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Abstract

The implantable cardioverter—defibrillator (ICD) is a device which monitors the
heart and delivers defibrillation and/or pacing therapy in the event of a life
threatening arrhythmia. Such devices have had great success in preventing what
otherwise would be sudden cardiac death. The arrhythmia classifier used in
current devices makes its decision primarily based on rate criteria. Unfortunately,
this method is very crude and can cause incorrect therapy to be delivered for
certain arrhythmias, sometimes with fatal consequences.

This thesis describes a two chamber arrhythmia classification algorithm,
called MATIC, which classifies heart signals based on timing and morpholog-
ical criteria. MATIC attempts to mimic a cardiologist when making a classifi-
cation and uses a decision {ree Lo examine timing relations within and between
channels. For most arrhythmias, this information is sufficient to make a reliable
classification. For some arrhythmias, correct classification cannot be achieved
based on rate alone, and in these cases, a neural network is used to analyze the
morphology of the heart signal. The MATIC algorithm achieved 99.6% correct
classification on a database of intracardiac electrogram signals containing 12483
QRS complexes recorded from 67 patients during electrophysiological studies.

The neural network used for morphology classification in the MATIC algo-
rithm is computationally expensive and would have excessive power consumption
for an implantable device. An analogue low power neural network VLSI chip
called Kakadu was designed to address this problem. Kakadu’s design is based

on synapses implemented as multiplying digital to analogue converters which can
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operate al very low bias currents. Kakadu implements a three layer [eedlorward
network with 10 inputs, 6 hidden units and 4 outputs and achieves typical power
consumption figures of tens of microwatts. When Kakadu is incorporated in an
arrhythmia classification system, power consumption of less than 25 nW can be
achieved.

When Kakadu is used to provide the morphology classification of the MATIC
classifier, the resulting system classifies arrhythmias both reliably and with low

power consumption — the two necessary features of a classifier suitable for an

ICD.
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Chapter 1

Introduction

1.1 Motivation and Aims

Sudden cardiac death is a major public health problem worldwide, claiming an
estimated 450,000 lives in the USA every year, between 80% and 90% of these
being due to ventricular tachyarrhythmias [Gil89]. In February 1980, the first hu-
man implant of the implantable cardioverter—defibrillator (ICD) was performed
and early results were encouraging. Since 1980 more than 10,000 patients have
received ICD devices, and no other therapy has been able to prevent sudden
cardiac death so effectively [Tro91].

The ICD, invented by Michael Mirowski, is an electronic device which is
permanently implanted in a patient. This device monitors the heart and applies
to it a high energy defibrillating shock when a life threatening tachyarrhythmia
is detected.

Despite the spectacular acceptance and performance of these devices through-
out the 1980s and early 1990s, they are not perfect. Arrhythmia classifica-
tion in current ICDs is performed by heart rate alone or heart rate combined

with simple morphological criteria. Although these techniques are successful
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in differentiating between certain tachyarrhythmias, ICDs olten produce in-
correct classifications. This can lead to the delivery of inappropriate therapy
[FLS84, Win91, MMK*91, BGRL192] — sometimes with fatal consequences.

As ICD devices must be battery powered and have a lifetime of up to 10 years,
low power consumption is a very important constraint in their design. Although
many excellent algorithms for tachyarrhythmia classification already exist, they
usually need a large amount of computing power and hence are not suitable for
use in implantable devices.

The main aim of this thesis is to develop a system for classifying tachyarrhyth-
mias which is both accurate and draws little power. Even without a power limit,
classification is a difficult problem due to a large variation and overlap in the
distinguishing features of tachyarrhythmias between patients. This problem is

made even more difficult when constrained by a very low power budget.

1.2 Contributions

This thesis presents a new algorithm for tachyarrhythmia classification which was
developed to accurately classify a wide range of tachyarrhythmias. The algorithm
classifies intracardiac signals in much the same way as a human expert: a deci-
sion tree is used to examine timing relations in the signal and an artificial neural
network (ANN) is used to recognise certain morphological features. Neural net-
works have an advantage over conventional techniques in that they can produce
nonlinear mappings as well as store multiple morphologies. The algorithm thus
combines the simplicity and efficiency of a decision tree with the improved pat-
tern matching ability of a neural network. The decision tree is computationally
inexpensive and can be implemented in the microprocessor of an ICD. However,
the ANN is computationally expensive, and so a new analogue very large scale
integration (VLSI) architecture and implementation was developed to achieve

the very low power consumption required.
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The algorithim developed in this thesis is called MATIC (morphology and
timing intracardiac electrogram classifier) and can classify a wide range of tach-
yarrhythmias which commonly occur in candidates for ICD devices. MATIC dit-
fers from earlier work [PF88, TDNC91, ZT88, DBW90, LDJ88, TJD90a, CJ90,
Lee89, ABJt84, MF86, SJSL8S8] in that it was designed with low power im-
plementation in mind. It also produces a classification based on both timing
and morphology, thus improving the ability to recognise a wider range of tach-
yarrhythmias. In particular, it directly addresses the problem of differentiating
between sinus tachycardia, supraventricular tachycardias, ventricular tachycar-
dias and ventricular fibrillation. The number of patients tested on MATIC and
the classification performance achieved by MATIC surpasses those in all the re-
ports cited above.

The implementation of the MATIC algorithm in an ICD relies on being able to
implement a morphology based classifier that has very low power consumption.
To achieve this, an architecture for a general purpose low power VLSI ANN
chip (called Kakadu) was developed. Although many subthreshold VLSI designs
inspired by biological neural networks have been made [Mea89, AB89, And90],
no comparable implementations with as low a power consumption as Kakadu
have been reported.

An implementation of the MATIC classifier using the Kakadu chip, which al-
lows classifier performance and power consumption to be measured, was built and
successfully tested. Although many proposals for using VLSI neural networks to
solve real world problems have been made, few have produced a working imple-
mentation of an entire system. None has been applied to the tachyarrhythmia
classification problem.

Many morphology classifiers have been proposed for ICDs [ABJ*84, LJDMS8,
LDJ88, TJD90a, TDJW90, TIDIOb, DTJI1]. In the past, [CDs have not incor-
porated morphology classifiers because the area and power consumption required

for their implementation is too great for the small population of patients which
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it might benelit. However, the neural network VLSI chip developed in this thesis
would not increase the power consumption of an ICD by an appreciable amount
and can fit into a small area, thus making it tractable to incorporate it in an ICD
at little cost. The addition of morphology classification to ICD devices would

enable a wider range of patients to benefit from ICD technology.

1.3 Structure of the Thesis

An introduction to the fundamentals of cardiology, arrhythmia classification and
ICD devices is presented in Chapter 2. The chapter begins with an introduction
to the physiology of the heart, shows mechanisms which cause tachyarrhythmias,
describes the diagnosis of tachyarrhythmias, reviews previous work on automatic
arrhythmia classification and ends with a short description of a modern ICD.

In Chapter 3, the design of an algorithm for classifying tachyarrhythmias is
presented in detail. The chapter describes the design considerations for the clas-
sifier and then presents the MATIC algorithm in detail. The MATIC algorithm
uses a neural network for template matching and a decision tree to perform timing
based classification. It is shown that the implementation of the neural network
using a microprocessor inside an ICD would have too high a power consumption.
For this reason, a low power VLSI implementation of the neural network is pro-
posed and an architecture appropriate for implementing the MATIC algorithm
in an ICD is described.

Chapter 4 covers the design, implementation and testing of the first of two
artificial neural network chips. It begins with a review of previous work on im-
plementing ANNs in analogue VLSI. Design considerations for a neural network
classifier chip suitable for use in MATIC are then discussed and the design of the

Bourke prototype neural network chip is described. Bourke implements a small
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neural network and a bucket brigade device. The chapler ends with a presenta-
tion of the simulation, training and test results from the Bourke chip as tested
on the XOR problem.

Results from Bourke assisted in the design of a second chip, called Kakadu.
This chip design is described in Chapter 5. Kakadu contains a much larger neural
network than Bourke and is used later as a morphology classifier for the MATIC
algorithm. The experimental results obtained from the Kakadu chip are also
described in this chapter. These include measurements of the chip’s transfer
function, power dissipation measurements and models, training and the results
of classification tests.

The results of applying the MATIC algorithm to a large database of intrac-
ardiac electrograms are presented in Chapter 6. A comparitive study between
the Kakadu chip and a normal software three layer perceptron is described and
the MATIC classifier is also compared with a standard tachyarrhythmia classifier
typical of that used in an ICD device.

In the final chapter, a summary of the work in this thesis and directions for

future work are presented.



Chapter 2

Tachyarrhythmia Classification

2.1 Introduction

This chapter presents an introduction to the concepts and terminology from
cardiology relevant to this thesis. It describes the principles of operation of the
heart, the mechanisms which cause arrhythmias, classification of arrhythmias,
previous techniques for automatic classification of arrrhythmias and features of
a modern implantable cardioverter—defibrillator (ICD).

The chapter begins with a brief introduction to the physiology of the heart.
This is followed by an outline of the cause, diagnosis and treatment of tach-
yarrhythmias that are common in ICD recipients. Earlier work conducted on the
computer classification of arrhythmias from intracardiac electrograms is then de-
scribed, including techniques based on the probability density function, heart
rate, decision trees, frequency domain, sequential testing of the threshold cross-
ing interval, template matching, neural networks and techniques which combine
timing and morphology. The chapter concludes with a description of the Telec-

tronics 4210 as an example of a modern [CD.
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2.2 Basic Cardiology

This section is a brief introduction to aspects of cardiology applicable to work on
intracardiac electrogram (ICEG) classification. The anatomy and physiology of
the heart’s conduction system is explained as well as the mechanisms, diagnosis
and trcatment of tachyarrhythmias common in ICD devices.

Further information on cardiology can be found in Julian’s book [Jul88] which
provides a good general primer on all aspects of this field. For more detailed works
on arrhythmias, Mariott and Conover [MC83] and Josephson and Wellens [JW84]
are good references. Durbin [Dub89] is an excellent text on interpreting the 12
lead electrocardiogram. A stepwise approach to diagnosing tachyarrhythmias
using the clectrocardiogram and clectrophysiology is presented by Wyndham
[Wyn91]. A glossary is provided at the end of the thesis to assist the reader with

the terminology and abbreviations.

2.2.1 Conduction System

The myocardium is cardiac muscle in the middle layer of the heart. The resting
cell is polarised to a potential of approximately —90 mV, this value being called
the transmembrane resting potential. Polarisation is maintained by a sodium
pump within the cell which serves to exclude sodium ions from the cell.

When the cell membrane is electrically stimulated, the membrane potential
increases to the threshold potential and the cell permeability is increased causing
a rapid influx of sodium ions and a slower influx of calcium ions (see Figure 2.1).
This causcs depolarisation to occur and the transmembranc potential to become
positive. Following depolarisation, repolarisation occurs until the resting po-
tential is again reached and the ionic balance restored. In the first stages of
repolarisation, a refractory period exists during which no further depolarisation

can occur.
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Figure 2.1: Cell potential during depolarisation and repolarisation.

The cells just described are called non—automatic because they require elec-
trical stimulation to depolarise. As well as these, automatic cells which can self
excite are also present. These cells exist throughout the conduction system and

have different rates of spontancous depolarisation.

2.2.1.1 Conduction in Normal Sinus Rhythm

The heart is controlled by a specialised network of muscles along which electrical
activity (action potentials) is transmitted (see Figure 2.2). A normal heartbeat is
initiated by an impulse formed by the automatic self-excitation of the sinoatrial
(SA) node. The SA node has the fastest rate of spontancous depolarisation and
so acts as the heart’s natural pacemaker. If for any reason the SA node does not
depolarise, other automatic cells will spontaneously depolarise to ensure that the
heart continues to beat.

The action potential is conducted via muscle fibres to the atrioventricular
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Figure 2.2: Heart conduction system.

(AV) node and as it spreads along this route, atrial contraction occurs causing
blood to be forced into the ventricles.

The AV node serves to delay the propagation of the action potential and
allows time for the atria to complete its contraction. After this delay, the action
potential spreads along the Purkinjie fibres through the bundle of HIS and is
divided into left and right Purkinjie bundles which extend into the left and right
ventricles. The Purkinjie fibres are fast conducting so that the action potential
rapidly spreads through the ventricles causing depolarisation of the ventricular

muscle. This, in turn, pumps blood throughout the body.

2.2.2 ICEG Data and Electrophysiological Studies

The data used in all experiments described in this thesis were obtained by the pro-
cess of cardiac catheterisation during electrophysiological studies (EPS). During
EPS, temporary catheters are inserted into veins and advanced under fluoroscopic

guidance into the internal walls of the heart (called the endocardium).
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The heart potential can be monitored and stimulated via these catheters,
and tachyarrhythmias can be induced and terminated by appropriate stimula-
tion. Recordings of the heart potential can be made from these catheters, one of
which is usually placed in the right ventricular apex (RVA) and one in the high
right atrium (HRA). These two probes enable the heart’s conduction sequence
to be determined. A catheter is also often placed on the HIS bundle so that
the direction of propagation can be better determined. Although a HIS bundle
recording is very useful for diagnosing arrhythmias, permanent catheters cannot
be placed in this position at present. Therefore, classification algorithms for
implantable devices should not depend upon information from the HIS bundle.

