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Abstract—Ptychographic imaging confronts inherent chal-
lenges in applying deep learning for phase retrieval from diffrac-
tion patterns. Conventional neural architectures, both convolu-
tional neural networks and Transformer-based methods, are op-
timized for natural images with Euclidean spatial neighborhood-
based inductive biases that exhibit geometric mismatch with
the concentric coherent patterns characteristic of diffraction
data in reciprocal space. In this paper, we present PPN, a
physics-inspired deep learning network with Polar Coordinate
Attention (PoCA) for ptychographic imaging, that aligns neu-
ral inductive biases with diffraction physics through a dual-
branch architecture separating local feature extraction from non-
local coherence modeling. It consists of a PoCA mechanism
that replaces Euclidean spatial priors with physically consistent
radial-angular correlations. PPN outperforms existing end-to-end
models, with spectral and spatial analysis confirming its greater
preservation of high-frequency details. Notably, PPN maintains
robust performance compared to iterative methods even at low
overlap ratios — well-suited for high-throughput imaging in real-
world acquisition scenarios for samples with consistent structural
characteristics.

Index Terms—Ptychography, Physics-Inspired Deep Learning,
Reciprocal-Space Learning, Transformer.

I. INTRODUCTION

COHERENT diffraction imaging (CDI) has enabled high-
resolution, lens-less imaging across various scientific

disciplines by exploiting the principles of wave propagation
and interference. In CDI, detectors capture only the far-field
intensity distribution of scattered coherent radiation, resulting
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in the loss of crucial phase information due to the well-known
phase problem in crystallography. The objective of phase
retrieval algorithms is to reconstruct the complete complex-
valued exit wave function from these incomplete Fraunhofer
diffraction patterns. Ptychography [1] , an advanced CDI
technique that operates in both real and reciprocal space,
addresses this inverse problem by utilizing multiple overlap-
ping diffraction measurements in reciprocal space, effectively
extending the Fourier domain sampling and enabling robust
phase retrieval through iterative algorithms. This approach
offers extended field-of-view imaging with exceptional spatial
resolution in real space. Recent breakthroughs have pushed
the boundaries of resolution, achieving 0.39 Å in transmission
electron microscopy [2] and even 14pm through local-orbital
ptychography [3], opening new possibilities in materials char-
acterization [4], biological imaging [5], and semiconductor
research [6].

Fig. 1: Diffraction pattern characteristics and diffraction
physics. (a): Diffraction patterns exhibit a radial distribution
of information, with varying requirements for capturing low
and high-frequency information. (b): 2D diffraction patterns
can be viewed as projections of the intersection between
the Ewald sphere and the crystal onto the detector plane.
Sphere’s radius is 1/λ, the wavelength of the incident and
diffracted beams. Importantly, the spatial adjacency preference
observed in natural images’ feature space also holds in the
polar coordinate perspective of diffraction patterns.
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However, the widespread application of ptychography faces
significant challenges, particularly in computational efficiency.
As imaging capabilities advance, data volume grows expo-
nentially, overwhelming conventional algorithms. For instance,
processing one second of data from a modern synchrotron
source (10-megapixel detector, 32-bit depth, 2 kHz, 640 Gb/s)
can take up to an hour [7]. Additionally, achieving high-
quality retrievals requires 60-70% probe position overlap [8],
further increasing computational complexity. These factors
severely constrain ptychography’s viability in real-time and
high-throughput applications.

To address these limitations, researchers have redefined
ptychography as a data-driven supervised learning task, lever-
aging deep learning (DL) techniques. Notable examples in-
cluding PtychoNN [9], Deep-phase-imaging (DPI) [10], and
PtyNet [11] have demonstrated improved retrieval efficiency.
Unlike conventional approaches that require repeated iterations
across the spatial and frequency domains, these methods uti-
lize experimentally acquired diffraction patterns and complex
amplitude images reconstructed by traditional algorithms as
training data. Through convolutional neural network (CNN)
based architectures, they establish a direct mapping from
diffraction patterns to complex amplitude retrieval, signifi-
cantly enhancing computational efficiency. Despite their suc-
cess, CNN-based methods face challenges in processing multi-
frequency information, capturing long-range correlations, and
distinguishing high-frequency signals from noise in diffraction
patterns, as illustrated in Fig. 1(a). These limitations are due
to the sliding window operation of convolution kernels in
spatial coordinates and the information flattening in multi-
layer convolution during transmission [12]–[14]. Transformer
models, while powerful in various computer vision tasks,
have limited application in ptychography due to the mismatch
between their design principles and the radial nature of diffrac-
tion patterns. For instance, Vision Transformers (ViT), are
primarily optimized for natural images in real space (e.g.,
patch extraction operations and local feature preference priors
of the Softmax function). However, these priors do not directly
map to the radial nature of diffraction data in reciprocal space
shown in Fig. 1(a).

Addressing the inherent limitations of existing methods
requires a fundamental reconsideration of deep learning ar-
chitectures for ptychographic retrieval, with a focus on opti-
mizing neural networks for representing diffraction patterns
in reciprocal space. This insight inspired the development
of PPN, a novel framework that bridges frequency-domain
diffraction patterns and real-space images using physics-
informed deep learning techniques. Drawing inspiration from
the Ewald construction in X-ray crystallography, as depicted
in Fig. 1(b), treating 2D diffraction patterns as projections of
the intersections between the Ewald sphere and the reciprocal
lattice onto the detector plane, as shown in the left of Fig. 1.
This insight revealed that diffraction patterns are inherently
defined in spherical rather than planar geometry. Consequently,
we developed Polar Coordinate Attention (PoCA), an atten-
tion mechanism leveraging polar coordinates that naturally
aligns with diffraction physics. This polar coordinate-based
attention mechanism reframes real-space structural priors in

the diffraction context, mapping scattering vector magnitude
to r and angular information to θ, thus capturing both radial
intensity attenuation and angular coherence. Recognizing the
multi-scale and multi-frequency nature of diffraction patterns,
as shown in the right side of Fig. 1, PPN employs a dual-
branch architecture combining a Local Dependencies Branch
constructed from standard ViT blocks with a NonLocal Co-
herence block containing our designed PoCA. This design
balances the capture of long-range and local dependencies in
diffraction patterns. PPN’s architecture intrinsically aligns with
ptychography physics, creating a more natural correspondence
between model operations and underlying physical processes.

