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Abstract—FPGAs have distinct advantages as a technology for
deploying deep neural networks (DNNs) at the edge. Lookup
Table (LUT) based networks, where neurons are directly mod-
elled using LUTs, help maximize this promise of offering ultra-
low latency and high area efficiency on FPGAs. Unfortunately,
LUT resource usage scales exponentially with the number of
inputs to the LUT, restricting PolyLUT to small LUT sizes. This
work introduces PolyLUT-Add, a technique that enhances neuron
connectivity by combining A PolyLUT sub-neurons via addition
to improve accuracy. Moreover, we describe a novel architecture
to improve its scalability. We evaluated our implementation over
the MNIST, Jet Substructure classification and Network Intru-
sion Detection benchmark and found that for similar accuracy,
PolyLUT-Add achieves a LUT reduction of 1.3 — 7.7x with a
1.2 — 2.2x decrease in latency.

I. INTRODUCTION

Deep neural networks (DNNs) have been shown to provide
powerful feature extraction and regression capabilities and are
widely employed across a spectrum of applications, including
image classification for autonomous driving [1], data analysis
in particle physics [2], and anomaly detection for cybersecu-
rity [3, 4]. Field-Programmable Gate Arrays (FPGAs) provide
a unique implementation platform for deploying DNNs, with
significant advantages over other technologies, particularly in
real-time inference tasks.

Lookup Table (LUT) based neurons on FPGAs offer high
area efficiency and ultra-low latency. Examples of accel-
erators published using this approach include LUTNet [5],
LogicNets [6], NullaNet [7] and PolyLUT [8]. Compared
with Binary Neural Networks (BNNs [9]), which utilize 1-
bit quantization to replace multipliers with simple XNOR
gates, LUT-based neurons further optimize FPGA resource
utilization using LUTs as direct inference operators.

Building upon the PolyLUT framework, this work in-
troduces an enhancement called PolyLUT-Add, where we
combine A copies of PolyLUT sub-neurons via an A-input
adder to increase neuron fan-in. Figure 1 highlights how
our approach builds from PolyLUT for a simple example
where A = 2. The computation process of a PolyLUT neu-
ron: weight multiplication, accumulation, batch normalization
(BN), and quantized activation, is first shown in Figure 1(a).
Our PolyLUT-Add approach, shown in Figure 1(b) restructures
the neuron computation. The first stage is similar to PolyLUT
without the batch normalization and is repeated for each sub-
neuron. Instead, the batch normalization is performed after the

results are accumulated, with the resulting activation quantized
again if necessary.

While the same functionality of PolyLUT-Add could be
achieved with PolyLUT with a single lookup table, PolyLUT-
Add can make better use of the FPGA fabric. In this example,
with the input word length, 3 = 2, PolyLUT-Add uses three
distinct lookup tables, each of size 2°; the single lookup table
equivalent would be of size 2'2. In the general case, if we
define the fan-in to be F' of (5-bit words), for each output bit,
PolyLUT requires a lookup table of 2°F4, while PolyLUT-
Add only requires reducing the size to A x 20F 4 24(8+1),

The contributions of this work can be summarized as:

o At the algorithmic level, we introduce PolyLUT-Add,
an extension of the PolyLUT framework [8], which
incorporates A PolyLUT sub-neurons, combined via an
A-input adder to enable improved accuracy.

o At the computer architecture level, we propose an effi-
cient FPGA implementation of PolyLUT-Add.

o To the best of our knowledge, for similar accuracy,
PolyLUT-Add produces the best-reported FPGA latency
and area results on the three benchmarks tested. To fa-
cilitate experimentation with our design, the work in this
paper is reproducible. Source code and data to reproduce
our results are available from Github'.

We evaluated PolyLUT-Add across three datasets with four
DNN models and demonstrated significant accuracy improve-
ments. Specifically, for the same polynomial degree D and
fan-in F setups, A = 2 achieves an accuracy improvement of
up to 2.7%, albeit with a 2-3 fold increase in area. Latency
and clock frequency are unchanged in most cases. However,
we also see that when A = 2, we can choose a lower D and
F' and obtain accuracy levels comparable to those achieved
by the original PolyLUT. This reduces LUT consumption by
factors of 4.6, 7.7 and 1.3 for the MNIST, Jet Substructure
classification, and Network Intrusion Detection benchmarks,
respectively, with a 1.2 to 2.2 times decrease in latency.

