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Abstract

A massively parallel implementation of an RCY key
search engine on an FPGA s described. The de-
sign employs parallelism at the logic level to perform
many operations per cycle, uses on-chip memories to
achieve very high memory bandwidth, floorplanning to
reduce routing delays and multiple decryption units to
achieve further parallelism. A total of 96 RCY decryp-
tion engines were integrated on a single Xilinz Virtex
XCV1000-F field programmable gate array (FPGA).
The resulting design operates at a 50 MHz clock rate
and achieves a search speed of 6.06 x 10° keys/second,
which is a speedup of 58 over a 1.5 GHz Pentium 4
PC.

1 Introduction

Field programmable gate array (FPGA) devices
have for many years been identified as a suitable
technology for the implementation of general purpose
cryptanalysis devices with the potential for improved
performance over traditional microprocessor based ap-
proaches. To date, there have been much activity in
the design of high speed FPGA based encryption de-
vices for embedded applications. However, their ap-
plication to cryptanalysis has been very limited due
to their high cost and low density.

A brute force key search can be used to determine
the key used to encrypt a message by trying every pos-
sible key to decrypt the message. Such a key search
is trivially parallelizable and successful key searches
using loosely coupled microprocessors in a distributed
computing approach have successfully been applied to
the 56-bit DES algorithm and the 56-bit RC5H algo-
rithm.

Application specific integrated circuits (ASICs)
have also been used by the Electronic Frontier Foun-
dation (EFF) to implement a DES key search engine,

called “Deep Crack”, which could search 88 billion
keys per second [1]. The machine solved the “Blaze
Challenge” and the RSA Laboratories DESIIT chal-
lenge, the latter on January 1999 in 22 hours [2]. One
limitation of an ASIC based implementation is that
they are hardwired for specific problems.

Recently, FPGA based devices have been shown to
offer much higher performance for encryption than mi-
croprocessor based implementations (e.g. [3, 4, 5, 6]).
Thus, 1t would appear that they would make excellent
key search engines. The main problem to date is that,
although many organizations have access to hundreds
or more personal computers (PCs) and workstations,
FPGA boards are specialized equipment and equiva-
lent FPGA resources are not generally available. An-
other issue 1s that capacity limitations of the FPGA
serve to limit the amount of parallelism which can be
achieved on the device. This, coupled with the fact
that the clock frequencies of modern PCs are approx-
imately one order of magnitude higher than that of a
typical FPGA design, made their performance bene-
fits limited.

It is our contention that FPGAs are approaching
a level of density and integration where the above is-
sues are being resolved, and that they are practical for
brute force key search applications. In this paper, we
present an implementation of the alleged RC4 cipher
which achieves significant performance improvement
over a microprocessor implementation. RC4 is used
for encryption in products such as the secure sockets
layer (SST.) protocol, the secure shell (SSH) protocol,
the wired equivalent privacy (WEP) algorithm (part
of the TEEE 802.11b wireless LAN security standard),
Lotus Notes, Oracle Secure SQL, Microsoft Office and
Adobe Acrobat (Acrobat 4.x or older). Furthermore,
in the past, the key size was often limited to 40 bits
due to US export restrictions.

There have been two previously reported FPGA
based RC4 key search machines. In 1996, Goldberg

and Wagner proposed an RC4 search engine using an



Altera RIPP10 board which had 8 FLEX8000 chips
and four static RAM chips [7]. Their design could
perform 4 parallel searches and each unit required
1286 cycles per key. Kundarewich et. al. proposed
a key search engine using a single Altera EPF10K20
complex programmable logic device (CPLD). In their
implementation, each search unit required 1304 cy-
cles per key and b parallel searches could be made at
10 MHz [8].

The RC4 implementation described in the paper
integrates the key search controller and 96 parallel
RC4 decryption engines on a single Xilinx Virtex
XCV1000E FPGA (much larger FPGA devices are
already available). Although the RC4 implementa-
tion operates at a clock frequency which is an order of
magnitude lower than that of the latest microproces-
sors, the FPGA implementation achieves a significant
speedup due to the following features:

e Parallelism in the implementation of the RC4 core
allows several operations to be completed in a sin-
gle cycle.

e On-chip resources were used to achieve a very low
latency, high bandwidth memory interface

e The memory used was dual-ported, allowing for
higher memory transfer efficiency.

e Floorplanning was used to minimize interconnect
delays

e A large number of the decryption cores were used
in parallel.

In our implementation, each search unit requires ap-
proximately 800 cycles per key and 96 such units are
integrated on a single FPGA.

The rest of the paper is organized as follows: in
Section 2, the RC4 and key search algorithms are de-
scribed. Section 3 describes the architecture of the
RC4 implementation. Implementation details are pre-
sented in Section 4, and performance measurements
are presented in Section 5. Finally, conclusions are
drawn in Section 6.