This structural redesign based on physical insights enables
our model to more effectively extract and utilize global co-
herent information and long-range dependencies in diffraction
data, thus offering a physics-informed approach to ptycho-
graphic retrieval. Our comprehensive evaluation across sim-
ulated and real experimental datasets demonstrates PPN’s
multi-faceted advantages: (1) Superior retrieval quality across
all metrics against leading end-to-end baselines, particularly
in high-frequency preservation as evidenced through power
spectral density curves and cross-sectional intensity profiles;
(2) Remarkable operational viability - maintaining <5% per-
formance degradation at 30% overlap ratio while achieving
>1,000× faster inference than iterative method when tested
on samples without feature distribution shifts, crucial for
time-sensitive synchrotron experiments; (3) Unprecedented
efficiency with 11× fewer parameters than transformer-based
counterparts (6.1M vs 68.9M) and Floating Point Operations
Per Second (FLOPs) comparable to lightweight CNNs, en-
abling deployment in real-world acquisition scenarios. These
improvements could significantly enhance the applicability of
ptychography in time-sensitive or radiation-sensitive imaging
scenarios across various scientific disciplines.

The primary contributions of this work are summarized as
follows:

• We present PPN, a physics-inspired dual-branch frame-
work specifically designed for ptychographic imaging
that addresses the geometric mismatch between Euclidean
spatial priors and concentric coherent patterns in recipro-
cal space.

• We propose the PoCA mechanism that replaces spa-
tial neighborhood priors with radial-angular correlations,
achieving superior high-frequency preservation compared
to other end-to-end baselines.

• We demonstrate PPN’s practical advantages with >1000×
faster inference than iterative method, <5% performance
degradation at 30% overlap ratio when tested on samples
without feature distribution shifts.

II. RELATED WORKS

A. Deep Learning-Based Ptychographic Imaging

Deep learning in ptychographic imaging has recently en-
hanced computational efficiency and retrieval quality, catego-
rized into three strategies:
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1) Pre-processing: Integrating deep learning with iterative
algorithms improves initial estimates. The physics-informed
automatic differentiation ptychography (ADP) framework uses
pre-trained autoencoders to map high-dimensional image data
to a low-dimensional latent space [15], while the double deep
image prior (DDIP) method reduces the optimization parame-
ter space [16], both enhancing convergence rates and noise
robustness. However, these methods still require traditional
iterative algorithms.

2) Post-processing: Neural networks refine reconstructions
from traditional algorithms, including enhancing a single iter-
ation of the iterative algorithm to improve spatial resolution
and reduce artifacts [5] [17]. While these methods significantly
improve the quality of reconstructed images, they still rely on
initial reconstructions and cannot provide real-time or fully
automated solutions.

3) End-to-End with CNNs: End-to-end methods directly
map diffraction patterns to complex object functions, bypass-
ing iterative processes. Examples include PtychoNN with a
modified U-Net and two-branch decoder for amplitude and
phase [9], PtyNet with group convolution and Leaky ReLU for
efficiency [11], and DPI using a traditional U-Net with skip
connections [10]. Whereas CNNs excel at local feature extrac-
tion for natural images [18], [19], their inductive biases prove
suboptimal for diffraction patterns requiring global phase
coherence. The quadratic phase factors in Fresnel propagation
create position-dependent correlations that span the entire
detector plane, yet the local receptive fields of CNNs (typically
3×3) cannot span the full radial extent of diffraction rings,
causing these physically critical phase relationships between
distant pixels to be irrecoverably lost during feature encoding.
Furthermore, progressive downsampling in hierarchical archi-
tectures systematically discards high-frequency information
during feature abstraction. These inherent limitations of CNNs
motivate the exploration of attention mechanisms for better
long-range dependency modeling.

B. Transformer-based Methods
Vision Transformers (ViTs) [20] emerged as a promising

solution to the limitations of CNNs, demonstrating exceptional
capability in capturing long-range dependencies across various
domains [21]–[25]. Recent adaptations in ptychography, such
as PtychoFormer [26] employs a hybrid architecture combin-
ing ViT and CNN components, specifically a SegFormer vari-
ant adapted for ptychography. While it surpasses traditional
CNN methods in reconstruction accuracy, this comes with
significant increases in parameter count and training costs.
PtychoDV [17] adopts a compromise strategy that utilizes
ViTs’ reconstruction results as initial guesses for iterative
methods, thereby enhancing the final accuracy of conventional
iterative approaches. This indirectly reveals that pure end-to-
end deep learning methods still face performance bottlenecks
in diffraction reconstruction tasks - the core issue we aim to
address in this paper.

While Transformers demonstrate superior capability in cap-
turing global contexts, their direct application to diffraction
patterns neglects crucial physical priors inherent in recipro-
cal space representations. Diffraction patterns, governed by

wave optics, approximate the Fourier transform of an object’s
transmission function in far-field conditions [27], resulting
in reciprocal space features like sparse representations and
concentric rings [28]. Accurate image retrieval and phase
retrieval require effectively capturing both sparsity and long-
range dependencies within these patterns. Although Vision
Transformers achieve global modeling through multi-head
self-attention mechanisms (MHSA), their Euclidean spatial
neighborhood-based attention weight calculation exhibits ge-
ometric mismatch with the concentric coherent patterns in
reciprocal space characteristic of diffraction patterns. Our
focus is to resolve the critical bottleneck of effective in-
formation extraction from diffraction patterns and improved
reconstruction of high-frequency spatial information, rather
than surpassing or replacing the ultimate resolution achieved
by iterative algorithms.