The recorded trace of the catheter’s potential is called an intracardiac elec-
trogram (ICEG). On the RVA lead, the QRS complex is the point when depo-
larisation of the ventricular muscle occurs. This is usually a large amplitude,
very sharp deflection in the electrogram (see Figure 2.3) and is formed from Q,
R and S waves. The R wave is any positive deflection of the QRS, the negative
deflection preceding the R wave is called the QQ wave and the negative deflection
following the R wave is called the S wave. In the HRA channel, the P wave
corresponds to the spread of clectrical activity though the atria and is identified
by a sharp deflection in this channel.

The RR interval is the instantaneous ventricular heart rate and is the time
between successive R waves. Similarly, the PP interval is the instantaneous atrial
rate and this is the time between successive P waves. The PR interval is the time
from a P wave to the next R wave and this measures the time between atrial and
ventricular depolarisations.

The recordings made via the internal catheters are different from those ob-
tained from the 12 lead electrocardiogram (ECG) which are potentials recorded
on the skin surface. The ICEGs record potentials local to the vicinity of the
probes whereas the ECG records a global view of cardiac activity. Thus, in an

ECG, P waves and R waves can be seen on the same trace, whereas in the RVA
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Figure 2.3: QRS complex.

channel, only ventricular depolarisation can be observed and similarly, in the

HRA channel, only atrial activity is observed.

2.3 Intracardiac Electrogram Classification

A basic guide to the classification of ICEGs, grouped into the two categories of
arrhythmias and conduction system abnormalities is presented in this section.
Note that this is a very informal description, providing only cnough material
to achieve an understanding of ideas in this thesis, many simplifications having

been made.

2.3.1 Arrhythmias

Abnormalities in the electrical activity of the heart are called arrhythmias. Ar-
rhythmias occur when there is abnormality in the rate, regularity, conduction or
origin of the cardiac impulse. Impulses not originating in the SA node are called
ectopic beats and most arrhythmias which are studied are due to this effect.

Mechanisms which can cause ectopic beats include
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A A A

A B

Figure 2.4: Mechanism for re-entry. In A, conduction cannot proceed into the
shaded zone since it is refractory. By B, the zone is no longer refractory and
conduction proceeds through the previously refractory zone. In C, the wave of
depolarisation re enters the arca which was previously depolarised by A.

1. Reduction of the spontaneous depolarisation rate of the sinus node to less

than that of another group of automatic cells which then take over the

pacemaker function of the heart.

2. Increased rate of automatic depolarisation of other groups of automatic

cells.

3. The “re—entry” mechanism whereby two or more pathways of conduction
with different refractory periods enable ectopic thythms to be formed (see

Figure 2.4).

The following sections offer an introduction to the diagnosis of certain tachy-
cardias including sinus tachycardia (ST), normal sinus rhythm (NSR), atrial
tachycardia (AT), atrial flutter (AFlut), atrial fibrillation (AF), supraventricular
tachycardia (SVT), ventricular tachycardia (VT), fast ventricular tachycardia
(VTF) and ventricular fibrillation (VF). These tachycardias are referred to as
“subclasses”. In this thesis, all of the arrhythmias are grouped into four major

“superclasses”, NSR, SVT, VT and VF. This is because these four superclasses
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‘ Subclass ‘ Superclass ‘

NSR NSR
ST NSR
SVT SVT
AT SVT
AFlut SVT
AF SVT
VT VT
VT 1:1 | VT
VTF VI
VI VI

Table 2.1: Subclass to superclass mapping table.

Tachycardia | Atrial P wave Ventricular | QRS PR

Rate Morphology Rate Morphology | interval
ST 100 — 140 | Normal 100 — 140 Normal Normal
AT 140 — 220 | can be Abnormal | 70 — 220 Normal Lengthened
AFlut 280 — 300 | Abnormal 140 — 220 Normal Dissociated
AF 300+ Chaotic 100 — 150 Normal Dissociated
VT 60 — 100 | Normal 140 — 170 May widen | Dissociated
VTF 60 — 100 | Normal 170 — 270 Wide Dissociated
VF 60 — 100 | Normal 270+ Chaotic Dissociated

Table 2.2: Tachycardia diagnosis guidelines. A rough guide to identifying tachy-
cardias.

correspond to the four different trecatments that an ICD can deliver. The map-
ping from subclasses to superclasses is shown in Table 2.1.
While reading the following sections, it may be useful to refer to Table 2.2

which is a summary of the tachyarrhythmia characteristics.

2.3.1.1 Normal Sinus Rhythm

When the heart is operating normally (as described in Section 2.2.1.1), the
rhythm is said to be a normal sinus rhythm and a typical ICEG of NSR is
shown in Figure 2.5. During NSR, the normal sequence of events in the ICEG
will be that the P wave will occur shortly after depolarisation of the SA node, a
delay of 100 to 200 milliseconds (PR interval) will occur as the action potential

propagates through the AV node, and then the QRS complex will appear when
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Figure 2.5: Normal sinus rhythm. Numbers along the ICEG represent the sample
number of the signal (sampling period is 4 ms).
depolarisation of the ventricles occur. Every P wave has a corresponding R wave
for NSR and the heart rate is usually between 60 and 100 beats per minute
(bpm).

A tachyarrhythmiais any heart rhythm with ventricular rate greater than 100
bpm. Sinus tachycardia is simply a normal sinus rhythm with a fast heart rate
(> 100 bpm) and is commonly induced from fright, excitement, sudden effort or

postural change.

2.3.1.2 Supraventricular Tachycardias

Supraventricular tachycardias (Figure 2.6) are caused by ectopic beats originating
in or above the AV node. They are typically in the range of 140-220 bpm and
usually have a narrow QRS complex. The P wave often becomes abnormal in
shape. The atrial rate may be faster than the ventricular rate and the PR interval

is usually changed from that seen in NSR. Atrial tachycardia has an atrial rate
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Figure 2.6: Supraventricular tachycardia.

of approximately 140-220 bpm, atrial flutter has an atrial rate of 280-300 bpm
and atrial fibrillation is usually faster than 300 bpm. For most SVTs, except AF,
ventricular rate is usually 140 220 bpm. DUring AF. the ventricular rhythm is
irregular and the rate is approximately 100-150 bpm.

Current ICD devices have support neither for the identification nor the treat-
ment of SVT. Current therapy is to treat SVT with drugs, surgery or ablation,
and these techniques are usually successful [dBC89]. However, experiments have
shown that SVT can be terminated by either atrial pacing or dual chamber

pacing [SS76, MMK™81], and this may become a therapy in future ICDs.

2.3.1.3 Ventricular Tachycardia

Ventricular tachycardias are caused by ectopic beats originating in the ventricles.
The ventricular rate of VT (Figure 2.7) is usually in the range of 120-220 bpm.

The P waves are usually normal in rate and shape since the atria remains under



Chapter 2. Tachyarrhythmia Classification 16

VT VT VT vi VI vt v VT v
| P\l Wt I T AT Ty, T
470 10480 10360 ' 10630 ' 10700 Yh770 10840 ogro'F 1o8R0  TF 1r0s6” i
Lead: RVA
VT
VT VT T VT VT VT vT vT
R . | b
pdz0 10490 10560 10630 10700 10770 10840 10970 10980 11050 1
Lead: HR A
=}
INFO!

Figure 2.7: Ventricular tachycardia.

control of the SA node. VT is usually dissociated, the atrial and ventricular
beats being independent. In addition, VT often causes a widening of the QRS
complex.

In VT with 1:1 retrograde conduction (Figure 2.8), no dissociation occurs and
the atrial rate is the same as the ventricular rate due to a reverse conduction,
the wave of depolarisation passing from the ventricles to the atria. VT 1:1
often causes a widening of the QRS complex or some other change in the QRS
morphology. In addition, the PR interval can change from that during NSR.
The diagnosis of VT 1:1 often requires HIS bundle recordings to determine the
direction of the conduction.

The ICD treatment for VT is usually either antitachycardia pacing or a low
energy DC cardioversion shock. In the case of VT'F, which is simply VT with a

170-270 bpm ventricular rate, treatment is the same as that for VF.
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Figure 2.8: Ventricular tachycardia with 1:1 retrograde conduction.

2.3.1.4 Ventricular Fibrillation

Ventricular fibrillation (Figure 2.9) is identified by chaotic ventricular activity
on the RVA lead. Ventricular rate is usually greater than 300 bpm. VF will
cause permanent brain damage if not treated within four minutes since there is
no cardiac output during the episode. The treatment of VF is to apply a high

energy electric shock which serves to defibrillate the heart.

2.3.2 Conduction Abnormalities

This section describes cardiac conditions which are caused by delays or blockages
in the conduction system of the heart. These are not caused by ectopic beats
but rather by conduction delays and blockages. They are important because an
arrhythmia classifier can often be fooled by such conduction abnormalities into

producing an incorrect classification.
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Figure 2.9: Ventricular fibrillation.

2.3.2.1 Bundle Branch Block.

Bundle branch block (BBB) is caused by a delay in the conduction of either
the right or left parts of the ventricular conduction system. Because the signal
is delayed in one half of the ventricle, the shape of the QRS is widened and
sometimes notched.

A BBB which occurs with a sudden onset (paroxysmal BBB) can be indistin-
guishable from VT in the RVA channel although VT QRS complexes are usually
wider than for BBB. However, most BBBs are not paroxysmal, being permanent
in nature. Bundle branch block is normally left untreated even though a small

decrease in cardiac output occurs.

2.3.2.2 Atrioventricular Block

Atrioventricular (AV) block is any delay or block in the AV node. AV block is

grouped into three degrees.
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First degree AV block occurs when the AV interval increases beyond 200 ms on
an external ECG. In second degree AV block, intermittent conduction through
the AV node occurs, and this can result in patterns with two or more atrial
depolarisations for each ventricular depolarisation. Third degree AV block is a
complete block and no atrial depolarisations pass through the AV node to cause
ventricular depolarisation. AV block often occurs after defibrillation therapy and

can be treated by pacing.

2.4 Earlier Work on Computer Classification

of Arrhythmias

Many ICEG classification algorithms have been proposed and this section pro-

vides an overview of techniques described in the literature.

2.4.1 Probability Density Function

The probability density function (PDF) method developed by Langer et al.
[LHMMY76] was the very first classification algorithm used in an implantable
defibrillator and is still available as an optional detection criterion in some ICD
devices today. This technique can be implemented by passing the RVA channel
through a window comparator and then low pass filtering the output.

The PDF, as defined by Langer, is the function which describes the fraction
of time on average that the signal spends between two limits. In the case of
NSR the PDF has a large peak about zero since the signal spends a significant
amount of time around zero. In the case of VT and VF, the sinusoidal nature of
the signal means that very little time is spent near zero potential and the PDF
does not have a peak about zero.

Toivonen et al. [TVJ92] have applied PDF to differentiate between SVT

and VT in patients with implanted ICDs. They concluded that PDF was not
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a reliable method for making this distinction since 7 out of 12 patients met
the PDF criteria even though the patients were in sinus tachycardia. From this,
Toivonen concluded that PDF would not be able to reliably prevent inappropriate

discharges of an ICD during fast supraventricular tachycardias.

2.4.2 Single Channel Heart Rate

All current ICDs rely mainly on measurements of the heart rate taken from
the RVA channel as their primary means of arrhythmia detection [KW90]. A
combination of the following criteria is normally used, specificity being improved

by using multiple criteria
e rate cutoff
e sudden onset
e rate stability
o sustained high rate

The rate cutoff criterion is met if the heart rate goes above a programmable
limit. This method fails to differentiate between arrhythmias with overlapping
heart rates such as ST, SVT and VT. The suddenness of onset can often be used
to help differentiate between ST and VT, and this has been shown to yield the
highest degree of specificity when used together with rate cutoff. Rate stability
often indicates whether the arrhythmia is ventricular in origin, VT usually having
high rate stability whereas SVTs often have a large ventricular rate variation. A
sustained high rate is used to recognise arrhythmias that do not meet the rate
cutoff and sudden onset criterion. In a test involving 50 patients, Warren et al.
[WM86] showed that the incidence of false tachycardia detection during ST can
be reduced from 93% (rate cutoff alone) to 3% by adding sudden onset detection

to the rate cutofl criteria.
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2.4.3 Dual Channel Decision Tree

Most of the incorrect classifications made by single channel devices are caused
by the overlap of heart rate ranges of sinus tachycardia (ST), supraventricular
tachycardia (SVT) and ventricular tachycardia (VT). The addition of an atrial
lead provides a means whereby the sequence of atrial and ventricular depolarisa-
tions can be determined and very reliable classification of these arrhythmias can
be made [ABJ*84, MF86, SJSL8S].

The dual channel decision tree was first implemented by Arzbaecher et al.
[ABJ*84]. This simple decision tree monitors the intervals among and between
the two channels (see Figure 2.10). Arzbaecher estimated that the duty cycle
of a microprocessor implementing his algorithm would be less than 1%. He also
suggested that the addition of morphological information may be used to differ-
entiate between ST and retrograde conduction. Arzbaecher tested this algorithm
on 22 patients and it was successful in all cases but one. The misclassified ar-
rhythmia was a VT which was “almost” 1:1, 7 out of 8 beats conducting in a

retrograde fashion.