2 Algorithms
2.1 RC4

RC4 is a stream cipher designed by Ron Rivest and
was originally proprietary to RSA Data Security [9].

The algorithm was leaked anonymously to the Cypher-
punks mailing list in 1994. The RC4 algorithm gener-
ates a key dependent pseudorandom number sequence
of arbitrary length.

In the description below, two 256 byte arrays are
used, namely the K-block, K and the S-block, S. Note
that the K-block does not change during the encryp-
tion process.

The RC4 algorithm can be divided into 2 phases:
a key scheduling phase and the pseudorandom num-
ber generator (PRNG) phase. Both phases must be
performed for every new key.

In the key scheduling phase, a scrambling process
i1s used to produce a key dependent permutation of
0,1,...255 in the S array. In the initialization stage,
the S array is set to the identity permutation using the
formula S[i] = i(i = 0,1...255) and the K array is set
to the key, repeating as necessary to fill the array. The
S array is scrambled by selecting two indices ¢ and j
and then swapping S[i] and S[j]. In pseudocode form,
the key schedule is computed as follows:

keyschedule()
{
/% initialization */
for i = 0 to 255
s[i] = i;

/* scrambling */

j=0;
for i = 0 to 255
{

j = j + K[il + s[il;
swap S[i] and S[j];

The PRNG phase is similar to the key schedule.
Indices i and j are selected and S[i] and S[j] swapped.
The output of the PRNG is the value of the S array
indexed by S[i] + S[j] (i.e. S[S[]+ S[4]])-

Encryption or decryption is achieved by performing
an exclusive-OR of the pseudorandom number out-
put with the plaintext or ciphertext respectively. The
pseudocode below shows the process for encryption of
the plaintext in the pt array, the result being written
to the ciphertext array ct:

prng()

{
i=0;
j=0;

while not end of stream



i=(i+ 1) mod 256;

j = (j + S[il) mod 256;
swap S[i] and S[jl;

t = s[il + s[jl;

ct[i] = pt[i] xor S[t];

}
2.2 Key Search

The design described in this paper performs a
known plaintext attack via a key search [9]. In a
known plaintext attack, 1t is assumed that the cipher-
text as well as the corresponding plaintext is available
and one wishes to deduce the key used for encryption.
The same architecture, with additional filtering logic
(e.g. to detect if the message is 7-bit ascii) could be
used for a ciphertext only attack.

If the plaintext and ciphertext are known and n
bytes in length, checking that the ciphertext, ct, when
decrypted using a key k is the same as the plaintext
pt, 1s equivalent to checking if the first n bytes of the
RC4 PRNG produces the sequence pt xor ct.

If N RC4 key search units are available, 7 is an in-
dex used to identify each RC4 key search unit, and
red(ecap, k) checks to see if the PRNG produced with
key k gives cap, the key search procedure can be de-
scribed in pseudocode form as:

keysearch()

{
k = 0;
cXp = pt xor ct;
forever

{
for i = 0 to N-1 (in parallel)
{
found = rc4(cxp, k + i)
if (found(i))
return k + 1i;

=k + N;

3 System Architecture
3.1 RC4 Cell Design

The datapath of a single RC4 cell is shown in Fig-
ure 1. The core component of the RC4 cell is the

S-block for the S array, which is implemented using a
4096-bit on-chip Block RAM [10], configured as an 8-
bit wide dual port memory. Since the RC4 algorithm
requires only 8 x 256 = 2048 bits of memory for the 5
array, the Block RAM is divided into two halves via
the most significant bit of the address. As the key
scrambling phase for a new key is being computed in
one half of the RAM, initialization for the next key is
done in the other half. This scheme saves 256 cycles
and hereafter, this combined initialization and scram-
bling step will be referred to as the key schedule phase.

Each iteration of the key schedule phase requires 3
clock cycles as shown in Figure 2. In the first clock
cycle, 1 1s passed into port A of the Block RAM as an
address, and the initialization of S for the next key
is done at the same time via port B. In the second
clock cycle, the value of S[i] becomes available and j is
computed. In the last clock cycle, S[j] is available and
the contents of S[i] and S[j] are swapped and written
back to S.

The PRNG phase (see Figure 3) also requires 3
clock cycles per iteration, hence a total of 768 + 3n
cycles are required to test each key (for an n byte long
ciphertext). Operations in this phase are similar to
those of the key schedule phase except that S does
not require initialization. The ¢ value is ready (as the
t_pre signal) in the first clock cycle of the next itera-
tion. The output, s/t], is read and compared with the
czp value in following cycle.

A possible memory contention problem exists in the
last clock cycle of each iteration in the key schedule
and PRNG phases, since 1t is possible that both ports
attempt to write the same data to the same address,
producing unpredictable results [10]. To avoid this
conflict, a comparator is added to the RC4 cell (not
shown in the schematic) so that if 7 and j are equal,
the write enable to one of the ports is disabled.