III. METHODOLOGY

A. Problem Formulation

In ptychography, we aim to reconstruct a complex-valued
object function O(r), where r is the position vector in real
space. This retrieval is based on a set of diffraction patterns
measured at spatial frequencies q in reciprocal space. The
process involves a probe function P (r), which interacts with
the object at various scanning positions {rj}Jj=1. The ptychog-
raphy problem can be formulated as:

F{ψj(r)} =
√
Ij(q) · exp(iϕj(q)) (1)

where ψj(r) = P (r− rj) ·O(r) is the exit wave function, F
denotes the Fourier transform, Ij(q) is the measured diffrac-
tion intensity, and ϕj(q) is the phase of the diffraction pattern.
To account for real-world factors, we model the diffraction
intensity as:

Ij(q) =Poisson
(
η
∣∣∣F{

µP (r− rj − δrj)O(r)

+ (1− µ)P (r− rj − δrj) · Er[O(r)]
}∣∣∣2)

+N (0, σ2)

(2)

where µ is the coherence parameter, η ∈ [0, 1] is the
detector efficiency representing the quantum efficiency (proba-
bility of detecting each photoelectron), Poisson(λ) denotes the
Poisson distribution with rate parameter λ = η · |F {. . . }|2,
where |F {. . . }|2 is the theoretical diffraction intensity (in
photons/pixel) and their product forms the expected value of
the Poisson process, and δrj accounts for positional jitter.

Based on the physical model of the actual imaging process
in Eq. (2), we formulate the objective function for ptycho-
graphic retrieval in Eq. (3) to effectively recover the object
and probe functions:

J (O,P ) =
1

J

J∑
j=1

∥∥Ij − |F{P (r− rj) ·O(r)}|2
∥∥2
2

+ λ1Ω1(O) + λ2Ω2(P )

(3)
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Fig. 2: The proposed PPN for ptychographic imaging. It features dual branches: a Local Dependencies Branch with standard ViT
blocks, and a NonLocal Coherence Branch with Polar Coordinate Attention mechanism. The model processes logarithmically
mapped diffraction patterns, combining features from both branches before decoding into individual amplitude and phase
reconstructions at each position, which are then separately stitched to generate full field of view images for both amplitude
and phase.

where ∥x∥22 =
∑

i x
2
i is the squared Euclidean norm, Ω1(O) =

∥∇O∥1 enforces sparsity in the object gradient, Ω2(P ) =
∥P−P0∥2F constrains the probe function to maintain proximity
to to an initial estimate P0, and λ1 and λ2 are regularization
weights.

B. PPN Architecture
The proposed architecture employs a bifurcated structure

to map diffraction patterns to a reconstructed complex-valued
object function. The input undergoes a logarithmic transfor-
mation Ilog(q, j) = log(1 + Ij(q)) as a preprocessing step to
address the large disparity between high and low frequency
values in the diffraction patterns.

1) Local Dependencies Branch: The Local Dependencies
Branch utilizes a standard Vision Transformer (ViT) to analyze
diffraction patterns, capturing local features and structural
relationships within each pattern. Operating on input tensors
X ∈ RB×H×W×C (where B is batch size, H ×W is spatial
resolution, and C is channel depth), this branch processes data
through several key components:

Step 1. Patch Extraction divides the input image into non-
overlapping patches of size P × P , resulting in Xpatches ∈
RB×Np×(P 2·C) where Np = H

P × W
P represents the total

number of patches.
Step 2. Linear Projection maps each patch to a D-

dimensional embedding space using Xembed = XpatchesWE ∈
RB×Np×D where WE ∈ R(P 2C)×D is the projection matrix.

Step 3. Positional Encoding adds spatial information via
Xpos = Xembed + Epos, where the positional encoding matrix
Epos ∈ RNp×D is broadcasted across the batch dimension to
match Xembed ∈ RB×Np×D.

Step 4. Transformer Blocks with Pre-LN structure
process the sequence through L layers according

to X′(l) = MSA(LN (X(l−1))) + X(l−1) and
X(l) = FFN (LN (X′(l))) + X′(l). The Multi-
Head Self-Attention (MSA) mechanism computes
MSA(X) = Concat(head1, ..., headh)WO where each
attention head captures different relationship patterns in the
data, with projection matrices WQ

i ,W
K
i ∈ RD×dk and

WV
i ∈ RD×dv (typically dk = dv = D/h).
Step 5. Spatial Restoration reshapes the output to HLocal ∈

RB×(H/P )×(W/P )×D.
The complete dimension flow is: RB×H×W×C (1)−→

RB×Np×(P 2C) (2)−→ RB×Np×D (3)−→ RB×Np×D (4)−→
RB×Np×D (5)−→ RB×(H/P )×(W/P )×D.

2) Non-Local Coherence Branch: The Non-Local Coher-
ence Branch employs an architectural framework similar to
the Local Dependencies Branch, sharing identical transformer
block components while introducing our novel Polar Coordi-
nate Attention (PoCA) mechanism. This specialized attention
mechanism processes input at pixel-level granularity (H ×W
pixels) without patch extraction, enabling the capture of long-
range dependencies across diffraction patterns. The PoCA
mechanism systematically encodes physical constraints inher-
ent to diffraction physics, including the I ∝ r−4 intensity
distribution through radial decay weighting, preserves crystal-
lographic symmetry via angular continuity, and adapts to illu-
mination shifts with dynamically learned centering parameters
αx and αy .

After logarithmic transformation, the single-channel diffrac-
tion pattern RB×H×W×1 is projected to a multi-channel tensor
RB×H×W×C via a learnable 1× 1 convolutional layer, where
C denotes the embedding dimension. For an input tensor
X ∈ RB×H×W×C (where B represents batch size, H ×W
spatial resolution), this branch processes data through several
key components:
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Step 1. Tensor Flattening transforms the input into a
sequence representation via Xf = Reshape(X, (B,H ×
W,C)) ∈ RB×N×C , where N = H ×W represents the total
number of pixels.