2.4.4 Frequency Domain

Fourier transforms were first applied to the ECG by Nygards and Hulting [NH77]
in 1977. Pannizzo and Furman [PF88] applied Fourier transforms to the ICEG in
order to detect the difference in frequency spectra between NSR and VT. Their
studies indicate that there is an 8 Hz difference in the peak amplitude between
NSR and VT. However, Fourier transforms are computationally expensive and

time domain methods can also be used to make this distinction.

2.4.5 Threshold Crossing Interval

Zhu and Thakor [ZT88] developed a sequential testing method which converts

a one second buffer of intracardiac signals into a binary sequence. This is done
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Figure 2.10: Arzbaecher et al. method of arrhythmia classification using two
leads and a decision tree [ABJ*84].

using the equivalent of a comparator with a threshold set to 20% of the peak
value of the stored signal. The number of threshold crossing intervals (TCI’s)
in the buffer is then computed. The sequential testing algorithm can distinguish
between two arrhythmias based on the computed TCI and a precomputed thresh-
old, the output being either VI, VF or NOTSURE. If the output is NOTSURE,
the next TCI is used to add confidence to the decision. This process continues
until either a decision is made or the number of one second trials exceeds a fixed
value, whereupon the algorithm starts again and no decision is made.

To perform the sequential hypothesis test, Gaussian distributions are fitted to
the data and the mean and standard deviation are computed. Error probabilitics
of rejecting the hypothesis of a VF when it is true («) and of accepting the
hypothesis of a VT when it is false () are selected and these can be chosen
to be arbitrarily small. From « and f, the following thresholds can then be

computed

Bor =t 220 (2T (2.1)

a ovFE
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where m is the number of observations, o is the standard deviation and g is the
mean of the respective distribution.

It the log—likelihood function

1 i 1 m
f(m) = 52 ST — pvr) — 572 > Ty — pyr)? (2.4)
OVF i=1 OvT i=1

where T; is the 1th TCI of the test is computed, it is possible to test whether
the signal is VT or VF by saying it is VF if f(m) < Evp, and correspondingly,
it is VT if f(m) > Evy. If Eyvp < f(m) < Eyr, the decision can be delayed
until a higher confidence level is reached by increasing m. If m gets larger than
a fixed number, the observations are discarded and the algorithm starts again
with m = 1. The sequential testing method thus allows the probability of an

error to be traded off against the latency of the algorithm.

2.4.6 Template Matching Techniques

Many template matching techniques have been proposed for differentiating be-
tween ST and VT. These methods involve producing a template of the NSR by
averaging several complexes and then using correlation techniques to measure
the likeness of a rhythm with the template. Such techniques include area of
difference [TJD90b], correlation waveform analysis (CWA) [LDJ88], and the bin
area method [TJD90a].

Jenkins et al. have performed many comparative studies in this area
[LJDM88, 1.DJ88, TJD90a, TDIJW90, TJDI0b, DTJI1] and have achieved ex-
cellent results in differentiating between NSR, VT and retrograde conduction.

CWA uses the correlation function defined by [DTJ91]

_ N (ti — f)(sZ — 3)
RN T =

(2.5)
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where N = number of points in the template, {; are the template points, s; are
the signal points to be processed, ¢ is the template average and s is the signal
average. The correlation coefficient p is independent of amplitude and baseline
fluctuations and produces an output —1 < p < 1.

The bin area method is similar except that it was developed to be more
computationally efficient. The “bins” are sequential sample points which are
grouped together to make the computation more efficient. For M equally sized
bins, the equivalent to the correlation coefficient 5 is given by

u _ _
(T; =1T) (S;i —9)

n=1-2_1 = =

ZZ:; Sl T =T YLy |Sx =S

| (2.6)

where all the variables are the same as those used for CWA and S; =
S sars(ionyake L = Tn barsonyaks S = =X s and T = L5901,
For 3 point bins, one—sixth the number of multiplications are required by the bin

method as compared to CWA.

2.4.7 Neural Networks

Artificial neural networks are computing architectures inspired by biological neu-
ral systems. They are parallel architectures formed from the interconnection of
many neurons, and have been successfully applied to many pattern matching
problems. In contrast to correlators, they can store more than one pattern as
well as solve non-linear problems [Lip87]. Please refer to Appendix A for an
introduction to the architecture and training of artificial neural networks.

Individual QRS complexes have been used as inputs to artificial neural net-
works by Chi and Jabri [CJ90]. This system used 40 samples centered about the
QRS complex of the RVA signal to distinguish between NSR, SVT and VT. A
correct classification rate of 98.95% was achieved by this single channel technique
when applied to a database of 12 patients.

Chi and Jabri [CJ92] have also used a multi-module neural network that

uses the features: a history of RR interval, PP interval, PR interval, PR interval
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divided by the RR interval, RR interval minus PP interval, the average RR
interval, average PR interval, average PP interval and the standard deviation of
the RR intervals. The multi-module network approaches the problem of ICEG
classification by dividing the classification problem into the simpler subproblems

of differentiating between

e NSR and SVT
e VT and VI
e (NSR or SVT) and (VT or VF).

Using this system on a database of 51 patients (16 for training and 35 for testing),
96.2% correct classification was achieved.

A problem that occurs with ICEGs is incorrect classification can result when
the QRS complex is not centered in the same fashion as the exemplar patterns.
This problem was addressed by Lee using a shift invariant network [Lee90] for
single channel signals. The second order network used by Lee was formed by
replacing the original inputs x; with new inputs y; which can be described by the

equations
N
yo = > |z (2.7)
=1

N-k
yr = |wi — i (2.8)
=1

where N is the number of inputs and £ = 1--- N — 1. The input size was 135
samples of an ICEG digitised at 100 Hz. Of the 52 patients tested, 48 could
be classified with better than 90% accuracy when the algorithm was used to
distinguish between NSR, VT and VF. One disadvantage of the second order
network is that it is much more computationally expensive than a first order
network.

Farrugia et al. [FYN91] used a combination of features to classify ICEGs:

e a running average of the RR interval
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e a [iltered value ol the rectified signal
o the integrated outputs of 3 bandpass filters

e 10 samples taken from near the detected QRS complex.

This system was trained on 10 patients with NSR, VT and VF and tested on 20

patients, achieving a 95.4% classification rate.

2.4.8 Timing and Morphology

In a sense, timing and morphology criteria have been used as early as 1982 in the
form of ventricular rate plus PDF [Tro90]. However, timing was only based on
a single channel and the PDF detector could not recognise specific morphologies
which template matching techniques can now do.

Jenkins et al. [JWAT9] have produced an arrhythmia classifier which makes
use of both timing and morphology from two leads, an esophageal electrode for
monitoring atrial depolarisation and a surface electrode to monitor QRS com-
plexes. This system was able to diagnose a wide variety of arrhythmias including
bigeminy, trigeminy, ventricular tachycardia, supraventricular tachycardia, atrial
flutter, atrial fibrillation, ventricular tachycardia with retrograde conduction,
heart block and bradycardia.

Single beat classification was made according to the PR, RR and PP intervals
and the output from the single beat classifier is further analysed by a contextual
analysis module which classifies sequences. This classifier was tested on 29 12—
second passages and achieved 95.5% classification for single beats and 94% for
sequences.

Lin, Jenkins et al. [LJDMS88] have also produced a classifier which uses the
esophageal and surface leads and the same single beat /contextual classifier struc-
ture. This system was able to diagnose a wide variety of arrhythmias including
ST with aberrant conduction, ST with AV delay, premature atrial depolarisa-

tions, ventricular ectopic beats, bigeminy, trigeminy, 1° AV block, 2° AV block,
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SVT, AF, VT, VFIul, VT with 1:1 retrograde conduction, AF with 1:1 or n:1
conduction and VF.

Timing was examined using interval analysis and morphology examined using
CWA. Features are extracted from these two detectors and a single beat classi-
fication is made. A contextual diagnosis examines the 8 most current beats to
obtain sequence information which is used in the final classification. With this
contextual classifier, n:1 conduction patterns can be deduced.

Lin’s algorithm was tested on 29 patients and achieved 99.2% correct clas-
sification for the single beat diagnosis and 99.5% accuracy for the contextual

diagnosis.

2.5 An Example of an Implantable Car-

dioverter Defibrillator

In this section a description of the features available in the Telectronics Guardian
ATP 4210 are described [Ltd89]. This device, currently undergoing clinical trials,
is representative of the state of the art of ICDs in 1992 and other companies such
as Cardiac Pacemakers Incorporated (CPI), Siemens, Medtronic, Intermedics and
Ventritex have similar devices [Tro90].

The 4210 is a truncated oval in shape, has dimensions of 115 x 81 x 20 mm,
weighs 269 gm and the entire unit is housed in a titanium case. The battery
is a WG 8512 Lithium Silver Vanadium Pentoxide cell with a 4.1 ampere hour
capacity. The approximate lifetime of the battery is 6 years if therapy is never
applied. Battery life, will of course be much shorter if many discharges are made.
There are two lead systems associated with the 4210, a sensing/pacing lead
system which is used to sense ventricular activity and to deliver pacing pulses,
and a defibrillation lead system for delivering low and high energy cardioversion
and defibrillation shocks.

The tachyarrhythmia detection algorithm in the 4210 has four prioritised
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algorithms which are (ibrillation detection, tachycardia detection, onset detection
and noise detection. Each algorithm works by comparing the current rate with
a preprogrammed rate and passing the result through an X out of Y detector
which ensures that the events are sustained before therapy is applied. In order
to avoid confusing noise caused by external sources with VF, tachyarrhythmia
detection is turned off if 7 out of 10 intervals are shorter than 100 ms.

Once a tachyarrhythmia is detected, the arrhythmia is classified as either slow
VT, fast VT or VI using a rate plus X out of Y algorithm. In the case of slow
VT, antitachycardia pacing (ATP) is delivered. This is a (programmable) train
of pulses which are synchronised to the QRS events and changed for successive
trains if the tachycardia is not broken. In the case of fast VT, if ATP therapy
is not successful, then shock therapy is delivered. Both low energy cardiover-
sion and high energy defibrillation shock therapy is available and these are also
synchronised to the QRS events. With VF. shock therapy is delivered imme-
diately. If a first shock does not cause the tachyarrhythmia to revert to NSR,
shock therapy continues with increasing energy.

Apart from the basic ICD functions described above, the Guardian also in-
cludes bradycardia pacing, data logging of ICEG during tachyarrhythmias, tach-
yarrhythmia induction through stimulation via the sensing/pacing lead, pro-
grammability via telemetry, real time ICEG via telemetry and many other fea-

tures.

2.6 Summary

In this chapter, an introduction to the relevant aspects of cardiology, tach-

yarrhythmia classification and ICDs was presented. A review of earlier work



Chapter 2. Tachyarrhythmia Classification 29

on ICEG classification was also presented and these included timing based tech-
niques which rely only on the intervals between atrial and ventricular depo-
larisations !, frequency domain techniques, morphological techniques 2, neural

networks, and timing plus morphology.

1Such as heart rate and decision trees.
ZSuch as probability density function, threshold crossing interval, correlation waveform
analysis and the bin area method.



Chapter 3

A System for the Classification
of Arrhythmias

3.1 Introduction

Earlier work in automatic classification of ICEG signals concentrated on pro-
ducing accurate classifiers and power consumption was of little concern. In this
chapter, the design of an algorithm which is both accurate and amenable to low
power implementation is described. The algorithm, called MATIC (morphology
and timing intracardiac electrogram classifier), processes timing information us-
ing a decision tree, and morphology using a neural network. An analysis of the
power consumption of the neural network implemented on a microcontroller is
given and this is shown to consume too much power to be practical in an im-
plantable device. An alternative system architecture which utilises a low power

VLSI ncural network chip is presented.

3.2 Design Considerations

It is evident that the reliable classification of ICEG signals is difficult because

of a large patient variability in heart rate and morphology. When the classifier

30
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must be used in an ICD, the problem is made even more difficult because the goal
of low power consumption precludes algorithms which have high computational
demands.

Earlier work on ICEG classification has shown that dual channel methods
have a clear advantage over single channel techniques since they use the extra
information available to glean knowledge about the atrioventricular conduction
sequence. Of the morphology classifiers, PDF and TCI are much more crude than
CWA and neural networks. This is because only the latter techniques store a
detailed template of the waveform to be matched. Systems which use both timing
and morphology show a lot of promise since morphology can add specificity to
a timing algorithm. In this section, design decisions which lead to the choice of

this morphology plus timing technique are detailed.

3.2.1 Design Goals

The main design goals of the MATIC algorithm were as follows:
e implementable with low power consumption
e perform reliable classification of arrhythmias based on two leads
e be adaptable to identify other arrhythmias not previously addressed
e produce the recommended ICD therapy as output

These goals are discussed in relation to their effect on the design of the MATIC

algorithm in the following sections.

3.2.1.1 Low Power Consumption

In traditional systems design, the largest performance gains are usually made at
the algorithmic level. Power consumption limitations impose a major limitation
on the amount of computing that can be performed, thus affecting the choice of

algorithm.
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The design of the algorithm must be such that it maps well to VLSI tech-
nology, i.e. a significant power saving can be made over a software implementa-
tion and that such an implementation is feasible with available resources. The
flexibility of VLSI allows for a custom architecture, optimised for low power

consumption.