Finally, a latch called found in the RC4 cell is used
to indicate whether the key being tested matches the
plaintext. This latch is cleared if the byte produced
by a decryption does not match cap (as described in
Section 2.2). Should the latch remain high after all
bytes of the plaintext have been tested, the key being
tested 1s the desired key.

3.2 Key Search

The top level block diagram of the design is shown
in figure 4. All RC4 cells are identical. FEach cell
accepts a key input and sets a flag if the input is a
valid key. There 1s one global key register which is
initialized by the host and routed to all RC4 cells. A
local key is computed in each cell by summing the
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Figure 4: Block diagram of parallel RC4 key search
machine.

global key with a cell offset, which is a unique value
ranging from 0 to 95. By using this scheme, the RC4
cell array can process 96 different keys in parallel, after

which, 96 is added to the global key.

All RCA4 cells share a common control unit, imple-

mented as a simple finite state machine (FSM). This
unit controls the state of all the RC4 cells, updates
the global key and also provides the interface to a host
computer (discussed in Section 3.3).

3.3 Interface

In the host/key search engine interface protocol,
the host must download the expected PRNG sequence
crp and then the start key value for the key search.
After the search engine receives the start key, it works
independently of the host, testing new keys until it
detects that the found flag of an RC4 cell has been
asserted (in which case the FSM halts). The host then
can download the global key and offset which produces
czp. The host and key search engine communicate via
a set of 3 64-bit read and 2 64-bit write registers.

The interface protocol is detailed in Table 1. Write
registers are used by the host to send the start key
(w0) and expected PRNG sequence, cxp (wl) to the
key search engine. After the key has been found, the
host can read back the global key value (r0), and the
offset of the RC4 cell which asserted the found flag
(r1, r2).



Table 1: Host/key search engine handshaking proto-
col.

Action Register | State

1 | Host writes expected wl idle
PRNG sequence (cxp)

2 | Host writes start key wl start

3 | Host polls flag rl, searching
registers r2

4 | Search engine writes rl, end
96-bit offset r2

5 | Host reads global key | r0 idle

6 | Host reads offset r0 idle

Table 2: Components inside an RC4 cell.

name function
D_unit | 8-bit 2-to-1 MUX
select portB data input
A_unit | 8bit 3-to-1 MUX
select portB address input
F_unit | 8-bit compare and registers
generate found signal
W_unit | 8-bit compare
detect Block RAM address conflict
T_unit combinational logic to
control MSB of portB
address
J_ounit | two 8-bit adders with registers
compute the j value
T_unit | 8-bit address with registered outputs
compute the ¢ value
K_unit | 5-to-1 8-bit mux (using tristate buffers)
select byte from K-block

4 TImplementation

The design is modularized and floorplanning was
done to reduce implementation time as well as improve
the maximum frequency of the design. In this section,
details of the implementation are presented.

4.1 RC4 cell

There are 8 major components inside an RC4 cell,
the dual port RAMs and the 40-bit local key registers
being excluded from the RC4 cell for reasons described
in Section 4.2. The names of the components and their
functions are listed in Table 2.
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Figure 5: Block diagram showing component place-
ment within an RC4 cell.

The RC4 cell was designed to fit into a 4 row x
6 column Virtex-E configurable logic block (CLB) ar-
ray. All components are structural HDL descriptions
containing only primitives provided by the Xilinx li-
brary. The physical placement of components were
fixed using relative location (RLOC) attributes. The
complete cell is a RPM (Relationally Placed Macro)
which can be instantiated multiple times in the top
level design. The block diagram in Figure 5 shows the
layout of components within the RC4 cell. In the fig-
ure, the small rectangular boxes represent a slice (two
logic cells, where each logic cell contains a 4 input
lookup table) and two adjacent slices form a Virtex-E
CLB. This scheme ensures low local routing delays.

The multiplexer for the K_unit, which is used to se-
lect a byte from a 40-bit key, is implemented using tris-
tate buffers (TBUFs) and do not use CLB resources.
This scheme replaces the large multiplexer in Figure 1
and reduces both logic and routing resources.

4.2 Floorplan

On the XCV1000E FPGA, the 96 Block RAMs are
grouped into 6 columns. Adjacent Block RAMs are
separated by 4 rows of CLBs. The RC4 cell described
in Section 4.1 was designed to have the same pitch as
the Block RAM and hence, each of the 96 RC4 cells
are placed adjacent to a Block RAM which is used for
the S-block.