Step 2. Query-Key-Value Projection maps the flattened
tensor into three separate embedding spaces using:

Qi = XfW
i
Q Wi

Q ∈ RC×dk

Ki = XfW
i
K Wi

K ∈ RC×dk

Vi = XfW
i
V Wi

V ∈ RC×dv

(4)

where projection matrices Wi
Q,W

i
K ∈ RC×dk and Wi

V ∈
RC×dv define the embedding transformations for attention
head i. The resulting tensors are Qi,Ki ∈ RB×N×dk and
Vi ∈ RB×N×dv , where the matrix multiplication is performed
along the feature dimension C. Polar coordinate parameteri-
zation defines the physical diffraction geometry using:

cx =
W

2
+ αx

W

2
, cy =

H

2
+ αy

H

2
(5)

rm =
log(1 + ∥pm − c∥)

log(1 + rmax)
, θm = arctan 2 (ym − cy, xm − cx)

(6)

Φmn
r =

1

1 + |rm − rn|
, Φmn

θ = cos(θm − θn) (7)

where rmax =
√
(W/2)2 + (H/2)2 ensures normalized

radial coordinates, pm = (xm, ym) denotes original pixel
coordinates, c = (cx, cy) represents the learned diffraction
center, and αx, αy ∈ [−0.5, 0.5] are learnable parameters ini-
tialized at 0. The implementation employs logarithmic scaling
to compress the dynamic range of radial distances, with angle
normalization θm ∈ [0, 2π) ensuring continuity.

Step 3. Polar Coordinate Modulation incorporates physical
constraints by modulating the standard dot-product attention
with radial and angular weighting matrices:

Ai
polar =

Qi(Ki)⊤√
dk︸ ︷︷ ︸

base attention

⊙ Φr︸︷︷︸
radial decay

⊙ Φθ︸︷︷︸
angular continuity

(8)

where Φr, Φθ ∈ R1×N×N (broadcastable to RB×N×N ),
⊙ represents element-wise multiplication with broadcasting,
imposing both radial decay and angular continuity constraints.

Step 4. Attention Application computes each attention head
through Headi = softmax

(
Ai

polar

)
Vi, where the softmax

normalization ensures proper probability distribution across
the attention weights, and Ai

polar ∈ RB×N×N is applied to
Vi ∈ RB×N×dv .

Step 5. Multi-head Integration combines infor-
mation from all h attention heads via G(Xf ) =
Concat(Head1, ...,Headh)WO, with WO ∈ Rh·dv×C′

serving
as the output projection matrix and Headi ∈ RB×N×dv .

Step 6. Spatial Restoration reshapes the processed output to
match the original spatial dimensions through PoCA(X) =
Reshape (G(Xf ), (B,H,W,C

′)) ∈ RB×H×W×C′
.

The complete dimension flow through this branch
is: RB×H×W×C (1)−−→ RB×N×C (2)−−→ {RB×N×dk

(Qi,Ki),RB×N×dv (Vi)} (3)−−→ RB×N×N softmax−−−−→
RB×N×N (4)−−→ RB×N×dv

(5)−−→ RB×N×h·dv
WO

−−−→
RB×N×C′ (6)−−→ RB×H×W×C′

By decomposing attention into radial and angular com-
ponents, PoCA effectively mimics the Ewald sphere’s inter-
section with the reciprocal lattice (Fig. 1(b)), where rmn

correlates with the reciprocal space resolution of scattering
vectors, and θmn encodes Bragg angle relationships through
angular coherence constraints.

3) Feature Fusion and Decoding: The feature fusion pro-
cess addresses the resolution mismatch between the two
branches. The Local Dependencies Branch output HLocal ∈
RB×(H/P )×(W/P )×D has lower spatial resolution than the
Non-Local Branch output HNonLocal ∈ RB×H×W×C′

. To align
these representations, we employ bilinear upsampling on the
Local Branch features:

Hupsampled
Local = Upsamplebilinear(HLocal) ∈ RB×H×W×D (9)

The aligned features are then combined through concatena-
tion followed by a 1×1 convolution:

Hfused = Conv1×1(Concat[Hupsampled
Local ,HNonLocal]) (10)

The decoder D consists of three transposed convolution
blocks with progressive upsampling:

Di = BatchNorm(ReLU(ConvTranspose2Dk,s))

D = D3 ◦ D2 ◦ D1

(11)

where k is kernel size and s is stride. The decoder branches
into parallel paths Damplitude and Dphase to reconstruct the
object’s amplitude and phase components.

4) Training Objective: The loss function L : Θ → R+ is
defined as:

L(θ) = 1

N

N∑
n=1

[∥∥∥A(n)
true −A

(n)
pred

∥∥∥2
2
+
∥∥∥ϕ(n)true − ϕ

(n)
pred

∥∥∥2
2

]
(12)

where N is the number of training samples, A(n)
true and ϕ(n)true

are the true amplitude and phase for the n-th sample (both
amplitude and phase values are normalized to the range [0,1]),
respectively, and A

(n)
pred = A

(n)
final and ϕ

(n)
pred = ϕ

(n)
final are the

corresponding model predictions. The two error terms natu-
rally maintain comparable scales without requiring additional
weighting factors.The optimization problem is formulated as:

θ∗ = argmin
θ∈Θ

L(θ) (13)

where θ∗ represents the optimal model parameters that mini-
mize the loss function L(θ) over the training dataset.
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Fig. 3: Performance comparison of single-shot experiment results and full-stitched scene retrieval using simulated data. (a) and
(b) show amplitude and phase reconstructions at two representative scan positions. (c) displays the full-field amplitude and
phase images stitched together from individual reconstructions at all scan positions across different models.