3.2.1.2 Two Lead Classification

Current ICD devices base their classification on a single ventricular lead, and
this is the main reason for their failure to classify many arrhythmias, especially
those which are supraventricular in nature. The addition of an atrial lead allows
timing sequences to be evaluated between the ventricles and atria, making more
accurate classification possible. Note that, in general, it is not possible to reliably
distinguish between ST, SVT and VT based on a single lead.

For these reasons the next generation of ICD devices will base their classifi-
cation on two leads, and so a dual input was used for the MATIC classification

algorithm.

3.2.1.3 Patient Dependent Versus Patient Independent Classification

A patient independent classifier can be used in any patient without adjustment.
This is clearly advantageous since the time consuming, expensive and potentially
dangerous process of determining the parameters can be avoided.

Patient dependent classification, whereby classifier parameters are tuned
specifically for each patient, can always achieve at least equal and usually better
performance than an cquivalent patient independent method. This is because
a knowledge of a patient’s history and likely tachycardias can be specifically
entered into the classification parameters.

Current ICDs are patient dependent, and are able to perform reliable classi-
fication using crude rate based algorithms by adjusting thresholds above which

VT and VF are presumed. These thresholds are normally determined from the
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rate of arrhythmias observed during electrophysiological studies and also from
information logged by the ICD.

A compromise between these conflicting goals is the solution taken in MATIC.
Patient independent classification is performed for the majority of patients, and

special cases can be addressed through patient dependent means.

3.2.1.4 Recommended ICD Therapy

Since the classifier outputs a recommended ICD therapy, it need not be able to
distinguish between various arrhythmias which have the same treatment (such
as fast ventricular tachycardia and ventricular fibrillation). For this reason, the
classifier makes four different classifications, NSR, SVT, VT and VF. Tachycar-
dias such as fast VT for which the treatment is defibrillation, are classified as
VF even though it is clinically a VT.

This classification into four crude classes can be used to an advantage. Rather
than classify the arrhythmia into specific classes, many different tachycardias are
merged thus saving on the number of cases and requiring less exacting classifi-

cations of similar subgroups.

3.2.2 Mimic a Cardiologist

MATIC was inspired by observing the reasoning process of cardiologists to see
how they make diagnostic decisions. Firstly, it was apparent that a classification
of arrhythmias usually uses more information than that available to an 1CD.
Patient history, 12 lead ECG, information on drug therapy being used and EPS
are all taken into account in a diagnosis by a cardiologist.

However, if the information is restricted to the RVA and HRA leads of an
ICEG, experts will first look at the timing within and between atrial and ventric-
ular channels and can usually form a decision based on this information alone.
In some cases, the morphology of the arrhythmia is compared to the patient’s

normal sinus rthythm to see if any change has occurred. The actual morphology
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of the ICEG is also important, in particular, the shape of the QRS complex has
diagnostic value, especially for ventricular tachyarrhythmias. In the following
sections, more detailed discussion on the timing and morphology strategies is

presented.

3.2.2.1 Timing

The timing decisions can be performed by a decision tree and, in fact, texts such
as that by Wyndham [Wyn91], use this approach to describe how to achieve a
diagnosis. It is natural for humans to express their thinking process in the form
of a decision tree and this approach is used to implement the timing logic since

it leads to an easily understood and efficient implementation.

3.2.2.2 Morphology

It is much more difficult to perform morphological classification than timing
classification since subtle changes in morphology which are apparent to a cardi-
ologist are hard to detect using conventional computing methods. This task is
made even more difficult if low power consumption is required at the same time.

The same success rate that a cardiologist enjoys cannot be expected of a
computer based system, nevertheless, template matching can be used to identify
morphologies. An artificial neural network approach was chosen to perform this
template matching because it has the advantages of being able to store multiple
patterns, form arbitrary decision regions and maps well to VLSI.

The ability to store multiple morphologies is desirable since patients may have
polymorphic arrhythmias and so it is especially usceful to be able to train the
neural network to recognise all of these morphologies as well as the morphology
of the normal sinus rhythm. The only way this can be achieved for correlation
waveform analysis is if several correlators are used. The ability to form arbitrary
decision regions makes the neural network a universal approximator and thus in

theory it can approximate any other technique to arbitrary accuracy.
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Throughout this thesis, morphology is used only to detect ventricular tachy-
cardia with 1:1 retrograde conduction. This is a first step in achieving classifica-
tion ability for an ICD which approaches that of a human expert. Morphology
can be used in many patient dependent ways, and would be able to distinguish
between SVT, VT, right bundle branch block, left bundle branch block and many
other rhythms which cannot be distinguished based on timing features alone.

ICDs have not used sophisticated morphology classifiers in the past because
their cost in terms of power and development have outweighed their advantages.
With the development of the low power neural network classifier chips such as
the one designed in this thesis, an algorithm such as MATIC can use morphology

whilst still maintaining low power consumption.

3.2.3 Morphology Plus Timing

The idea of using decision trees and neural networks to mimic a cardiologist
meets all of the design goals discussed in Section 3.2.1. Low power consumption
is achieved by using a decision tree plus custom VLSI to implement morphology.
A two lead system is used. Timing parameters are extracted from the leads and
are used as inputs to the decision tree. Samples of the input signal are used
as morphological input to the neural network chip. The timing logic is patient
independent, and the majority of patients will not require use of the morphology
criteria. Morphology and an updated timing algorithm can be used in a patient
dependent fashion for patients which could not be classified for whatever reason
by the patient independent technique. A decision can then be made by merging
all of the possible classifications into a therapy based classification using simple

logic which combines the output of the morphology and timing units.
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Figure 3.1: MATIC classification system. The timing logic and neural network
operate in parallel.

3.3 The Algorithm

The development of the MATIC algorithm started with the design of the timing
algorithm. It was found to produce very good classification results, except for
ventricular tachycardias with 1:1 retrograde conduction. This was because the 1:1
conduction meant that dissociation did not occur, so one could not differentiate
between SVT and VT based on timing. The morphology classifier was able
to differentiate between NSR and VT 1:1 based on the QRS complex changing
shape during the arrhythmia and so by combining information from both these
classifiers, MATIC was able to produce accurate classification on the entire ICEG
database.

A block diagram of the MATIC system is shown in Figure 3.1. The sys-
tem consists of timing and morphology classifiers running independently and in
parallel, each being invoked after a QRS complex occurs. The two classifiers are
combined through arbitration logic and passed through an “X out of Y” detector

to produce the final MATIC classification.
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Figure 3.2: Flow chart/signal diagram of the MATIC configuration procedure. In
the case of VT 1:1 patients training data must be selected and the neural network
trained to produce a set of weights. Note that morphology is only enabled for
VT 1:1 patients.

3.3.1 MATIC Configuration

Most patients do not require morphology classification, timing being sufficient to
identify the arrhythmia. However, for some patients morphological classification
is required. A human must configure the MATIC system before it is used in order
to identify whether morphology is required. MATIC is used with morphology
only for VT 1:1 patients. In the case of non VT 1:1 patients, the arbitration
logic discards all results from the neural network. A flow chart/block diagram
of this configuration process is shown in Figure 3.2.

Configuration involves deciding if the patient is a VT 1:1 patient or not and if
so, 4 samples each of the patient’s NSR and VT 1:1 morphology must be provided
to serve as templates for the morphology classifier. As most current ICDs have
telemetry features from which one can obtain the raw ICEG data, these samples
can be selected via telemetry, VT being invoked through electrophysiological

studies (EPS) or from the tachycardia induction feature of an ICD. The chip can
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be trained using the microprocessor under the control of the telemetry link. After
training, the weights need not be changed, and reliable detection of abnormal
morphologies can be verified through further EPS.

After configuration, the MATIC system is fully automatic, taking ICEG data

as input and producing NSR, SVT, VT and VF classifications as output.

3.3.2 QRS and P Wave Detection

Each channel of the ICEG signal is passed through a simple detector which
compares the slope of the differentiated ICEG signal with an adaptive threshold
to identify the QRS (or P) wave. After detection of a QRS or P wave, there
is an 80 ms period during which no further detection is allowed. This period
is called the refractory period and corresponds to the refractory period after
depolarisation of the heart (see Section 2.2.1).

The QRS detector, which is implemented on all modern ICDs, provides an
additional benefit in that it performs data reduction. The input to the QRS
detector is a continuous ICEG and this is reduced to a signal with the same
frequency as the heart rate. Furthermore, the output becomes a binary output,
the rising edge corresponding to the occurrence of a QRS. The P wave detector

reduces the HRA channel data in the same way.

3.3.2.1 Optimisation of QRS Detector

MATIC requires reliable QRS detection to produce good results since both the
temporal centering of the QRS complex in the neural network as well as the tim-
ing measurements used by the decision tree assume accurate detection. Since it
was known that the QRS detector could be improved by changing the decay time
constant, maximum threshold value and minimum threshold, the detector was
automatically tuned using iterative improvement [WLL88]. Iterative improve-
ment starts by classifying the entire data set and noting the number of incorrect

classifications. Each parameter in the QRS detector is then altered randomly and
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Figure 3.3: Flow chart of iterative improvement algorithm used on QRS detec-
tor. The algorithm adjusted the QRS detector by randomly changing them and
accepting all good solutions. Algorithm is in an infinite loop and is stopped by
user when no further improvement is observed.
the data reclassified using the new parameters. If the new classifier performed
better than the old one, the new parameters were accepted, otherwise, another
random set of parameters were generated and the process repeated itself until no
further improvement was scen (sce Figure 3.3).

The success of this optimisation is illustrated in Section 6.4.1.1 where it shown

that for a database of 12483 complexes, only 11 classification errors were caused

by incorrect QRS detection.

3.3.3 Timing Logic

Single beat classification based on timing decisions is performed in the timing
classifier and a classification is made after every R wave. The timing logic clas-
sifies the signal based on three parameters, the RR interval of the RVA channel,
the PP interval of the HRA channel, and the time between the last P wave and
the last R wave (PR interval). A flow chart of the MATIC timing logic is shown

in Figure 3.4.
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Note that all of the operations in the flow chart involve only very simple,
fixed point computations. The computations are either simple comparisons, or
multiplications by 2 or 3, all of which can be implemented with at most a single
shift and add. The simplicity of the decisions required make the timing algorithm
easy to implement and low power.

The timing flow chart is explained in greater detail in the following sections.

3.3.3.1 Ventricular Fibrillation

Ventricular fibrillation is characterised by a fast, chaotic, almost sinusoidal
rhythm, no QRS complex being apparent. Although no QRS complex is present,
a QRS detector will detect the peaks of the waveform and indicate a very fast
heart rate so the criterion for VF is that the RR interval must be less than
220 ms.

Figure 3.5 shows an example of a VF waveform displayed through an ICEG
waveform editor. The human classification (made without any knowledge of the
MATIC classification) is on the topmost of the screen, and the row of classifica-
tions just underneath are those made by MATIC. On the bottom “INFO” line,
the number shows the time between the two vertical lines which appear on the
screen. These vertical lines (if used) were added to the display after the human
and MATIC classifications had been obtained in order to measure timings of in-
terest. The numbers which appear on the middle axes are the sample numbers.
The sampling period is 4 ms.

A fast VT is also classified as VF since defibrillation is the correct treatment
for this condition. VT is characterised by a fast ventricular rate and also disso-
ciation between the atrial and ventricular channels, the ventricles beating faster
than the atrium.

Dissociation occurs when the ventricles and atria depolarise independently.
Dissociation is easily recognised when an entire strip of an ICEG is available

and ventricular depolarisations can be matched up with the corresponding atrial
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Figure 3.4: Flow chart of timing based decision logic (PP = last atrial PP in-
terval, RR = last ventricular RR interval, PR = time from last P wave to R
wave).
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Figure 3.5: Ventricular fibrillation (RR < 220 ms). The human classification
appears topmost on the screen, and the row of classifications just underneath are
those made by MATIC. The “INFO” line shows the time between the two vertical
lines which appear on the screen and the “LEAD” line shows the intracardiac
lead from which the signal is recorded. The top trace is RVA and the bottom is
HRA. Numbers which appear in the middle waveform are the sample numbers

(4 ms sample period).
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Figure 3.6: Ventricular tachycardia (PP/RR > 1.5).

depolarisation. For single beat classification, a heuristic method is required to
determine if dissociation present. In MATIC, the rhythm is considered dissoci-
ated if PP/RR > 1.5. That the ventricular rate must be greater than the atrial
rate is a nonstandard definition of dissociation.

The “fast VT7 rhythm is thus identified if the RR interval is between 200 ms

and 300 ms and also dissociated.

3.3.3.2 Ventricular Tachycardia

If dissociation is present and the ventricular rate is faster than the atrial rate the
signal is classified as VT (irrespective of heart rate). In Figure 3.6, AV dissoci-
ation is present and the tachycardia is classified as VT. Note that although AV
dissociation is easy to observe on two leads, it is often impossible to distinguish

using only the ventricular lead.
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Figure 3.7: Sinus tachycardia (2PR < RR).