The remainder of this paper is organized as follows. In
Section II we review previous work on LUT-based neurons.
In Section III, the design of PolyLUT-Add is described.
Results are presented in Section IV and conclusions drawn
in Section V.

IPolyLUT-Add: https://github.com/bingleilou/PolyLUT-Add
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Fig. 1: Architecture of a (a) PolyLUT and (b) PolyLUT-Add
For simplicity, the polynomial order of each PolyLUT neuron

(b) PolyLUT-Add

neuron, Fan-in F' = 6 (5-bit words) and A = 2 sub-neurons.
[8] is set to 1 in this example. For each output bit, PolyLUT

requires a lookup table of 267, while PolyLUT-Add requires (237 + 238 4 22(8+1)),

II. BACKGROUND

Wang et al. introduced LUTNet, the first LUT-optimized
FPGA inference scheme [5]. Its approach was to prune a
residual BNN: ReBNet [10] by mapping some of the XNOR-
population count (popcount) operations directly to k—input
LUTs to take advantage of FPGA architectures. LogicNets [60]
and NullaNet [7] adopted a different approach by quantizing
the inputs and outputs of each neuron and encapsulating
the neuron’s transfer function (i.e., densely connected linear
and activation functions) in a lookup table. This method
enumerated all possible combinations of a neuron’s inputs and
determined the corresponding outputs based on the neuron’s
weights and biases. By replacing popcount operations with
Boolean expressions, significant computational savings were
made. Building upon the foundations of LogicNets, Poly-
LUT [8], proposed by Andronic et al., further enhanced accu-
racy and reduced the number of required layers by introducing
piecewise polynomial functions.

Figure 2 illustrates the main idea behind the LogicNets,
NullaNet and PolyLUT approaches. Only sparse connections
of maximum F' inputs from the previous layer are supported,
and these can be directly mapped to the output via LUTs,
eliminating the F'-bit popcount operations required to form the
sum for a dot product operation. As an example in Figure 2(a),
the current layer has N neurons, of which only F' random
nodes are used as inputs to each neuron in the next layer.
In Figure 2(b), the transfer function mapping an input vector
[0, 21,...,2Fr_1] to the output node yy can be implemented
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Fig. 2: Nllustration of the LUT-based DNN inference scheme
used in LogicNets [6], NullaNet [7] and PolyLUT [&].

using SF' inputs, and hence requires a lookup table of size
26F The constraint F < N is manually applied to limit the
M-—1
w=a |

size of the lookup table.
Z wim; (x) + b> , where M = ( ) 1)
=0

The computation inside the neuron yo can be described
as Eq. (1), where o is the quantized activation function, w
and b denote weight and bias respectively, D is a polynomial
degree. For LogicNets and NullaNet methods D = 1; Poly-
LUT generalizes these methods by allowing larger polynomial

F+D
D



degree constructed from multiplicative combinations of the
inputs up to degree D. For instance, if the input vector is
two-dimensional and D = 2, the model construction proceeds
as follows: [z, x1] — [1 zo,xl,xo,xoxl,xl} The value of
M equals the number of monomials m(x) of at most degree
D in F variables.

While PolyLUT enriched the representational capability of
previous solutions, this requires a lookup table of O(2°%).
For instance, in the context of the MNIST handwritten digit
recognition task [! 1], which involves classifying 28 x28 pixel
images into 10 categories, PolyLUT’s architecture employs
layers with (784, 256, 100, 100, 100, 10) neurons, using
parameters 8 = 2 and F' = 6. This means that only 6 neurons
are randomly selected from each layer to form extremely
sparse connectivity to neurons in the next layer. To address
scalability by avoiding very large table sizes, the size of each
neuron’s lookup table was capped at 2'2. The exponential LUT
requirement of this approach precludes the selection of larger
[ and fan-in values, which can in turn limit accuracy.

III. DESIGN
A. DNN architecture

Figure 3 outlines our proposed DNN architecture. Compared
with Figure 2, the fan-in F' to sub-neurons remains the same,
but the total fan-in to the neuron is increased by a factor of A
at the output. This is achieved by summing A independent
and parallel randomly connected Poly-layers. To elucidate
the enhancement mechanism, we introduce the formulation
detailed in Eq. (2).