IV. EXPERIMENTS AND RESULTS

A. Experiment Setup

1) Implementation Details: We implemented both our DL-
based method and the traditional iterative algorithm (like the
extended ptychographic iterative engine (ePIE) algorithm [29])
in Python with CUDA acceleration on the same hardware plat-
form. The iterative algorithm was implemented with CUDA
support, initialized with known probe measurements and pro-
cessing 32×32 diffraction patterns, with phase unwrapping
applied to retrieve the continuous phase. The ePIE implemen-
tation typically required 100-200 iterations to converge and
75-80% spatial overlap, with minimal gains beyond. Both
implementations were trained and evaluated on a NVIDIA®

Tesla T4 GPU with Intel® Xeon® Platinum 8480CL CPU @
2.00GHz running Linux 6.1.85+. For the DL-based method,
we used TensorFlow with an MSE loss function and the Adam
optimizer. We set the initial learning rate to 1.0 and imple-
mented a ReduceLROnPlateau callback (factor 0.5, patience
2, minlr 0.0001) to dynamically adjust the learning rate based
on validation loss. We used a batch size of 32 with 5%
validation split, while a custom callback monitored system
memory usage, computation time, and convergence behavior.

2) Datasets: We utilize two types of datasets in our experi-
ments: Simulated Dataset: The dataset consists of a 512×512
LTEM image [30]. The pattern is based on a slightly modified
version of the 1951 USAF resolution test chart. Using a probe
size of 32×32 pixels with a 75% overlap rate and 3-pixel jitter,
we generated a total of 3721 patches arranged in a 61×61
grid, each patch being 32×32 pixels. Gaussian noise simulates

realism, with added Poisson and Gaussian noise for readout
and photon effects. Amplitude and phase undergo minmax nor-
malization. Real Experimental Data: Experimental data from
Argonne National Laboratory [9] comprises 16,100 triplets of
diffraction data, amplitude, and phase images. 161 × 161 point
scan at 30 nm increments from X-ray nanoprobe beamline 26-
ID. PIE algorithm generates ground truth. For both datasets,
we split the data into 80% for training and 20% for testing.
The validation set is created using 5% of the training data.
Results on simulated data are presented in Sections IV.B, D,
E, F, G and Section V.B, while Section IV.C validates the
model using real experimental synchrotron data.

3) Evaluation Metrics: The performance of the models is
evaluated using MSE, Peak Signal-to-Noise Ratio (PSNR),
and SSIM, with the ground truth values of the materials basis
images as references.

B. Performance Comparison and Analysis

We evaluated PPN against three mainstreamed CNN-based
methods (PtychoNN, PtyNet, and DPI). Our analysis covered
single-shot retrieval and full-stitched field retrieval under both
ideal and noisy conditions.

1) Single Scan Point Retrieval Analysis: PPN reconstructed
retrievals with improved edge definition and clarity compared
to those from the other methods in single scan point recovery,
where each position represents an individual amplitude/phase
reconstruction from a corresponding diffraction pattern. This
improvement is particularly evident in the vertical edge on the
left side of Fig. 3(a). The reconstructed images also showed
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TABLE I: Quantitative comparison of full-stitched scenes under noise-free and noisy conditions on simulated data. Results are
presented as mean ± standard deviation from ten independent experiments.

Condition Method Amplitude Phase

MSE (×10−2) ↓ PSNR (dB) ↑ SSIM (%) ↑ MSE (×10−2) ↓ PSNR (dB) ↑ SSIM (%) ↑

Noise-free

PtychoNN [9] 4.32 ± 0.02 13.52 ± 0.17 83.50 ± 0.80 1.22 ± 0.01 19.09 ± 0.19 67.10 ± 0.70
PtyNet [11] 4.46 ± 0.03 13.56 ± 0.15 83.10 ± 0.60 1.28 ± 0.01 19.10 ± 0.26 67.80 ± 1.30
DPI [10] 4.29 ± 0.03 13.68 ± 0.12 83.40 ± 0.50 1.26 ± 0.01 18.91 ± 0.24 67.70 ± 1.10
PPN (Ours) 3.63 ± 0.04 14.42 ± 0.08 87.00 ± 0.30 1.14 ± 0.01 19.41 ± 0.05 70.60 ± 0.70

Noisy

PtychoNN 6.66 ± 0.03 11.76 ± 0.12 74.00 ± 0.89 1.47 ± 0.04 18.33 ± 0.17 58.90 ± 1.00
PtyNet 6.50 ± 0.02 11.91 ± 0.13 74.80 ± 0.66 1.43 ± 0.07 18.46 ± 0.18 62.10 ± 1.50
DPI 6.46 ± 0.02 11.76 ± 0.10 74.20 ± 0.65 1.48 ± 0.06 18.31 ± 0.20 62.00 ± 1.20
PPN (Ours) 5.91 ± 0.03 12.34 ± 0.11 78.80 ± 0.59 1.31 ± 0.06 18.76 ± 0.16 68.30 ± 1.10

Note: For noisy conditions, noise is simulated using Gaussian and Poisson distributions to model readout noise and photon noise, respectively. Bold values
indicate the best performance for each metric. PSNR in dB, and SSIM in percentage. ↑: higher is better, ↓: lower is better.

contrast levels closer to the ground truth, with more natural
transitions between dark and bright areas. By contrast, the
CNN-based models tended to smooth these sharp features and
introducing artifacts and distortions accuracy.

Fig. 4: Frequency analysis comparison of full-scene ptycho-
graphic retrievals on simulated data. (a) 1D diagonal cross-
sections of average 2D PSD from stitched simulations. Red
curve: ground truth; Blue curve: models. The red box rep-
resents obvious abnormal model retrieval. (b) Quantitative
breakdown of energy distribution across low, mid, and high
frequency bands. Frequency ranges are defined based on the
radial distance from the PSD center, with boundaries at 1/3
and 2/3 of the maximum frequency.