3.3.3.3 Normal Sinus Rhythm

The normal sequence of conduction is that the depolarisation of the SA node
conducts through the atrium to the ventricles. This causes a P wave to occur
first, then a delay while the signal propagates through the AV node, then an R
wave occurs. A heuristic method of identifying this sequence of events is if the RR
interval is more than twice as long as the PR interval (2PR < RR). This relation
is used in MATIC to classify NSR and sinus tachycardia. The ST in Figure 3.7 is
recognised correctly as NSR (a superclass which includes NSR and ST) because
MATIC considers it to have normal timing, i.e. atrial depolarisations cause the

ventricular depolarisations.

3.3.3.4 Supraventricular Tachycardia

Tachycardias which originate in the atrium are characterised by a fast atrial rate

and thus SVT is identified by the PP interval being less than 280 ms.
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Figure 3.8: Supraventricular tachycardia rhythm (2PR > RR).

In addition, all thythms that are not identified by the decision tree are clas-
sified as SVT. This condition classifies some true SVTs correctly, as well as
catching any rhythms which do not fit the NSR, VT and VF criteria, enabling
these uncertain beats to be logged by the ICD device. In Figure 3.8, the PR
interval is very long and is not classified as an NSR (2PR > RR) and so the

default classification of SVT is used.

3.3.4 Neural Network Morphology Classifier

Figure 3.9 shows a normal rhythm and the RVA morphology change which occurs
when 1:1 retrograde VT is induced. Note that the MATIC timing algorithm
would classify this VT as an SVT since 2PR > RR.

To solve this problem, a neural network is used to identify VT which is not
dissociated but does have a different QRS morphology to the patient’s NSR.
The model used is a three layer perceptron (see Figure 3.10) as described in

Appendix A and Equation A.1.
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Figure 3.9: Ventricular tachycardia with 1:1 retrograde conduction. Note that a
morphology change occurs and the MATIC timing algorithm cannot distinguish
this from an SVT.

In a study by Vandepol et al. of 86 clinical VT patients [VFST80], 57 pa-
tients had inducible sustained VT. Of these, 91% had morphologies similar to
their clinical VTs. Of the 23 with induced nonsustained VT, 78% had simi-
lar morphologies. The morphology classifier used in MATIC assumes that the
morphology of the arrhythmia induced during electrophysiological studies is the
same as the patient’s clinical morphology, and Vandepol gives evidence that the
assertion is true in the majority of patients.

The network operates in parallel with the timing logic and the output of
the neural network is a single number indicating the degree with which the in-
put signal matches the stored patterns. The VT morphologies can be obtained
through EPS, via data logging facilities of the ICD, exercise tests or long term
intracardiac recordings. Those used in this experiment were all obtained through
EPS.

Inputs to the neural network were 10 sampled points (sampling rate 125 Hz)

from the RVA channel centered about the R wave of the QRS complex (using
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the QRS detector). Originally, 20 inputs were used at the 250 Hz data rate,
however, the same 80 ms window size at 125 Hz (i.e. 10 inputs to the neural
network) was found to produce the same results. Halving of the number of input
neurons nearly halves the computational complexity of the neural network. Five
hidden units were used as this is the smallest number which produced the correct
results. The notation (a,b,¢) will be used to describe a neural network with «
input neurons, b hidden neurons and ¢ output neurons. Therefore the network
size used in MATIC is (10,5,1).

The use of morphology for a patient requires 4 NSR and 4 VT 1:1 QRS com-
plexes from that patient (obtained during the configuration procedure described
earlier). The training set is formed by making the desired output of the NSR
complexes equal to some constant « and the desired output of the VT 1:1 com-
plexes equal to . The weights used by the MATIC morphology classifier are
then obtained by training the neural network on this data set. When ICEG
signals are applied to the neural network, a VT 1:1 morphology is present when
the output becomes greater than a third constant ~. In all of the experiments
that have been conducted, oo < v < 3.

Although MATIC has only been used to recognise a specific abnormal mor-
phology, it could also be trained to identity any abnormal morphology by training
the network to become J during sinus thythm. MATIC then makes a VT classifi-
cation if the network output becomes less than . This is similar to the approach
used in the Bin Area method and the Correlation Waveform Analysis method
[LJDM88, TJD90a]. It is felt that matching on a specific V' pattern provides
greater specificity than the “any abnormal morphology” method which will pro-
duce false positives on morphology changes which are not the intended VT (e.g.

paroxysmal bundle branch block).
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Figure 3.10: Three layer perceptron architecture.

3.3.5 Arbitration Logic

The arbitration logic combines the output of the timing and morphology classi-

fiers to produce a single output class. The arbitration logic is a simple priority

encoder and can be described as

VF if timing logic output is VF

VT
CLASS =
AND morphology is enabled

if neural network output > ~

timing logic output otherwise.

The priority arbitration scheme used is the simplest possible but was found to
be adequate for classifying all the ICEGs that were available. More sophisticated

schemes would be able to provide greater specificity, for example, if the VT 1:1
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is known to be always greater than 100 bpm, it could be

VF if timing logic output is VF
VT if neural network output > ~
CLASS = AND morphology is enabled

AND RR < 600 ms

timing logic output otherwise.

3.3.6 X out of Y Detector

The output of the arbitration logic is then passed to an “X out of Y7 detector.
This outputs a final classification only if 5 of the last 6 arbitration logic output
classes made by the system are the same, thus improving the certainty of the
decision. If this criterion is not met, MATIC does not produce any output (cor-
responding to a not sure result). It is possible that a particular rhythm such
as bigeminy can cause the output of the arbitration logic to produce alternating
outputs and thus the X out of Y detector will never produce an output. This
problem has not yet been addressed as such data was not available at the time
of the study. However, it should not be difficult to use simple sequence match-
ing techniques in place of the X out of Y detector in order to recognise such
conditions.

The X out of Y function serves to average the classifier decisions over time,
removing incorrect classifications due to ectopic beats, fusion beats and artifacts.
Note that this technique delays classification for at least 5 QRS complexes from

the onset of the tachycardia.

3.4 Performance Considerations

Clearly, the major computational requirements of the MATIC algorithm lie in
the morphology classifier, the timing classifier and other logic having only modest

computational requirements. In this section, the actual cost of computing the
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morphology classification in MATIC is estimated, and then a system architecture

for implementing MATIC using a low power morphology coprocessor is presented.

3.4.1 Morphology Classification on a Microcontroller

In a conventional ICD, a microcontroller is used to handle the classification task.
In this section, the question of how much would it cost to implement the MATIC
morphology classifier on such a microcontroller is addressed.

The Motorola MC68HCT711D3 (HC11) [Inc90] was selected as a typical mi-
crocontroller which might be used in an ICD. This selection was based on the

following features which enable MATIC to be implemented quite efficiently

e The HC11 is implemented in static CMOS so it will have low power con-

sumption.
e The HCI1 has single instruction multiply.
o The HC11 has a single instruction 16 bit add.

It is suspected that microcontrollers in existing devices would not have the last
two fcatures since present devices would not benefit much from those instructions.

In order to implement a (10,5,1) neural network, 55 multiplies and 55 ad-
ditions would be required. On the HCI11, the inner loop for the multiply—

accumulate of the neural network can be expressed as

ldaa 0,y ; 5 load the neuron value from prev layer
ldab 0,x ; 4 load the synapse value

mul ; 10 do the multiplication

addd sum ;b accumulate the result

stdd sum ; 4 save the result

iny ; 4 index the next neuron

inx ;3 index the next synapse
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The number in the comments is the number of cycles required on the HC11
and the total cycles required is 35. A maximum supply current for the HC11 is
15 mA at 5 V with a 2 MHz clock. No 3 V figure for this chip was available, and
it will be assumed that it will draw the same at 3 V. If the chip is assumed to
draw power only when making a classification, it need only operate at the heart
rate, and this will be assumed to be 1 Hz. The average power consumption can

now be estimated as

P = VI
_ 3V « 35 cycles x 55 synapses 15 mA x 1 Tz
2,000,000 Hz
= 43 uW

This value does not include overheads required to perform analogue to digital
conversion of the input ICEG, assumes that the HC11 draws no power when it
is not being used, omits code for initialisation, loops, the neuron nonlinearity,
power required by external RAM devices ete. On the other hand, it is expected
that the microcontroller inside an ICD would be better optimised for low power
dissipation than the HC11.

The power consumption figure of 43 W for a microcontroller implementation
of a neural network should be compared with that of the Kakadu neural network
chip described later in Section 6.5.2.2. In that section, it is shown that Kakadu

can operate with a power consumption of less than 25 nW.

3.4.2 System Architecture

An algorithm for arrhythmia classification of ICEGs is not useful in an ICD
if it cannot be implemented within the constraints imposed by the system. If
the morphology classifier of the previous section was added to an ICD, it would
require an additional 0.75 Ah of battery life over 6 years. Since a typical ICD bat-
tery is 4.1 Ah (see Section 2.5), this would add approximately 20% to the power

consumption — an unacceptably large amount. In this section, the architecture
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Figure 3.11: Block diagram of the system architecture of a MATIC implementa-
tion in an ICD.

of an implementation of MATIC which would have much lower consumption is
detailed.

An assumption will be made in the following discussion that it is possible to
design a custom VLSI neural network chip which has much lower power consump-
tion than that of the microcontroller of the previous section. In Chapters 5 and
6, this assertion will be shown to be true, and in fact, it is possible to improve on
the power consumption of the microcontroller neural network by several orders
of magnitude.

The architecture is one of a coprocessor model. An existing ICD is aug-
mented by a morphology chip which performs the computationally expensive
task of morphology classification. With this architecture, the programmability
of the microprocessor in the ICD can be used to implement the timing portion
of MATIC in a flexible fashion and parameters can be changed in a patient de-
pendent manner if necessary. A block diagram of this architecture is shown in

Figure 3.11.
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The microprocessor inside the ICD device orchestrates the classiflication pro-
cess, implementing all of the MATIC algorithm except for the morphology clas-
sifier. The morphology classifier is implemented in a neural network chip which
operates in parallel with the microprocessor. The morphology classifier obtains
an input from the RVA channel and passes this through an analogue shift regis-
ter to obtain a window of samples. These form the input to the neural network
and a classifier using the structure of Figure 3.10 is used so morphologies can
be analyzed by the neural network. The microprocessor reads the output of
the morphology classifier and processes this information according to the arbi-
tration logic described in Section 3.3.5, followed by the X out of Y detector of

Section 3.3.6 whose output is the final MATIC classification.

3.5 Discussion

The timing part of the MATIC algorithm is similar in principle to the decision
tree classification of two channels by Arzbaecher et al. [ABJ*84]. Although
there is much evidence to support a sudden onset detector [WM86], it was not
included in MATIC because all the arrhythmias in the database were induced
via EPS and thus normal transitions are not represented.

Morphology and timing in a two lead system was used by Lin et al. (described
in Section 2.4.8). Lin used correlation waveform analysis for template matching
and performed this on both atrial and ventricular channels. The template was
created from NSR rhythms and a morphology change was said to have occurred
if the current QRS did not correlate well with the NSR. It is felt that greater
specificity is obtained by the method used in MATIC whereby both the NSR and
abnormal complexes are stored.

As with all ICEG classification systems, there are arrhythmias on which
MATIC will fail. The aim in developing MATIC was not to try to produce
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a perlect classilier, bul to produce a simple system suitable [or use in an -
plantable device, which overcomes some of the limitations of classifiers used in

present ICD devices. Some situations in which MATIC might fail include
e Any form of AV block
e Bigeminy and trigeminy

o VT 1:1 with morphology different to that induced during EPS or exercise

tests
e VT 1:1 with similar morphology to NSR
e Paroxysmal bundle branch block

Each of these conditions could cause misclassification because of MATIC’s sim-
plistic view of timing and morphological considerations during classification. In
these cases, it may be possible to adjust the parameters in the timing decision tree
or change the arbitration and post processing logic to suit a particular patient,

thus using MATIC as a patient dependent classifier.

3.6 Summary

The design of the MATIC tachyarrhythmia classifier for [CEGs was presented in
this chapter. This classifier follows the approach of mimicking a human expert,
making assessments based on both timing and morphology features of the signal.
It was shown that implementing the morphology classifier using the micropro-
cessor in an ICD would consume approximately 20% of the power of the entire
ICD. For this reason, an architecture was presented which uses the microproces-
sor inside the ICD to implement the timing part of MATIC in a flexible manner

and uses a VLSI implementation of the morphology classifier to maintain low
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power consumption. This architecture enables one o keep the benelits ol a com-
putationally expensive algorithm yet consume little power. The design of such a

morphology classifier is presented in the next chapter.



Chapter 4

Bourke Prototype

4.1 Introduction

The morphology recognition ability of MATIC described in the previous chapter
makes it both powertul and flexible because such logic can be tuned to recognise
a range of arrhythmias which could otherwise not have been identified. Patient
dependent morphology capture could be used not only to detect such problems
as ventricular tachycardia and paroxysmal bundle branch block, but it can also
be used by the ICD to identify complexes which have a morphology change so
that they can be stored and examined later by a cardiologist.