AF-—1 A—-1 F—1
Z wiz; +b= Z (Z W(aF+i)T(aF+i) T ba) 2
1=0 a=0 1=0
During computation, the activation function, such as Recti-
fied linear unit (ReLU) output bits, can be one bit less than the
input bits because its output is non-negative. To avoid overflow
in the Adder-layer, we increase its internal word length by one
bit (to 8 + 1), as seen in Figure 1(b).

B. System Toolflow

Figure 4 shows the tool flow. Like PolyLUT, training is done
offline using PyTorch [12], and then the resulting weights are
used to create the LUTSs that implement each neuron. These
tables are then utilized to generate Register Transfer Level
(RTL) files in Verilog, encapsulating the Boolean expressions
derived from the neurons. The final stage involves synthe-
sizing the LUT-based DNN design onto hardware, using the
AMD/Xilinx Vivado tool [13].

The integration of Brevitas [14] with PyTorch facilitates
quantization-aware training of DNNs. We modified the net-
work implementation to accept A, the model’s fan-in factor as
a parameter. The model’s weights are transformed into lookup
tables following the training phase. This transformation begins
by employing the quantized states inherent in the trained
model to ascertain each neuron’s input data range. For Poly-
layers, we generate all possible input combinations based on 3
and F'; In contrast, for the Adder-layer, all combinations are
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Fig. 3: A single-layer block diagram of PolyLUT-Add.

Hyper-parameters:
model structure, fan-in (F), word-length(5),
degree(D), sub-neuron number for Adder (A)
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Fig. 4: Tool flow for PolyLUT-Add. The original open-source
PolyLUT toolflow [8] components are shown in black with
modified elements in red.

generated based on 3 and A. These input combinations are
subsequently fed into their respective layers—Poly-layer and
Adder-layer—to generate the corresponding outputs. Finally,
these input and output pairs form the individual values for the
lookup table.

C. Pipelining

In our FPGA design, we treat each layer as an independent
module and synthesize them separately, with the critical path
in the layer with the largest delay determining the system’s
maximum clock frequency. Two implementation strategies
were considered, as illustrated in Figure 5.

1) Separate pipeline registers for each layer. This strat-
egy is best when the lookup table size (a proxy for
critical path delay) of the Adder-layer (24(°+1) and
Poly-layer (A2°F) are similar. Although the latency
in clock cycles is doubled, this architecture maximizes
clock frequency.
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Fig. 5: Two synthesis strategies

2) Single register for combined Poly-layer and Adder-
layer. When the Adder-layer is much smaller than Poly-
layer, its processing time should not adversely impact
the Poly-layer’s performance, enabling a more efficient
overall system design where latency is tightly controlled.

IV. RESULTS
A. Datasets

We evaluated the proposed PolyLUT-Add design on three
commonly used datasets for ultra-low latency inference:

1) Handwritten Digit Recognition: In timing-critical sectors
such as autonomous vehicles, medical imaging, and
real-time object tracking, the demand for low-latency
image classification is paramount. These applications
underscore the necessity for swift and accurate decision-
making, where even minimal delays can have significant
repercussions. Unfortunately, there is no public dataset
specialized for low-latency image classification tasks.
The MNIST [11] is therefore utilized to benchmark our
work on its image classification performance which is
a dataset for handwritten digit recognition tasks with
28 x 28 pixels as input image and 10 classes as outputs.

2) Jet Substructure Classification: Real-time decision-
making is often important for physics experiments such
as the CERN Large Hadron Collider (LHC). Jet Sub-
structure Classification (JSC) is one of its applications
that requires high-throughput data processing. Prior
works [2, 15—17] employed neural networks on FPGA
for this task to provide real-time inference capabilities.
We also use the JSC dataset formulated from Ref. [2] to
evaluate our work, with the dataset having 16 substruc-
ture properties as input and 5 types of jets as outputs.

TABLE I: Model setups used to evaluate different datasets.