2) Full-stitched Field Retrieval Analysis: Table I presents
full-field stitching results under ideal (noise-free) and realistic
(noisy) conditions, demonstrating PPN’s superior performance
across all metrics. In ideal conditions, PPN achieved 16.0%
lower MSEamp and 6.7% higher PSNRamp compared to Pty-
choNN, with similar improvements under noisy conditions.
Fig. 3(c) visually confirms PPN’s superior global consistency
and minimal boundary artifacts, particularly in reconstructing
vertical column ends and background textures. The dual-
branch structure enables our model to effectively capture
both low-frequency and mid-to-high frequency information of
diffraction patterns. This capability stems from the model’s
ability to capture the intrinsic geometric structure of the
data, analogous to continuous mapping on high-dimensional
manifolds.

Repeated measures ANOVA and pairwise t-tests (Bonfer-
roni correction, α = 0.0083) showed PPN significantly out-
performed the other methods in all metrics in both conditions
(p < 0.0083), especially in MSEamp and SSIMamp (p <
0.0001). The three CNN-based methods showed no significant
differences, performing similarly across most metrics. Fig.
3 focuses on intra-family comparisons among deep learning
architectures to isolate the impact of structural variations under
consistent training supervision. Comparative evaluations with
conventional iterative algorithms (e.g., ePIE) are presented
separately in Section IV-E3, where differences in computa-
tional efficiency and resilience to varying overlap ratios are
quantitatively assessed and visually demonstrated.

3) Spatial Frequency Fidelity Analysis: We analyze
frequency-domain fidelity using 1D diagonal cross-sections
of the averaged power spectral density (PSD), defining three
bands by normalized radial distance: low (0-1/3 Nyquist), mid
(1/3-2/3), and high (2/3-1) frequencies.

Fig. 4(a) reveals PPN closely matches the ground truth’s
PSD profile, particularly preserving mid-frequency features
(red box). CNN-based methods show 2.1−3.7× greater mid-
frequency attenuation (0.06–0.07% vs. 0.22% total energy)
and high-frequency suppression (< 0.03%). Quantitatively,
PPN achieves 58.6% better mid-frequency preservation than
CNNs while maintaining noise-equivalent high-frequency lev-
els (0.03% vs. ground truth’s 0.04%). This frequency-selective
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Fig. 5: Performance comparison on real experimental samples. (a,b) Visual comparison of retrieved amplitude and phase(scale
bar: 200nm). For a specific hook-shaped detail in ROI (region of interest), only our model effectively restores it, significantly
outperforming CNN-based methods in fine structure retrieval. (c-e) Quantitative comparison of PSNR, SSIM, and MSE.

Fig. 6: Comparison of generalization capabilities across different methods using the Fudan University logo (simulated data)
as a test sample with distribution significantly different from the training set. (a) Phase retrieval results with intensity values
normalized to π. (b) Detailed ROI comparison.

enhancement stems from our polar coordinate attention mecha-
nism, which preferentially weights mid-frequency correlations
corresponding to Bragg diffraction conditions while suppress-
ing high-frequency noise through radial decay constraints. The
results confirm PPN’s unique ability to resolve genuine high-
resolution features among the end-to-end methods.

C. Validation on Experimental Synchrotron Data

Fig. 5 demonstrates PPN’s superior performance on real
experimental data, consistent with our findings from simulated
datasets. Across all metrics (PSNR, SSIM, and MSE) for both
amplitude and phase retrieval, PPN consistently outperforms

other models. These improvements are visible in fine structural
details (Fig. 5 (a,b)). The model’s ability to preserve edge
sharpness and resolve intricate features in experimental data
validates its potential for practical applications where accu-
rate reconstruction of complex nanostructures is essential for
scientific interpretation.

D. Generalization Capabilities Comparison

We evaluated PPN’s generalization by training on simulated
1951 USAF pattern (the same with Section IV-B) with straight-
line features and evaluating on complex, curved patterns
(Fig. 6), without fine-tuning, assessing the model’s ability to
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Fig. 7: Model performance evaluation on simulated data. (a) Reconstruction quality versus training data size at overlap ratio
75%. (b) Performance stability under different test set overlap ratios with fixed training set size (100 samples).

extrapolate learned features to significantly different sample
geometries. This evaluation connects directly to practical ap-
plications where pre-trained models must process new samples
with unknown structures—a scenario where acquiring specific
training data is often impractical. In these contexts, generaliza-
tion capability determines the practical utility of deep learning
for ptychographic imaging. Fig. 6 compares phase retrieval
results across different methods.While deep learning models
cannot match the reconstruction quality of the ePIE algorithm,
PPN outperforms all other DL-based methods. The red boxes
highlight high-frequency details where PPN preserves spatial
information with minimal artifacts compared to other end-to-
end methods.

Results show that even with different feature distributions
between training and testing data, PPN achieves superior re-
construction quality and better preservation of high-frequency
spatial details.

E. Performance Comparison Under Limited Data

Despite significant advancements in ptychography, a major
challenge remains: extended data acquisition periods. While
higher overlap between scanning points typically yields better
retrieval results [14], it also increases experiment duration
and radiation exposure. This is particularly problematic for
radiation-sensitive materials [31] and in situ dynamic studies
[32]. Here, the overlap ratio is defined as the physical overlap
between adjacent scanning positions in real space.

1) Comparison with Different Training Data Size: We eval-
uated the effect of training data size on model performance by
training models with 10 different random initializations while
keeping all hyperparameters consistent and testing on the same
test set as in Section IV-B. As shown in Fig. 7(a), when the
training samples decrease from 2928 to 50, PPN demonstrates

superior data efficiency: the PSNR for amplitude reconstruc-
tion decreases by only 35%, and phase reconstruction by 15%.
In contrast, PtychoNN shows the most significant performance
degradation, with PSNR dropping by approximately 70%
for both amplitude and phase reconstruction. This resilience,
analyzable through compressed sensing theory. [33], suggests
PPN learns an optimal sparse prior.

