepVGG-like network requires off-chip weight
fetching but with no activation or momentum velocity access. This
leads to a batch 1 throughout of 183 GOPs with external memory
access in an end-to-end iteration. Power consumption was measured
with Xilinx Vivado and Maxim Digital Power Tool.

Table I compares the proposed accelerators with prior CNN
training works [8], [13], [14], [18]-[20] primarily focusing on VGG-
like and ResNet networks. This is a relatively fair comparison since
(1) training-time RepVGG-like has similar building blocks of multi-
branch and residual connections to the ResNet series, and inference-
time RepVGG-like follows the same plain network architecture as
the VGG series; (2) these accelerators have single-engine rather than
streaming architectures so resource consumption does not change
with the size of the network. Despite an overall throughput that
may lag behind batch parallelism works [14], [20], where several
mini-batches are processed concurrently in a single pass, we achieve
the second-highest training-time 150 GOPs (due to doubled element-
wise shortcut additions than ResNet and increased data access time
of DDR4 compared to HBM2 in [13]) and inference-time 183 GOPs
for normalized batch 1 throughput. Compared with training on an
Nvidia RTX 2080Ti GPU using PyTorch v1.6.0, we observe GPU
throughputs of 49, 90, and 145 GOPs at batch sizes of 2, 4, and 8
due to under-utilization of tensor cores (with a peak throughput of
448 GOPs at batch 512 and above), which are below the 150 GOPs of
the FPGA-based proposal. This highlights the efficacy and efficiency
of low-batch CNN training for lightweight networks on edge devices.

V. CONCLUSION

We present an FPGA-based CNN training accelerator tailored for
RepVGG-like networks in back-propagation training. To enhance
training efficiency besides fine-grain channel-level parallelism within
computational units, we employ coarse-grain task-level parallelism
to simultaneously process multiple branches within the RepVGG-
like basic building block, which effectively conceals critical la-
tency into 3x3 Conv and reduces performance degradation due to

the less computation-intensive arithmetic. We aggressively exploit
coarse-grain task-level parallelism between error back-propagation
and weight gradient calculation, resulting in similar latency in
forward and backward paths. This decoupling of the training-time
and inference-time architecture of the RepVGG-like network leads
to a significant improvement in end-to-end throughput, achieving a
throughput around the peak performance of the Conv block and,
therefore maximizing hardware efficiency. Our future work will focus
on exploring applications in online/continuous learning, with specific
emphasis on semi-supervised and unsupervised approaches.

REFERENCES

[1] X. Ding, X. Zhang, N. Ma, J. Han, G. Ding, J. Sun, RepVGG: making
VGG-style convnets great again, in: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2021, pp.
13733-13742.

J. Wang, Y. Yang, J. Mao, Z. Huang, C. Huang, W. Xu, CNN-RNN: a

unified framework for multi-label image classification, in: Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition,

2016, pp. 2285-2294.

[3] S. Ren, K. He, R. Girshick, J. Sun, Faster R-CNN: towards real-time
object detection with region proposal networks, IEEE Transactions on
Pattern Analysis and Machine Intelligence 39 (6) (2016) 1137-1149.

[4] W. Yin, H. Schiitze, B. Xiang, B. Zhou, ABCNN: attention-based
convolutional neural network for modeling sentence pairs, Transactions
of the Association for Computational Linguistics 4 (2016) 259-272.

[5] M. Yang, S. Wang, J. Bakita, T. Vu, F. D. Smith, J. H. Anderson, J.-M.
Frahm, Re-thinking CNN frameworks for time-sensitive autonomous-
driving applications: addressing an industrial challenge, in: 2019 IEEE
Real-Time and Embedded Technology and Applications Symposium,
IEEE, 2019, pp. 305-317.

[6] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image

recognition, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2016, pp. 770-778.

K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556 (2014).

[8] C. Guo, B. Lou, X. Liu, D. Boland, P. H. Leong, C. Zhuo, BOOST:
block minifloat-based on-device CNN training accelerator with transfer
learning, in: 2023 IEEE/ACM International Conference on Computer-
Aided Design, IEEE, 2023, pp. 1-9.

[9] A. Krizhevsky, G. Hinton, et al., Learning multiple layers of features
from tiny images (2009).

[10] C.F. Higham, D. J. Higham, Deep learning: an introduction for applied
mathematicians, Siam Review 61 (4) (2019) 860-891.

[11] L. Bottou, Stochastic gradient descent tricks, in: Neural networks: tricks
of the trade, Springer, 2012, pp. 421-436.

[12] V. Dumoulin, F. Visin, A guide to convolution arithmetic for deep
learning, arXiv preprint arXiv:1603.07285 (2016).

[13] S. K. Venkataramanaiah, H.-S. Suh, S. Yin, E. Nurvitadhi, A. Dasu,
Y. Cao, J.-s. Seo, FPGA-based low-batch training accelerator for modern
cnns featuring high bandwidth memory, in: Proceedings of the 39th
International Conference on Computer-Aided Design, 2020, pp. 1-8.

[14] J. Lu, C. Ni, Z. Wang, ETA: an efficient training accelerator for DNNs
based on hardware-algorithm co-optimization, IEEE Transactions on
Neural Networks and Learning Systems (2022).

[15] Y. Tang, X. Zhang, P. Zhou, J. Hu, EF-train: enable efficient on-device
CNN training on FPGA through data reshaping for online adaptation or
personalization, ACM Transactions on Design Automation of Electronic
Systems 27 (5) (2022) 1-36.

[16] S. Fox, S. Rasoulinezhad, J. Faraone, P. Leong, et al., A block minifloat
representation for training deep neural networks, in: ICLR, 2021.

[17] Y.-H. Chen, J. Emer, V. Sze, Eyeriss: a spatial architecture for energy-
efficient dataflow for convolutional neural networks, ACM SIGARCH
Computer Architecture News 44 (3) (2016) 367-379.

[18] Z. Liu, Y. Dou, J. Jiang, Q. Wang, P. Chow, An FPGA-based processor
for training convolutional neural networks, in: 2017 International Con-
ference on Field Programmable Technology, IEEE, 2017, pp. 207-210.

[19] S. Fox, J. Faraone, D. Boland, K. Vissers, P. H. Leong, Training deep
neural networks in low-precision with high accuracy using FPGAs,
in: 2019 International Conference on Field-Programmable Technology,
IEEE, 2019, pp. 1-9.

[20] C. Luo, M.-K. Sit, H. Fan, S. Liu, W. Luk, C. Guo, Towards efficient
deep neural network training by FPGA-based batch-level parallelism,
Journal of Semiconductors 41 (2) (2020) 022403.

[2

—

[7

—

Authorized licensed use limited to: University of Sydney. Downloaded orfAugust 19,2024 at 23:39:02 UTC from IEEE Xplore. Restrictions apply.

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

	Introduction
	Preliminaries
	Proposed Accelerator
	Overall Architecture
	Conv Block Designs

	Experimental Results
	Conclusion
	References