Dataset Model name Neurons per layer B F D A
MNIST HDR 256, 100, 100, 100, 100, 10 2 6 1,2 2,3

Jet Substructure JSC-XL! 128, 64, 64, 64, 5 5 3 1,2 2
Jet Substructure ~ JSC-M Lite 64, 32, 5 3 4 1,2 2,3
UNSW-NB15 NID Lite? 686, 147, 98, 49, 1 3 5 1 2

1: Remarks: 8; =7, F; =2
2: Remarks: 3; =1, F; =17

3) Network Intrusion Detection: In the field of cyberse-
curity, the swift detection and mitigation of network
threats are important for the preservation of digital
infrastructure integrity (e.g. fibre-optic throughput can
reach 940 Mbps). Prior works have used FPGAs to
accelerate DNNs, enabling real-time Network Intrusion
Detection Systems (NIDS) with high accuracy and en-
abling privacy on edge devices [0, 8, 18]. The UNSW-
NB15 dataset [19] was used as the benchmark for our
evaluation process. It has 49 input features and the
classification is binary (bad or normal).

Results for the JSC and NID datasets were reported in
the LogicNets paper [6], and all three datasets were used for
PolyLUT [8].

B. Experimental Setup

Table I lists our neural network configurations for three
datasets. As a foundation for our experiments and to ensure
consistency in evaluation, our setup closely follows the Poly-
LUT study [8]. Our newly introduced A is setto A € {2, 3} for
models (HDR and JSC-M Lite) with small truth table (2°7),
and A = 2 is used for JSC-XL. Larger A (A > 4) can be
supported using an adder tree, which is left as future work.

The polynomial degree D = 1 and D = 2 correspond to
linear and quadratic representations respectively. We utilize
D € {1,2} to evaluate the performance of PolyLUT-Add.
As will be seen later, to facilitate a comparison with existing
literature and aim for enhanced accuracy, we also explore
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D = 3 in Section IV-D. This contrasts with PolyLUT, for
which higher degrees (D € {4,6}) achieve the best accuracy.
We comment, the case A = 1 is identical to PolyLUT, and
A =1,D =1 corresponds to LogicNets. We also note that
the training convergence of the UNSW dataset is sensitive
to the initial random seed, and hence, multiple trials were
necessary before a result with good accuracy was achieved.
As an exception, we therefore apply A = 2 and D = 1 to
evaluate the NID Lite model.

Using AdamW as the optimizer [12], we trained the smaller
models/datasets: (JSC-M Lite, NID Lite) for 1000 epochs, and
used 500 epochs for (JSC-XL and HDR). The mini-batch size
is set to 1024 and 128 for (JSC-XL and JSC-M Lite, NID-
Lite) and MNIST, respectively. We inherit these configurations
from PolyLUT [&] to ensure consistency in evaluation.

We used the AMD/Xilinx xcvu9p-flgb2104-2-1
FPGA part for evaluation to facilitate comparisons with
PolyLUT [8] and LogicNets [6]. The designs are compiled
using Vivado 2020.1 with Flow_PerfOptimized_high
settings, and are configured to perform synthesis in the
Out-of-Context (00C) mode. The RTL Generation time
was measured on a desktop with Intel(R) Core(TM) 17-10700F
@2.9GHz and 64GB memory.

C. PolyLUT-Add vs Deeper and Wider PolyLUT (small D)

We first present results comparing PolyLUT-Add with Poly-
LUT in configurations with the same polynomial degree. Three
configurations were tested:

1) Original PolyLUT: This serves as the baseline network.

2) PolyLUT-Deeper: This explores the impact of increas-

ing network depth. We denote the depth factor as D.

Then Dx the number of layers is applied to models in
Table 1. For example, for JSC-M Lite, if D = 2, the
hidden layer is doubled meaning the neurons per layer
becomes (64,64,32,32,5).

3) PolyLUT-Wider: This examines the impact of a wider

network model. We denote the width factor as W. Then
Wx the number of neurons per layer are applied to
models in Table I. Once again, for JSC-M Lite, if W =
2, the neurons per layer becomes (128,64,5).

Figure 6 shows the accuracy of the configurations with
parameter settings detailed in Table I. PolyLUT-Add achieves
the highest accuracy against all baselines on all datasets for
both the linear (D = 1) and non-linear (D = 2) cases.

D. Optimizing for Accuracy

In terms of accuracy and hardware, Table II shows that
for A = 2, PolyLUT-Add achieved accuracy improvements
of 2.7%, 0.6% and 2.3% over PolyLUT on the MNIST, Jet
Substructure classification and Network Intrusion Detection
benchmarks respectively. However, this required a 2-3x in-
crease in LUT size.