2) Comparison Across Overlap Ratios with a Fixed Train-
ing Size: We investigated the impact of test set overlap ratios
(0%, 25%, 50%, and 75%) while maintaining a fixed training
set size of 100 samples, consistent with the models used in
Section IV-E1. While the test area maintains consistent spatial
coverage (matching Fig. 3 (c)’s field of view), the number
of test samples decreases with lower overlap ratios due to
reduced spatial sampling density. As illustrated in Fig. 7(b),
all models exhibit remarkable metric stability across different
overlap ratios. Taking PPN as an example, its amplitude recon-
struction PSNR remains stable between 9.5–9.6 (∆ = 0.1) and
SSIM between 0.39–0.40 (∆ = 0.01), with one-way ANOVA
(p > 0.05) confirming no significant differences between
overlap ratio groups.

This overlap-invariant behavior stems from our training ap-
proach, which uses simulated real-space amplitude and phase
as ground truth—data that typically requires exceptionally
high overlap ratios to obtain in conventional experimental
workflows. This characteristic enables an optimal workflow:
using high-overlap data for model training while deploying
at low overlap during testing. These findings naturally lead
to the question of how PPN compares to traditional iterative
methods across different overlap ratios, which we explore in
the following section.

3) Comparison with Iterative Methods Across Overlap Ra-
tios: We compared PPN with the iterative method (where
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Fig. 8: Comparison between ietrative method and PPN across
different overlap ratios. (a) SSIM and reconstruction time
comparison. (b) and (c) Reconstructed images using iterative
method and our proposed PPN, respectively, at different over-
lap ratios (30%, 60%, 90%).

we use the widely-used ePIE as our baseline) across vari-
ous overlap ratios to assess both reconstruction quality and
computational efficiency. Fig. 8 presents this comparison,
with PPN trained using the same dataset described in Sec-
tion IV-B, where sample features remain within the learned
distribution. As shown in Fig. 8(a), PPN maintains SSIM
values between 0.86–0.92 across all overlap ratios, indicating
consistent reconstruction quality. In contrast, iterative method
exhibits strong overlap dependence, with SSIM dropping from
0.95 at 90% overlap to only 0.12 at 30% overlap. At 30%
overlap, PPN completes reconstructions in approximately 0.15
seconds versus iterative method’s 125 seconds, representing an
852× speed improvement, and at 60% overlap, a 1767× speed
improvement. The reconstruction time was measured by aver-
aging over ten consecutive tests, with error bars representing
the variance. Reducing overlap from 90% to 30% increases
data acquisition efficiency by approximately 49 times for a
fixed area, as scan point density is inversely proportional to
the square of the step size. Theoretically, this combined effect
could yield up to 41,748× (49 × 852) overall efficiency im-
provement. This enables significantly faster experiments with
substantially reduced radiation exposure while still producing
high-quality reconstructions.

This separation of training and testing strategies, along
with PPN’s efficiency, demonstrates the synergy between
deep learning and domain-specific knowledge in ptychography,
providing a viable technical pathway for achieving high-
throughput imaging.

F. Ablation Study

TABLE II: Ablation Study Results on Simulated Data

Model Variant Amplitude Phase

PSNR (dB) SSIM (%) PSNR (dB) SSIM (%)

Ours w/o NLB 14.10 86.60 18.39 65.40
Ours w/ MinN 13.82 83.90 18.64 64.10
Ours w/o D 11.02 60.50 17.32 54.50
Ours 14.42 87.00 19.41 70.60

To justify each component of the proposed PPN, we con-
ducted comprehensive ablation studies. As shown in Fig. 9, we
compared both amplitude and phase reconstructions, including
2D reconstructed images and 1D cross-sectional profiles. We
examined several model variants: 1) Ours without NonLocal
Coherence Branch (Ours w/o NLB), which means using only
the Local Dependencies Branch and removing the NonLocal
Coherence Branch that contains proposed PoCA; 2) Ours
with Multi-Head Self-Attention (MHSA) in NLB (Ours w/
MinN), replacing PoCA with standard MHSA in the NonLocal
Branch; 3) Ours without Decoder (Ours w/o D), using fully
connected layers instead of CNN for upsampling in the de-
coder; and 4) Ours (Full Model), the full proposed model.The
ablation experiments were conducted using the same training
set, test set, and parameter settings as in Section IV-B.

The quantitative results are presented in Table II. The
removal of the NonLocal Coherence Branch leads to de-
creased structural coherence in phase reconstruction, which is
clearly observable in the 1D profiles. Replacing PoCA with
standard MHSA results in a 4.16% drop in PSNRamp and
3.56% in SSIMamp, with poorer edge transitions visible in
the profile plots. The absence of the CNN decoder causes
the most significant performance degradation, with PSNRamp
and SSIMamp decreasing by 23.58% and 30.46%, respectively.
The reconstructed images without the CNN decoder appear
blurry, consistent with the experimental results in [17]. The
1D profiles reveal that without the CNN decoder, the model
struggles to maintain accurate amplitude levels and phase tran-
sitions. The full model achieves the best performance across all
metrics, particularly in regions with dramatic phase changes
in the 1D cross-sectional profiles. These results validate the
effectiveness of each proposed component in our architecture.

G. Model Variants

To validate our model’s effectiveness, we benchmarked
against two widely-adopted hybrid CNN-ViT architectures
from computer vision: TransUNet [34] and SegFormer [35].
These baselines remain relevant in recent research across
multiple domains [36]–[39], demonstrating their continued
utility for important results in various fields.
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Fig. 9: Ablation study performed on simulated data showing amplitude and phase reconstructions with 2D images and 1D
cross-sectional profiles , comparing ground truth (blue solid lines) with AI inference results (red dashed lines).