The software implementation of a neural network morphology detector is
computationally expensive and even on existing computers, simulations of artifi-
cial neural networks require large amounts of computing time and hence power.
Fortunately, the inherent parallelism and simplicity of the processing elements
within an artificial neural network make it ideally suited to implementation in
VLSL

The chapter begins with a description of previous work on the implementation
of ANNs in VLSI, concentrating on the issue of synapse design since most of the
area of a neural network chip consists of these elements. This is followed by a

discussion of the design considerations for a low power neural network classifier

56
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‘ ‘ Analogue ‘ Digital ‘

Precision Low High
Area Small Large
Speed Fast Slow
Power Low High
Flexibility Poor Good
Clocking Asynchronous | Synchronous
Design Tools Poor Good
Noise Immunity | Poor Good
Drift Immunity | Low High

Table 4.1: Comparison between digital and analogue implementations.

chip which would be suitable for implementing the morphology recognition part
of the MATIC algorithm. The detailed design of a prototype neural network,
called Bourke, is then described. Bourke was a test chip which included a small
neural network and a bucket brigade device. Since Bourke was small in size, it
was possible to verify its design by analogue simulation before fabrication and
the techniques used to perform this simulation are also described. The chapter
concludes with a presentation of the results obtained by applying the fabricated
chip to the XOR problem.

4.2 Previous work on VLSI Artificial Neural

Network

4.2.1 Analogue Versus Digital

In designing a low power neural network chip, several important architectural
issues immediately come to mind. The first question is whether to implement the
network as a digital or analogue design. Analogue techniques have the desirable
features of small area, low power and high speed. However, they suffer from low
precision and low noise immunity. The digital approach offers good noise and
drift immunity, arbitrarily high precision arithmetic, a greater degree of chip

programmability and a more conservative design strategy (see Table 4.1).
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An analogue approach was selected for two reasons. Firstly, a lower power
consumption was expected and in addition, an analogue to digital conversion of
the ICEG waveform is avoided since the ICEG signal can be processed entirely

in the analogue domain.

4.2.2 Previous Analogue VLSI ANN Implementations

Neural networks are notorious for being computationally expensive, however,
the natural parallelism and simple building blocks of ANNs make them an ideal
candidate for VLSI implementation. The main stumbling block encountered
when implementing an analogue neural network lies in the choice of the analogue
weight storage technique.

Horio et al. [HN92] have proposed the following set of “necessary conditions”

required of an analogue memory in a neural network

1. The analogue information in a memory should be maintained for a suffi-

ciently long time (storage).

2. The memory should have enough resolution for analogue computation (res-

olution).

3. The information in a memory must be linearly controllable (programma-

bility).

4. The information should be easily, continuously and asynchronously up-
dated and accessed without destruction of the stored information or inter-

ruption of the network processing (disruption).
5. The memory should be as small as possible (size).
6. Read and write operations should be fast (speed).

As the analogue storage device that satisfies all of these conditions has not yet

been invented [HN92], with the above considerations in mind, and adding the
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‘ ‘ Capacitor ‘ EEPROM ‘ MDAC ‘
Storage Volatile Nonvolatile Nonvolatile
Resolution 10 bits 4-8 bits 6 bits
Programmability | Linear Exponential Linear
Disruption Ok Ok Ok
Size 33.4 syn/mm? | > 150 syn/mm? | 15.6 syn/mm?
Speed Fast Slow Fast

Table 4.2: Comparison of weight storage techniques for analogue synapses. The
size entry is the number of synapses on the chip divided by the area. When more
than one design is cited, the figure represents an average. For the EEPROM, the
die size is not known and a 64mm? die is assumed. For MDAC designs, the Graf
et al. designs were not included in the “size” entry computation since their low
analogue resolution distorts the result.

extra constraints of low power operation and a standard CMOS technology, a
survey of previous work grouped by storage technique will be made. It may

be useful to refer to Table 4.2, a summary of the techniques, while reading the

following sections.

4.2.2.1 Charge on a Capacitor

Temporary weight storage can be achieved in standard CMOS by using the charge
on a capacitor. Although the capacitor can be made very small in arca, it
must be periodically refreshed to replace charge which has leaked away. In its
simplest form (see Figure 4.1), the synapse value is written by applying a voltage
representing the desired synapse value to Vin and asserting WR.

Schwartz et al. [SHH89] have used a twin capacitor memory to implement a
neural network chip having 1104 10 bit synapses on a 6 x 3.5 mm die. Schwartz
uses the Cyoreqr and Clyore— capacitors of Figure 4.2 to store the synapse values
and charge injection is used to program them by causing the transfer of small
amounts of charge between a pair of transistors. To initialise the synapse, TA
is turned on in order to charge the capacitors up to a convenient voltage V; it
(typically VDD/2). The weight value can be increased by first switching on
TC and TP, turning off TP, turning on TM and then slowly turning off TC.



Chapter 4. Bourke Prototype 60

-3

Vin Vout

-

Figure 4.1: Capacitor weight storage.

This causes mobile charge in the channel of TC to diffuse into the minus node,
lowering its voltage. Schwartz’s capacitors were 2000 ym? in area and using this
method, the leakage after 100 seconds was approximately 1% of the stored value.

In a design completed at the Jet Propulsion Laboratory [EDT89, ET90] ca-
pacitor storage refreshed from digital memory through a time-multiplexed DAC
was used to implement 1024 11 bit synapses on an 8.2 X 8.8 mm die. Each ca-
pacitor was 2.4 pF and leaked at a rate of 3.3 mV/s at room temperature. The
storage element is two 5550 pum? transistors which are organised in a differential
fashion so that the first order leakage effects are cancelled.

The pulse stream method [MS88] implements synapses which modulate the
pulse density of a stream of pulses sent to it by a neuron. It stores the synapse
value dynamically on a capacitor. Unfortunately, for low power applications, too
much switching occurs wasting precious power.

In terms of Horio’s necessary conditions of an analogue memory, capacitors
have many good points: they can be programmed with high resolution, they are
linearly controllable, can be written using a simple DAC and can be made rela-

tively small. However, because of charge leakage in the capacitor, the necessity
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Figure 4.2: Capacitor weight storage of Schwartz et al. [SHH89].

of refreshing the weights adds complexity to the design and increases the power

consumption of the overall system.

4.2.2.2 EEPROM

Floating gate technology such as that used for electrically erasable programmable
read only memories (EEPROMs) is a true nonvolatile analogue storage technique
and has been used for analogue storage in a synapse [Kra90, HTCB89, LSY91,
DS92].

This technique uses charge stored on a floating gate, the floating gate being
surrounded by a layer of silicon dioxide to prevent charge leakage. Electrons can
be injected or removed from the floating gate through the insulating oxide via
Fowler-Nordheim tunneling [Sze81]. In order to achieve this tunneling, a high
electric field must be produced within the oxide. The amount of charge injected
on the floating gate varies exponentially with the programming pulse width and
programming pulse voltage.

EEPROMSs are able to produce a stored charge with zero static power con-

sumption and they can be close to the minimum feature size making them very
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attractive for a low power storage scheme. However, the exponential program-
ming characteristic makes programming difficult and it is often being performed
in several steps. The device also has different write and erase characteristics and
requires complicated control circuitry to program.

Holler et al. [HTCB89] have produced the “ETANN” neural network chip
which is a 10240 synapse analogue neural network chip with 6 bit resolution. In
1 micron EEPROM technology, the synapse area was 2009 pm?.

EEPROM synapses can be programmable to 8 bit accuracy [HTCB89, Car89]
and are very small in size. These devices cannot be fabricated using a standard
CMOS process and also suffer from a short term drift characteristic of the floating
gate which is thought to be due to charge trapping in the oxides [DS92]. However,
the major disadvantage of EEPROMs is that it was estimated that for weight

storage of the order of 15 years, only 4 bit accuracy would be expected [HTCB89].

4.2.2.3 MDAC

Analogue weight storage can be achieved by storing weights in a digital form
and then performing a digital to analogue conversion to obtain the analogue
value. This method has the benefits of a digital interface, nonvolatile storage
and devices can be fabricated with a standard CMOS process. A multiplying
digital to analogue converter (MDAC) performs the synapse function that is
desired.

Raffel et al. at MIT Lincoln Laboratory [RMB*87] have used a 5 bit mul-
tiplying digital to analogue converters to implement a matrix of 1024 synapses
using an active area of 28 mm? in 3 ym CMOS.

Hollis et al. [HP90] have constructed a neural network chip with 44 7 bit
synapses on a 2 X 3 mm die using the MDAC shown in Figure 4.3. The DAC
is constructed from ratioed transistors and this serves to produce currents in
powers of two which can be connected with the pass transistors Bl to B4. A

power consumption of 9 A per synapse was achieved with this design.
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Figure 4.3: MDAC weight storage method of Hollis et al. [HP90].

A neural network chip which has 4416 synapses on a 6.7 x 6.7 mm die was
designed by Graf et al. [GJH88]. Graf managed to accommodate a large number
of synapses on a chip by using the trinary scheme shown in Figure 4.4. This has
the advantage of only requiring binary multiplication which can be implemented
in a very compact fashion. The disadvantage, of course, is that only a very
limited weight resolution is available.

Another design by Graf et al. [GH90] implements 32,000 single bit con-
nections on a 4.5 x 7 mm die. The chip is highly reconfigurable and can be
programmed to implement single or multi-layer networks with binary or ana-
logue connections. Although the synapses are single bit, analogue connections
are possible because of a multiplier and neuron concatenate circuit. The design
works from a 3 V or greater supply and has a current consumption of 1 gA per
synapse.

The CCD technique [Chi90] has an input CCD which is multiplied by an array
of charge domain MDACs. Chiang et al. have implemented a neural network
chip with 144 MDACs which are time multiplexed to produce 2016 6 bit synapses
on a 7x 7 mm chip. A special CCD process is required to fabricate these devices.

The MDAC technique has good weight retention since digital storage is used
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Figure 4.4: Ternary weight storage method of Graf et al. [GJHSS].

and the weights are easily interfaced to other digital systems. One disadvantage,
however, is that the area required by MDAC synapses is possibly the largest of

the three technologies discussed.

4.3 Analogue Neural Network Design Con-
cerns

The problems encountered when implementing a low power artificial neural net-
work in analogue VLSI are numerous. Two restrictions fundamental to the choice
of implementation technique for use in ICDs are that the chip must have low
power consumption and also that the technology must be standard CMOS.

In the design of the neural network chip, it was obvious that it must be built
from two basic cells, synapses and neurons. This lead to the following three

design concerns
e How can we implement the synapse?

e How can we implement a low power neuron?
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Figure 4.5: Neuron and synapse operation. Neurons are connected together by
synapses.
e How can device mismatch, which is especially poor when low bias currents

are used, be overcome?

The first question has the greatest influence on the architecture of the chip
because synapses form the majority of the chip and thus their implementation
most affects the chip’s performance and size. These issues are discussed in the

following sections.

4.3.1 Synapses

As shown in Figure 4.5, a neural network consists of neurons interconnected via
synapses. Fach neuron takes the sum of all of the synapse outputs which connect
to it, and must produce a single value output.

It is logical to implement synapses as transconductance devices and neurons
as transimpedances. This is because the output of synapses must be summed and
this can be done using Kirchoft’s current law. The output of neurons must fanout
to the inputs of all synapses in the next layer and so a voltage representation of

this is the most suitable.
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A synapse must perform two functions. It must store weights corresponding
to the synapse value, and it must perform multiplication of its input with the
stored weight. A Gilbert multiplier is used and this has the added advantage of
being a transconductance device.

For the analogue weight storage, an MDAC approach (see Section 4.2.2.3) was

selected as an analogue storage device because it had the following advantages

e Can be fabricated in standard CMOS.

Operation at very low bias currents is possible.

Has a digital interface for weight update.

Has analoguc inputs.

The digital storage registers are static CMOS and hence dissipate negligible

power.

4.3.2 Neuron

Transfer functions with nonlinear squashing characteristics (such as tanh) are
normally employed for neurons. In a low power system, where the neuron input
current can be of the order of ten nanoamps, a high impedance of the order of
1 M€ is required. This is hard to implement in standard MOS because diffusion
and polysilicon do not have the high resistance necessary, and an active circuit
with the desired transfer characteristic is hard to design. If on—chip neurons are
used, a method of measuring the activation of at least the output neurons is
required for training, and this requires buffers to drive the signals off—chip.

A possible solution to this problem is to implement the neurons using off-
chip resistors. Resistors have very low power consumption, allow all of the neuron
activities to be monitored and precise control of the neuron’s gain can be achieved

by changing the resistance.
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However, a resistor has a linear characteristic which, at first glance, appears
unsuitable. This problem was addressed by implementing the nonlinear char-
acteristic required by the neural network in the synapse instead of the neuron.
Using this technique, the nonlinearity of the Gilbert multiplier is used to an
advantage and the resulting neural network transfer function is discussed in Sec-
tion 4.5.1.

Possible disadvantages of using off—chip neurons are that since the currents
must travel through pins, pin leakage may affect the circuit and also, for larger

networks, the number of pins required may become excessive.

4.3.3 Device Mismatch

Device mismatch causes nominally identical transistors within a chip to have
different gains and threshold voltages. It is caused by processing variations across
the chip. At low currents, the dominant term is threshold voltage mismatch, and
a current mirror typically has an error of £20% [Mea89]. Furthermore, transistor
matching cannot be readily simulated and so until familiarity with a foundry is
attained, it is very hard to judge absolute matching characteristics of transistors.