We also evaluate the performance of simply increasing
PolyLUT’s fan-in, F'. This has a lookup table consumption
of 256-1024x for similar accuracy, showing that PolyLUT-
Add can improve model accuracy without an excessive impact
on LUT size. Furthermore, it’s noteworthy that the RTL
Generation time cost also correlates with the lookup table
size; it follows that a direct increase in fan-in would incur
exponentially higher RTL Generation time costs.

In terms of latency, we apply single registers for combined
Poly-layer and Adder-layer (pipeline strategy-(2) in Figure 5)

TABLE II: Comparison of accuracy and hardware results between PolyLUT and PolyLUT-Add (D =1, W = 1)

Models Degree Model Fan-in Acc(%)t lookup table LUT FF F_maz Latency RTL Gen.
D (F x A) Size| (% of 1182240) (% of 2364480) (MHz) (cycles) (hours)
PolyLUT 6 93.8 212 3.43 0.12 378 6 1.40
. 10 96.1 212 x 256 - -
PolyLUT-Add 6x2 96.5 212 x 2 426 12.69 0.12 378 6 3.00
HDR 6x3 96.6 212 x 3 429 20.67 0.12 378 6 4.40
PolyLUT 6 95.4 212 6.62 0.12 378 6 1.40
) 10 97.3 212 x 256 - -
PolyLUT-Add 6x2 97.1 212 x 2 4+ 26 19.78 0.07 378 6 3.00
6x3 97.6 212 % 3 +29 31.36 0.07 378 6 4.50
PolyLUT 3 74.5 215 19.55 0.07 235 5 2.10
1 5 74.9 215 % 1024 - _
ISCXL PolyLUT-Add 3x2 75.1 215 % 2 4 212 50.10 0.07 235 5 5.17
PolyLUT 3 74.9 215 37.40 0.07 235 5 2.30
2 5 75.2 215 x 1024 - -
PolyLUT-Add 3x2 75.3 215 x 2 + 212 89.60 0.07 235 5 5.24
PolyLUT 4 71.6 212 0.97 0.01 646 3 0.16
| 7 72.1 212 x 512 - -
PolyLUT-Add 4x2 72.2 212 x 2 4+ 28 2.62 0.01 488 3 0.35
ISCM Lite 4x3 723 212 x 3 + 212 4.33 0.01 363 3 0.63
PolyLUT 4 72.0 2? 1.51 0.01 568 3 0.16
2 6 72.5 21; x 512 . - _
4x2 72.5 212 %2 4+2 4.29 0.01 440 3 0.34
PolyLUT-Add 4x3 726 212 y 3 4 912 6.57 0.01 373 3 0.64
5 89.3 215 6.86 0.15 529 5 4.09
NID Lite 1 PolyLUT 8 91.0 215 % 512 - -
PolyLUT-Add 5x2 91.6 215 x 2 4+ 28 21.41 0.15 529 5 8.76

—: Data for very high fan-in settings is omitted due to exceeding FPGA memory capacity limits.



TABLE III: Comparison results with prior works. PolyLUT-Add uses smaller ' and D (see Table IV), whereas PolyLUT uses

larger D, F for accuracy.

Dataset Model Accuracy? LUT FF DSP BRAM F_maxz(MHz)1 Latency(ns)J
PolyLUT-Add (HDR-Add2, D=3) 96 % 15272 2880 0 0 833 7
MNIST PolyLUT (HDR, D=4) [8] 96 % 70673 4681 0 0 378 16
FINN [20] 96 % 91131 - 0 5 200 310
hls4ml [21] 95% 260092 165513 0 0 200 190
PolyLUT-Add (JSC-XL-Add2, D=3) 75% 47639 1712 0 0 400 13
PolyLUT (JSC-XL, D=4) [8] 75% 236541 2775 0 0 235 21
Jet Substructure
Duarte er al. [?] 75% 88797* 954 0 200 75
Fahim et al. [17] 76% 63251 4394 38 0 200 45
PolyLUT-Add (JSC-M Lite-Add2, D=3) 72% 1618 336 0 0 800 4
Jet Substructure PolyLUT (JSC-M Lite, D=06) [§] 72% 12436 773 0 0 646 5
LogicNets [0] 72% 37931 810 0 0 427 13
PolyLUT-Add (NID-Add2, D=1) 92% 2591 1193 0 0 620 8
UNSW-NB15 Poly'LUT (NID-Lite D=4) [8] 92% 3336 686 0 0 529 9
LogicNets [0] 91% 15949 1274 0 5 471 13
Murovic et al. [18] 92 % 17990 0 0 0 55 18

*: Paper reports “LUT+FF”

TABLE IV: Model setups for smaller F' of PolyLUT-Add.