The first variant adopts a TransUNet-inspired architecture
[34], employing a hybrid CNN-Transformer encoder where
CNNs extract initial features before Transformer processing,
with a decoder utilizing a cascading structure and skip con-
nections. The second implements a SegFormer-based approach
[35], featuring a hierarchical structure with progressive resolu-
tion reduction for multi-scale feature extraction and replacing
the first linear layer in the feed-forward network with a 3× 3
convolution, similar to the approach used in PtychoFormer
[26]. PtychoFormer uses an encoder based on SegFormer and
a decoder adapted specifically for ptychography tasks. Ex-
periments conducted under noise-free conditions (see Section
IV-B2) demonstrate that PPN outperforms all baseline models
(Table III). The PtychoFormer results are comparable to our
SegFormer-inspired model due to their similar structures.
These variants’ limitations stem from designs optimized for
real-space image processing: The TransUNet variant, while
benefiting from the combination of CNN and Transformer,
still relies on local feature extraction in its initial stages.
This approach is suboptimal for capturing the global coher-
ence information present in diffraction patterns. Similarly,
the SegFormer variant’s hierarchical structure, while effective
for multi-scale feature extraction in natural images, may lose
critical high-frequency information in the context of diffraction
patterns due to its progressive downsampling.

TABLE III: Performance comparison of Model Variants.

Method Amplitude Phase

PSNR (dB) SSIM (%) PSNR (dB) SSIM (%)

TransUNet [34] 13.57 81.20 18.77 67.80
SegFormer [35] 13.76 83.30 19.12 68.10
PtychoFormer [26] 13.77 83.54 19.17 68.18
PPN (Ours) 14.42 87.00 19.41 70.60

V. DISCUSSION

Fig. 10: Comparison of different models in terms of their com-
plexity (parameters and FLOPS) (left) and training efficiency
(convergence epochs and time per epoch) (right).

A. Computational Complexity Analysis

Our analysis compares PPN with CNN-based methods
(PtychoNN, PtyNet, DPI) and the ViT-CNN hybrid baseline
(PtychoFormer [26]) through computational metrics in Fig. 10.
While maintaining hierarchical CNN decoders common to all
compared methods, our encoder design achieves substantial
efficiency gains.

Among CNN approaches, PPN demonstrates intermediate
complexity (6.12 MB parameters) between PtyNet (1.24 MB)
and DPI (57.14 MB), yet converges faster (30 epochs) than
both PtychoNN (45 epochs) and DPI (35 epochs). The 0.382
GFLOPs cost represents a 63.7% reduction from DPI’s 1.049
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GFLOPs, confirming efficient feature learning despite trans-
former integration. Compared to PtychoFormer’s ViT-CNN ar-
chitecture, our model reduces parameters by 91.1% (6.12 MB
vs. 68.96 MB) and FLOPs by 65.4% (0.382 G vs. 1.105 G)
while matching convergence speed (30 epochs). This efficiency
comes from three optimizations: 1) fixed feature dimensions
preventing channel inflation, 2) parallel dual-branch processing
instead of hierarchical refinement, and 3) physics-inspired at-
tention limiting learnable parameters. These changes eliminate
redundant operations while preserving physical priors.

Fig. 11: Performance analysis of weighted loss function
Lcombined(α) = αLMSE + (1 − α)LNSSIM on simulated data.
PSNR, SSIM are plotted against α for amplitude and phase
retrievals.

B. Loss Function Analysis

TABLE IV: Comparison with Different Loss Functions

Loss Function Amplitude Phase

PSNR (dB) SSIM (%) PSNR (dB) SSIM (%)

MSE Loss 14.42 87.00 19.47 70.60
MAE Loss 13.63 85.90 19.29 67.50
Huber Loss 14.64 87.40 19.54 68.40
NPCC Loss 10.36 69.90 17.03 66.90
NSSIM Loss 14.12 85.10 19.41 70.80
Weighted Loss
(α = 0.9) 15.10 88.50 20.04 73.90

Note:The weighted loss combines MSE and NSSIM losses, where α repre-
sents the weight of MSE (0.9) and 1-α (0.1) is the weight of NSSIM.

To optimize retrieval quality in ptychographic phase re-
trieval, we evaluated various loss functions (as shown in Table
IV. Standard metrics like MSE and Mean Absolute Error
(MAE) showed similar performance, while the Huber loss

[40], defined as: LHuber(x) =

{
1
2x

2 for |x| ≤ δ

δ(|x| − 1
2δ) otherwise

of-

fered robustness to outliers. The Negative Pearson Correlation
Coefficient (NPCC) [41] loss, despite its success in single-
frame phase retrieval [12], showed poor convergence stability

in our experiments. This is likely due to its sensitivity to local
statistics in small ptychographic patches, contrasting with its
effectiveness on larger, more statistically stable single-frame
images.

We introduced a novel combined loss function inspired by
the work on image restoration with neural networks [42]:
Lcombined(α) = αLMSE + (1 − α)LNSSIM where LNSSIM =
−SSIM(Iq, |FP (r)ψ(r)|2), where ψ(r) defined as ψ(r) =
P (r − rj)O(r). This approach balances global consistency
(MSE) with local structural preservation ( Negative Struc-
tural Similarity Index Measure (NSSIM) [43]). Experiments
revealed optimal performance at α = 0.9, with consistent
improvement as α increased from 0.2 to 0.9, as shown in Fig.
11. This robustness to α values reduces the need for precise
tuning in practical applications. The combined loss function
excels in addressing affine ambiguity, as ∇LMSE is sensitive to
global affine transformations T (∂LMSE

∂T ̸= 0), while ∇LNSSIM

maintains local structure invariance ( ∂LNSSIM
∂(local structure) ≈ 0),

forming a more robust optimization target.

VI. CONCLUSION

We propose PPN, a physics-inspired deep learning frame-
work that significantly improves ptychographic reconstruction
through two core innovations: (1) an architecture combin-
ing local feature extraction with global pattern coherence
modeling, and (2) a novel attention mechanism tailored for
diffraction physics. PPN demonstrated superior performance
over existing state-of-the-art methods, particularly in high-
frequency artifact suppression and data efficiency. Current lim-
itations include performance validation primarily on simulated
and small-scale experimental data– future work will focus
on large-scale real-world deployments across diverse imaging
conditions. The framework’s physics-inspired design princi-
ples show promising extensibility to other frequency-domain
inverse problems like cryo-EM and astronomical imaging.
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