Efforts were made to layout the current source and MDAC so as to minimise
potential matching problems. The design strategy allowed for the reference bias
current to be varied so that its influence on the MDAC linearity could be inves-
tigated. Fortunately, the inherent design of a neural network offers some degree

of compensation for synapse nonlinearity through training.

4.4 Bourke Chip

The Bourke chip (see Figures 4.6 and 4.7) was the first analogue neural network
chip designed for this thesis. Bourke contains a small (3,3,1) neural network as
well as a test bucket brigade device (BBD) and some other test circuits. In this

section, only the design and simulation of the neural network portion of the chip
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will be described. The design and results of the bucket brigade portion appears
in Appendix B.

Bourke implements an artificial neural network based on the three layer per-
ceptron model [Lip87]. A block diagram of the chip is shown in Figure 4.8. The
chip takes voltage inputs and passes them through the first array of synapses to
produce three pairs of hidden layer currents. These differential currents are con-
verted to voltages using resistors that are external to the chip. The same nodes
are used as voltage inputs to the next layer which produces output currents which
are again converted to voltage outputs by the third neuron layer.

The main blocks of the chip are two synapse arrays, a current source and
weight addressing circuitry. The synapses’ digital to analogue converters are
binary weighted current sources controlled by digitally stored weights. A common
current source is used to supply bias voltages to all DACs. The circuit can be
operated over a wide range of bias current, the linearity of the DACs improving
as the bias increases and hence a tradeoff between power dissipation and DAC
linearity can be made.

Although inputs to the neural network are analogue, synapse values are writ-
ten digitally. This enables configuration of the chip to be performed digitally but
keeps the actual signal processing in the analogue domain. The synapse array
appears as a 12 word RAM with a 6 bit word size. Synapses are addressed by
row and column through a pair of multiplexed row and column shift registers.

Schematic capture was entered using the Daisy Systems Corp. program
“ACE” and their “Apex” simulator (similar to Spice) was used for analogue
simulation. “Magic” from the University of California at Berkeley was used for
mask layout, and Magic’s “Irsim” was used for digital simulation. Bourke was a
full custom VLSI design and was fabricated using Orbit Semiconductor’s 1.2 ym

double metal, single poly nwell process on a 2.2 x 2.2 mm die.
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Figure 4.7: Photomicrograph of the
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Figure 4.8: Block diagram of the Bourke chip.
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Figure 4.9: Current source circuitry (4 bits shown).

4.4.1 Current Source

The current source (Figure 4.9) is constructed by summing unit current sources
and provides biases to enable the transistors inside the DACs to produce currents
in powers of two.

For transistors with uncorrelated parameter variations, summing unit current
sources improves the matching by a factor of v/N. Correlated parameter varia-
tions such as changes in doping or oxide thickness are addressed by arranging the
current sources in a common centroid configuration [BDST91]. Large (553 pm?)
transistors are used for the current source although smaller (81 pm?) transistors
are used inside the digital to analogue converters (DACs) in order to keep the
total synapse area small.

The bias current is controlled by an off—chip current or voltage. Since all of
the currents feeding the synapses are derived from this single input, the entire

circuit can be switched off by making lin equal to zero.
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lin

Figure 4.10: Improved current source circuitry which could be used in future
designs (4 bits shown).

4.4.1.1 TImproved Current Source

Although the current source just described was used in both the Bourke and
Kakadu chips, it could be improved in future designs by replacing the n—type
unit current source array with a p—type array as shown in Figure 4.10. This
removes the need for an additional mirror and would improve the linearity of the

current source as well as the obvious reduction in area.

4.4.2 Synapse

The synapse is composed from a weight storage register, a linear DAC and a
Gilbert multiplier. The circuit diagram of the synapse is shown in Figure 4.11.

As synapses are the most numerous elements in a neural network chip, the
size of the network that will fit in a given area is predominately determined by
their dimensions. Although small synapses are required, the matching of critical
transistors within the synapsc is proportional to the squarce root of the transistor
area and so these transistors should be made as large as possible. A compromise
was reached by selecting moderate size transistors (81 pm?) for the 10 to 14
mirrors within the synapse.

Storage of the synapse values is achieved using registers, the value of which are



Chapter 4. Bourke Prototype 73

1
1 NEURON CIRCUIT
Tout+ and Tout- output
from other synapses

connect here

————————————————————————————————————————————————————————————————

!
1B5 B5
’] = [ i
!
i
| 1
! i
| 1
! i
! i
! i
I V+ V- I
i WEIGHT STORAGE i
i i
1
[ Y ! | SYNAPSE CIRCUIT
! ! IDAC |
! i
DO T :
T !
! i
1
! i
! A :
! B2 B3 B4 !
i
10 ' 12 3 1
| C P4
i
|

Figure 4.11: Synapse and neuron circuitry.

converted to analogue values via a DAC. This allows analogue signal processing
techniques to be used whilst maintaining the advantages of digital weight storage.

To reduce synapsc arca, the registers were designed to be as narrow as possible
since each register contains 6 flip—flops. Each flip—flop comprised of a transmis-
sion gate and a pair of cross—coupled inverters as shown in the weight storage
block of Figure 4.11. The dimensions of the devices were carefully selected to
allow the driving signal to overpower the inverters. The design has a minimum
of transistors, a compact synapse layout and negligible static power dissipation.

The DAC is constructed through current summing. Each bit of the DAC is
controlled by a pass transistor which can be turned on or off depending on the
value stored in the (static) input flip—flop (B0-B4). 10-14 are voltages taken from
the current source which serves to provide bias currents in powers of two. The

Bourke chip is programmed by writing values into the flip—flops of the DAC.
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The DAC is connected to a Gilbert multiplier to form a synapse. The multi-
plier has a pair of voltage inputs, a pair of current inputs (from the DAC) and a
pair of current outputs. The transfer function of this multiplier is given by the

relation

‘|‘]DAO tanh(@) if B5=1
Iout—l— - ]out— = VeV, (41)

—Ipac tanh(ZV2=Y4)) if B5 = 0
The multiplier is linear with the current input Ipsc and nonlinear to the
neuron voltage inputs V3 and V4. This is the desired situation for if they were
reversed, the tanh function would only serve to compress the range of weight
values available and would not allow nonlinear problems to be solved. The DAC
only produces positive values and current switching circuitry controlled by B5

cnables the output to be changed in sign if a negative weight is desired. The

area of a synapse is 106 x 113 pm and a layout is shown in Figure 4.12.

4.4.3 Neuron

The neuron is simply a large pull-up resistor (Figure 4.11). For all of the ex-
periments conducted on both prototypes, 1.2 M resistors were used. This con-
figuration allows the current sink output of the synapse to produce a voltage
proportional to its output, and two resistors are required to produce a differen-
tial voltage output (Figure 4.11). The resistors are provided off—chip in order to
allow easy control of the impedance and transfer characteristics of the neuron.
These neurons also serve as convenient test points for the chip. Static RAM
processes offer a high resistance polysilicon which would enable such neurons to

be placed on chip.

4.5 Bourke Training

A full analogue simulation of the Bourke chip (using Apex) was trained on the

XOR problem prior to the chip being sent to fabrication by training a range of
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increasingly sophisticated models of the chip. The weights obtained [rom traiming
simpler models were used as starting values for more sophisticated models. This
method of hierarchical training was successfully used to reduce the number of
passes of full analogue simulations required.

In the following sections, synapse modeling using mathematical models is
first detailed, then the method of training simulations is described. Next an
example of training Bourke on the XOR problem using full analogue simulation
is presented and the section concludes with the results of training the actual

Bourke chip to perform XOR.

4.5.1 Synapse Modeling

The synapses serve to multliply the inputs by a programmable weight, and all
synapse outputs in a row are summed using Kirchoft’s current law. The transfer

function of the Bourke chip can be described by the following equations

all Ka;

u; = Zwijtanh(7) (4.2)
J=1

a; = ou; (4.3)

where w;; represent the synapse connections to neuron ¢, u; is the summed output
of the synapses, a; is the neuron output, « is the neuron gain (a 1.2M resistor
gives a value of 1.2 x 10°), & is a constant, [ denotes the /th layer (0 <1< L —1),
L = total number of layers, N; = number of neuron units at the /th level and 2
is the neuron number (1 <7 < N)).

This is different to the standard three layer perceptron model [RM86] which

is

Ny

u, = Zwi]‘a]‘ (44)
7=1

a; = tanh(u;) (4.5)

By placing the nonlinearity inside the summation, the tanh characteristic of



Chapter 4. Bourke Prototype 77

a Gilbert multiplier can be used to implement this [unction. As shown in Sec-
tion 5.7, this does not affect the neural network’s ability to solve highly nonlinear

problems such as XOR and parity problems.

4.5.2 Limited Precision Training

The training of a neural network such as Bourke is a difficult problem, the main
difficulty lying in the fact that Bourke has both limited precision weights and a
transfer function which is not precisely known.

The effect of the limited precision weights is that the output is restricted in
terms of both range and resolution and so only problems which can be mapped
within the restricted synapse range can be solved. The finite precision also makes
it difficult for training algorithms to compute finite difference approximations to
derivatives since the accuracy of this depends on the resolution with which the
weight can be updated. In addition, the transfer function of the Bourke chip is
nonideal due to leakage, mismatch ete.

In order to simulate the neural network design, a hierarchy of increasingly so-
phisticated models was used to represent the circuit. These models in increasing

order of sophistication (and decreasing order of speed) were

1. A mathematical model based on Equation 4.1.
2. A mathematical model with quantised weights.

3. A full analogue simulation from the extracted layout using Apex.

The resulting weights from training the simpler models were used as starting
values for the next model. This technique allowed the network to be mostly
trained on the simple model and then optimised again using the more sophisti-
cated but slower model to obtain the next result. Full analogue simulation takes
approximately 15 minutes for each feedforward cycle on a SUN Microsystems
Sparcstation 14, and so the number of these evaluations must be made as small

as possible, otherwise training would take several weeks of computer time.
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The nonideal characteristics which occur due to device mismatch and noise
mean that the exact transfer function of the Bourke chip is not known. The
widely used backpropagation technique could not be used for this reason since
gradients cannot be computed. Techniques which approximate the derivative of
the chip using finite difference methods were not used as they increase the cost
of an iteration by a factor equal to the number of weights in the network. Sta-
tistical methods such as simulated annealing are even slower and hence not suit-
able. The techniques chosen were the Nelder—-Mead [NM65] and Hooke—Jeeves
[HJ61] methods of nonlinear optimisation which do not require computation of
the derivatives.

The optimisation task to be performed is to minimise

flw) =3 _({#(w,p) — o(p))’ (4.6)
)
where p are the input patterns, ff is the neural network feedforward function, w
are the weights and o(p) is the desired output for pattern p.

The Nelder-Mead method was first used to optimise Equation 4.6, ff being
described by Equation 4.3. The weights obtained were used as a starting con-
dition for the next optimisation step which minimised the dynamic range of the
weights. The Hooke—-Jeeves method of optimisation was used for this task as
it was found to be more successful. In order to minimise the weight range, the

optimisation problem was reformulated to be

max(|w|)

flw) =10,000 x errors(w,p) + (4.7)

min(|wl)
where errors is the number of errors in classification, max(|w|) is the maximum
value of the absolute value of all the weights and men(|w|) is the minimum value
of the absolute value of all the weights. Minimising this equation thus minimises
the number of bits if it can be achieved without sacrificing the classification
result. Note that the number of errors is computed by using a margin value m

which is selected by the user. An error is said to occur if [{ff(w, p) — o(p)| > m.



Chapter 4. Bourke Prototype 79

The optimised quantised weights were then used as the initial values [or an
Apex simulation of the extracted chip which minimises Equation 4.6 using the
Hooke—-Jeeves method. To compute the ff function for this, software was written
to automatically construct an Apex simulation file, run Apex and to extract the

node voltages representing the neuron activation from the Apex output file.

4.5.3 Hierarchical Training Example: XOR

An Apex simulation of the Bourke chip was tested by training an XOR network.
Two inputs plus a bias input were used on the (3,3,1) network of Bourke.

A bias current of 5 nA was selected for the training experiment. This value
was attained by simulating many networks using a mathematical model of the
neural network, this value achieving reliable results for most simulations.

After training with the mathematical model and floating point weights, the
following results were achieved after 2360 function evaluations ' where “I”
denotes the input, “O” the desired output, “N” the neural network output,
RANGE = max(|w|)/min(|w]|), ERR is the mean squared error and all the numbers

represent voltages (in volts) at the neuron outputs.