Dataset Model name Neurons per layer s F D A
MNIST HDR-Add2 256, 100, 100, 100, 100, 10 2 4 3 2
Jet Substructure JSC-XL-Add2! 128, 64, 64, 64, 5 5 2 3 2
Jet Substructure  JSC-M Lite-Add2 64,32, 5 3 2 3 2
UNSW-NBI15 NID-Add2? 100, 100, 50, 50, 1 2 3 1 2

1: Remarks: 8; =7, F; =1
2: Remarks: 8; =1, F; =6, 8, =2, Fp =7

TABLE V: Comparison of two pipeline strategies on PolyLUT-
Add with JSC-M Lite as the case study

Degree Fan-in pipeline F_max Latency Results

D FxA strategy (MHz)t clock cycles| Latency(ns)J

(n 646 6 9

R :

3 @ 363 3 8

(1) 568 6 11

S -

3 @ 373 3 8

to models in Table II. For HDR, JSC-XL and NID Lite,
PolyLUT-Add achieve the same latency (with maximum fre-
quency (F_max), which was constrained at 378 MHz, 235
MHz and 529 MHz respectively in Ref. [8]). However, on the
JSC-M Lite model, F'_max is decreased. Therefore, we use
the JSC-M Lite model as a case study to analyze its maximum
frequency and clock cycles for pipeline strategies (1) and -(2).
The results are shown in Table V. As expected, the separate
pipeline registers for each layer (strategy-(1)) do not affect
overall system performance, whereas strategy-(2) results in the
lowest overall latency with lower F'_max. We suggest that the
best choice will be dependent on specific system requirements.

We conducted additional experiments with PolyLUT-Add
using the setup in Table IV. This utilizes lower F' compared
with the PolyLUT setup in Table I. A = 2 is used for all
models (which are denoted as “HDR-Add2”, “JSC-XL-Add2”,
“JSC-M Lite-Add2”, “NID-Add2”). We also reduced the layer

sizes in the DNN model for the UNSW-NB15 dataset. These
configurations were found to reduce area whilst maintaining
comparable accuracies. Optimization of these parameters may
further improve results for specific applications.

Table III shows the results and comparisons with prior
works. Notably, PolyLUT applied D = 4 for HDR, JSC-XL
and NID Lite models and D = 6 for the JSC-M Lite model,
while PolyLUT-Add used smaller D. For comparable accu-
racy, the proposed PolyLUT-Add achieved a LUT reduction
of 4.6x, 5.0x, 7.7x and 1.3x for the MNIST, JCS-XL, JSC-
M Lite and UNSW-NB15 benchmarks respectively.

Finally, we studied latency with comparable accuracy.
Pipeline strategy-(2) in Figure 5 was used to minimize the
number of clock cycles. Compared with PolyLUT, this ap-
proach achieved a 2.2x, 1.7x, 1.2x and 1.2x decrease for
the four benchmarks respectively. These significant reductions
are attributed to lower polynomial degree D, and lower F.

V. CONCLUSION

We introduced PolyLUT-Add, a novel technique designed to
enhance connectivity between neurons in LUT-based networks
to deploy DNNs at the edge efficiently. By combining base
PolyLUT models, our approach mitigates scalability issues as-
sociated with conventional implementations and significantly
improves efficiency. Specifically, we demonstrated that by
utilizing a configuration of A = 2, PolyLUT-Add with a lower
polynomial degree D and fan-in F' are sufficient to achieve
comparable accuracy to PolyLUT. Over our benchmarks,
PolyLUT-Add achieved reductions in LUT consumption by
factors of 1.3-7.7 with a 1.2-2.2 times decrease in latency.
The PolyLUT-Add architecture enhances LUT-based neural
network performance in terms of area efficiency and latency.

Future work could be developing a targeted optimization
technique for the individualized adjustment of F', A and f3
parameters within each layer or neuron, aiming to substantially
boost network accuracy, reduce latency, and optimize area
efficiency.
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