The 40-bit local key 1s another module used in the
design. This module is a 40-bit adder with registered
outputs and is used to latch the sum of the global
key and the offset of the RC4 cell. To avoid break-
ing the fast carry chain, this module is implemented
as a column which is 20 slices (or 5 RC4 cells) high
(see Figure 6). Five local keys are grouped together
and placed perpendicular to their corresponding RC4
cells as shown in Figure 6). Since the local key mod-
ules have no direct connections to the Block RAMs,
placing them away from the Block RAM column does
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placement.

not increase the routing delay. Since the TBUFs and
CLBs are independent, the RC4 cell overlaps with the
local key module in a section where the RC4 cell only
uses TBUFs and the local key module only uses the
CLBs.

Figure 7 shows the floorplan of the completed de-
sign. It can be seen that the RC4 cells and local key
modules are placed close to the Block RAM columns.
The control unit is located in the center where the
distance to all RC4 cells is minimized.

5 Results

An implementation of the RC4 key search en-
gine was synthesized and implemented using Synopsys
FPGA Compiler and Xilinx Alliance respectively. The
FPGA platform used was a Pilchard FPGA card (Fig-
ure 8) [11] which uses the SDRAM bus instead of the
PCI bus used in conventional FPGA boards. The de-
sign was successfully tested on the Pilchard platform

with a Xilinx XCV1000E-6 FPGA by performing key

Table 3: Device utilization summary.

DLLs 1 outof 4 25%
BLOCKRAMs 96 out of 96 100%
SLICEs 5178 out of 12288 42%
TBUFs 4608 out of 12544 36%

Table 4: RC4 Encryption Speed on Different Plat-
forms.

Platform Frequency | Time | Normalized

MHz us Time
Sun Ultra ITi 400 | 49456 299
SGI R12000A 400 | 11318 68.6
Intel P4 1500 | 9618 58.3
This work 50 165 1

searches on randomly generated 40-bit keys. The per-
formance was compared with an optimized software
implementation on various general purpose micropro-
Cessors.

The RC4 engine containing 96 RC4 cells was de-
signed for 50 MHz operation as reported by the Xilinx
timing analyzer. The system RAM bus interface op-
erates at 100 MHz. Resource utilization as reported
by the implementation tools are listed in Table 3. In
our design, less than half of the slices are used, and it
may be possible to implement more RC4 cells on the
FPGA using slices in place of the Block RAM as the
memory elements.

Since each RC4 core requires 7684 3n cycles to test
a key (Section 3.1) and n = 8 was used, a single RC4
key is tested in 792 cycles (15 pS). Hence the average
time to test a key when all 96 cells operate in parallel
is 165 ns.

An optimized software implementation of the RC4
algorithm was used to compare the speed of the RC4
key search engine with that of a contemporary micro-
processor. The key is generated and stored in memory
and the size of expected pseudo random bit stream was
8 bytes. The speed measurements (for searching 1000
keys) only consider the computation time and involve
no I/0 operations. The GNU GCC compiler v2.9 was
used to compile the program source using the -O3’ op-
timization flag. The speed of the microprocessor based
implementation is compared with that of the FPGA
implementation in Table 4. The 50 MHz FPGA imple-
mentation is approximately 60 times faster than the
1.5 GHz Pentium 4 implementation.



Figure 7: Floorplan of the completed design.
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Figure 8: Photograph of the Pilchard board.



Table 5: Time required for an RC4 key search.

Platform 40-bit key | b6-bit key

hours years
Sun Ultra ITi 15084 113007
SGI R12000A 3451 25861
Intel Pentium 4 1361 10269
This work 50 377

Table 5 shows the time required to search a com-
plete 40-bit and 56-bit RC4 key space. Since FPGA
chips with more logic resources and faster clock rate
are already available, the performance of the FPGA
RC4 key search engine can be further improved. A Xil-
inx XCV3200E has double the number of block RAMs,
and the XC2V8000 can contain 672 RC4 engines.

6 Conclusion

A highly parallelized RC4 key search engine based
on an FPGA device was presented. In this system, a
single Xilinx XCV1000E-6 chip can search more than
6,000,000 keys per second, and is approximately 60
times faster than a 1.5 GHz Pentium 4. Using this im-
plementation, a complete 40-bit RC4 key space can be
tested in 50 hours. The design can be easily adapted
to systems containing multiple FPGA cards or chips.
It can also be improved by using larger FPGA devices.

This particular application is a good demonstra-
tion of a system where the differences in architecture
between an FPGA implementation over a micropro-
cessor based implementation are highlighted. Despite
the fact that the Pentium 4 operates at a clock speed
which is 30 times faster than the FPGA implementa-
tion, the FPGA implementation is approximately 60
times faster. The microprocessor based implementa-
tion is limited by relatively low memory subsystem
throughput and data dependencies in the algorithm.
The FPGA implementation benefits from a high de-
gree of parallelism, both at the algorithmic level and
due to the integration of a large number of RC4 cores
and memory on a single device.
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