I 0.000000 0.000000 0.200000 ;

0 -0.100000 ; N -0.099998 ;

I 0.000000 0.200000 0.200000 ;

0 0.100000 ; N 0.099978 ;

I 0.200000 0.000000 0.200000 ;

0 0.100000 ; N 0.100008 ;

I 0.200000 0.200000 0.200000 ;

TA function evaluation is considered to be an application of the ff function — in order to
compute the crror function for XOR, 4 feedforward cvaluations arc required.
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0 -0.100000 ; N -0.100063 ;

ERR= 1.13e-09 RANGE= 445

These weights were used as the starting point for the optimisation of Equa-
tion 4.7 which aims to reduce the dynamic range required by the synapses. After
1632 function evaluations the following results (input vectors omitted) were ob-

tained

0 -0.100000 ; N -0.050289 ;
0 0.100000 ; N 0.086844 ;
0 0.100000 ; N 0.058402 ;

0 -0.100000 ; N -0.090538 ;

ERR= 0.001116 RANGE= 62

The result of the two preceding optimisations is a set of weights which can
be used as a starting point for the optimisation of the full analogue simulation.
The quality of the starting point can be seen by using the analogue simulation

with the previously computed weights

0 -0.100000 ; N -0.065000 ;
0 0.100000 ; N 0.097000 ;
0 0.100000 ; N 0.075000 ;

0 -0.100000 ; N -0.097000 ;

ERR= 0.000467 RANGE= 31

The optimisation using a full analogue simulation was then performed and

after 414 evaluations the result was

0 -0.100000 ; N -0.123

0 0.100000 ; N 0.108
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0 0.100000 ; N 0.102

0 -0.100000 ; N -0.102

ERR= 0.0001502 RANGE= 31

This result shows that the analogue simulation of the chip can indeed be
trained to perform the XOR mapping and the ability to train a full analogue
simulation of the Bourke chip before it was sent to be fabricated gave confidence
in the correctness of the chip design. Note that this model does not deal with

device mismatch.

4.5.4 Bourke Chip Characterisation

Prior to any training tests on the Bourke chip, basic chip functionality and
characterisation tests were performed. The characterisation tests consisted of
measuring the synapse output as the bias, voltage input and weight inputs were
varied. Results of these tests are not included in this chapter since in the next

chapter, the same tests as applied to the Kakadu chip will be described.

4.5.5 Training of Bourke Chip

The Bourke chip was trained under control of a custom test jig interfaced to an
IBM PC 3865X clone. A PC-LabCard “Multi-Lab Card” was used to provide
12 bit D/A, A/D and digital IO control of the Bourke chip. A bias current of
5 nA was used.

Attempts to train the Bourke chip on XOR from random weights using
Hooke—Jeeves and Nelder—-Mead optimisation were unsuccessful although many
attempts at many different biases were tried. Training was only achieved after
using the weights from the analogue simulation of the previous section as the
starting weight values for the chip training. The outputs after training (740

evaluations) were



Chapter 4. Bourke Prototype 82

0 -0.100000 ; N -0.153809 ;
0 0.100000 ; N 0.134277 ;
0 0.100000 ; N 0.119629 ;

0 -0.100000 ; N -0.090332 ;

ERR= 0.001137 RANGE= 31

This result indicated that the Bourke chip had been correctly trained to solve
the XOR problem.

4.6 Summary

This chapter began with a summary of previous implementations of artificial
neural networks in VLSI. Following this, the design concerns for a neural network
chip suitable for the low power classification of ICEG signals was described. The
development and simulation of the Bourke neural network prototype was also
detailed in this chapter.

Bourke implemented a small (3,3,1) neural network which employs multiply-
ing digital to analogue converters for the synapses and off—chip resistors for the
neurons. Using a hierarchical training technique, an analogue simulation of the
chip was successfully trained on XOR before fabrication. The Bourke chip was
used to test the concept of the architecture and was successfully trained on the
XOR problem.

In the next chapter, the Kakadu chip which used the same cells and ar-
chitecture as Bourke to implement a (10,6,4) network is described. Results of
performance tests on its synapses and its ability to perform classification tasks

are detailed.
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Kakadu Prototype

5.1 Introduction

Following the successful testing of Bourke on the XOR problem, a more ambitious
chip, called Kakadu was designed. Kakadu has 10 input neurons, 6 hidden neu-
rons and 4 output neurons and used the same synapses and neurons as Bourke.
Kakadu was designed to be a general purpose chip, applicable to many problems.

In this chapter, the design of the Kakadu chip is detailed and the Kakadu
chip performance is asscssed by analyzing the measured synapse transfer func-
tion, MDAC linearity, power consumption and performance on some benchmark
classification problems.

The problem of training a chip such as Kakadu is by no means trivial and
the two questions that were encountered was how to control the chip and what
algorithm to use to train the chip? In order to control signal levels on the
Kakadu chip, a general purpose chip tester called Jiggle was designed. In order
to select a training algorithm suitable for the Kakadu chip, a comparison between
the combined search algorithm (CSA) [XJ92], Hooke—Jeeves optimisation [HJ61]
and Nelder-Mead optimisation [NM65] was made. This comparison, as well as a

description of the Jiggle chip tester, are also described in this chapter.

83
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Figure 5.1: Block diagram of the Kakadu chip.

5.2 Kakadu Chip

It was determined that the largest network with the same architecture as Bourke
which would fit in a 40 pin package was (10,6,4) in size. In order to achieve
this, many of the digital signals were multiplexed and all synapse addressing and
writing performed in a bit serial fashion. A block diagram of the Kakadu chip is
in Figure 5.1.

A floorplan of the chip is shown in Figure 5.2, a plot in Figure 5.3 and
a photomicrograph showing the main synapse blocks, row shift registers and
the current source is shown in Figure 5.4. As can be seen from the plot and
photomicrograph, the synapse arrays dominate the chip area.

Although Kakadu is a (10,6,4) neural network, it can implement any smaller

network by setting unused synapses to zero. Setting a synapse to zero means
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Figure 5.2: Floorplan of the Kakadu chip.

that no current can flow through that synapse and so no power is consumed by
such synapses.

A summary of the major chip fecatures of Kakadu is given in Table 5.1. Al-
though the synapse circuit has differential inputs, in order to save pins, all 10
inputs to the chip are single ended and referenced to a single pin.

Unlike Bourke, Kakadu could not be simulated from the extracted layout since
the design was too large for the Apex analogue simulator (5950 transistors). The
digital weight writing circuitry was tested through digital simulation using Irsim
and a nctlist comparison, using the “Wombat” program from the University

of California at Berkeley, was made to compare the extracted netlist with the

schematic diagram.
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Figure 5.3: Plot of Kakadu chip.

Technology 1.2 ym double metal, single poly nwell
Chip Size 2.2 X 2.2 mm

Transistors 5950

Synapses 84 x 6 bit MDAC

Power Supply 3V

Power Consumption (typical) 20 uW

Power Consumption with zero bias | not measurable (< 100 pA)
Propagation Delay 30 S (0.2 V swing into 2 pF)

Table 5.1: Kakadu chip summary.
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Figure 5.4: Photomicrograph of the Kakadu chip.

5.3 Jiggle Test System

5.3.1 Introduction

Jiggle is a general purpose chip tester which was designed specifically for the
training and testing of low power analoguc integrated circuits [LV92]. Commer-
cial analogue chip testers are too expensive to justify for small projects, and
multifunction analogue/digital interface cards, such as the PC-LabCard “Multi-
Lab Card” used to test Bourke in Section 4.5.5, have too few channels to test

the Kakadu chip. Jiggle has the following features
o 40 digital IO channels
e 40 analogue 1O channels
e 2 x 12 bit analogue to digital converters

o 40 x 12 bit digital to analogue converters
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1O direction
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To databus Q D

<—‘

Getsmp

Figure 5.5: Jiggle digital IO block diagram.

e sample and hold circuitry on each analogue pin so that all can be sampled

simultaneously
e software configuration of analogue and digital 1O direction
e VME bus interface

e UNIX library for jiggle 10

Digital 1O in Jiggle is achieved in the obvious manner, and is illustrated
in Figure 5.5. The data direction is configured on the tristate buffer, and the
output latch can be set to the desired binary level by writing to the output
register. When configured as an input, a “Getsmp” command will sample all
analogue and digital channels simultaneously and the state of all of the Jiggle
inputs can then be rcad back at a later time.

Analogue 10 is illustrated in Figure 5.6 and is similar in principle to the digital
I0. A relay is used to configure the pin as either an input or an output. If it is
an output, the switch is closed and the output of the 12 bit DAC drives the pin.
Regardless of the 1O direction, pins also drive a sample and hold amplifier which

has an input impedance of 50M2. This high input impedance is necessary when
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Figure 5.6: Jiggle analogue 10 block diagram.

measuring output devices with low drive capability so that it does not affect the
circuit being tested. The output of each pin’s sample and hold is multiplexed so
that two 12 bit analogue to digital converters can be shared over the 40 analogue

channels.

5.3.2 Kakadu Test Setup

A block diagram of the Kakadu based test system is shown in Figure 5.7. The
Jiggle chip tester has a VMEbus interface, and a SBUS to VMEbus interface
card is used to allow a Sun 4 Sparcstation IPC to control the Jiggle card which
in turn is connected to the Kakadu chip.

The Jiggle chip tester allows all pins of the Kakadu chip to be controlled from
software using either digital or analogue input/output pins. The Kakadu chip is
housed on a separate daughter board and contains some level shifting circuitry
to convert the 5 V signals of Jiggle to the 3 V signals required by Kakadu. A
photograph of this setup is shown in Figure 5.8.

All of the experiments conducted on Kakadu were controlled using Jiggle. The

Jiggle chip tester allowed the Kakadu chip to be configured with bias voltages,
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Figure 5.7: Block diagram of the Jiggle based test system.

Figure 5.8: Photograph of the Kakadu test system.
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weights and input via software control. Outputs were measured either using the
12 bit analogue to digital converters (ADCs) in Jiggle or on conventional test

equipment.

5.4 Synapse Transfer Function

5.4.1 Voltage Inputs

From Equation 4.1 and Ohm’s law, the synapse followed by a neuron has a

transfer function described by

? (5.1)
—RIpac tanh(2022Y)) if B = 0

2

{ 4 RIpac tanh(202=1)) if B5 = |
out —

where R = 1.2 x 10%. The synapse transfer function can be obtained by keeping
Ipac constant and varying V5 and Vj. A curve fit was used to find x = 26.0719 in
this equation, and a plot of the measured and expected synapse transfer function
can be seen in Figure 5.9. There is close agreement between the expected and

measured values.

5.4.2 MDAC Linearity Test

The Gilbert multiplier used in the Kakadu MDAC has a transfer function de-
scribed by Equation 4.1. The output of the DAC is equal to I+ — [~ and so

for fixed input voltages this equation can be simplified to be
]out = k]DAC (52)

where k is a constant and

+5_ 2Bk ifB5 =1
Ipac = +=0 (5.3)
S 2Bk i B5 =0

Plots of the (measured) MDAC linearity for various bias currents are shown

in Figures 5.10 and 5.11.
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Figure 5.9: Synapse transfer function (measured and expected).
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Figure 5.10: Measured MDAC linearity (low bias currents).
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Figure 5.11: Measured MDAC linearity (high bias currents).

As the bias current increases, the DAC linearity can be seen to improve and
a tradeoff between these can be made. Although monotonicity was not achieved
until the bias current reached 15.3 nA; a bias current of 6.63 nA was selected for
the operation of the experiments. This choice of bias current had a single point
where it was not monotonic but it was expected that such behaviour would not
affect the operation of a neural network since training can compensate for such

effects.

5.5 Propagation Delay

The propagation delay of the Kakadu chip is determined by the time taken to
charge up the neuron capacitance. This is highly dependent on the bias current,
synapse values and the capacitance of the output.

In order to measure a typical propagation delay figure for Kakadu, the chip

was biased at 6.63 nA and the time from a change in the inputs until the output
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reaches 90% of the final value (2pF load) was measured. This delay was typically
30 uS.

5.6 Power Consumption

It is uscful to be able to estimate the power consumption of the Kakadu chip. This
is a function which is linear with the weight values since Ip ¢ in Figure 4.11 is the
current drawn for that particular synapse. The current consumption Ixsxapv
can be approximated by the formula

N

Ixaxapy = a+ b |w;| (pA) (5.4)

i=0
where @ and b arc constants, w; is the th weight, ¢ indexes through all of the
weights in the chip and Ixaxapr is the current consumption in pA.

The power consumption for a number of different synapse values was mea-
sured after the outputs had settled to the final output value. This is the static
consumption and includes the chip plus the off-chip neuron dissipation. A
Philips/Fluke PM2525 multimeter with a resolution of 100 pA was used for these
measurements.

The chip was biased at 6.63 nA and a least squares fit was made to the data,
the result being ¢ = 0.842,b = 0.00736. Figure 5.12 shows the measured current
dissipation of the chip and the curve fit of Equation 5.4 to this data.

It can be seen that the linear fit quite closely approximates all of the points
and this confirms that this is a valid technique for estimating the power con-
sumption of the Kakadu chip. If the weights arc not known, an upper bound for
a particular architecture size can be determined (if operated at the same bias)

using the formula
]MAXKAKADU = 0.842 +n* 31 % 0.00736 (,MA) (55)

where n is the total number of synapses in the neural network.
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Figure 5.12: Current consumption curve fit (bias current = 6.63 nA).

An additional experiment was conducted with the weights all set to the max-
imum value, and the bias current reduced to zero. The current consumption of
the chip in this configuration could not be measured with the PM2525, the read-
ing being less than 100 pA. In this configuration, cssentially no current, other

than leakage, is used by Kakadu.

5.7 Neural Network Training

Training of analogue neural network chips is much harder than their digital
counterparts. Mismatch of transistors, imperfect transistor models and noise
means that a mathematical formula for the neural network transfer function
cannot be attained and thus a formula for the gradient also cannot be reliably
computed.

Such effects were not a major problem in the Bourke chip since the number

of synapses was small and a very good set of starting weights could be obtained
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through analogue simulation. However, the Bourke chip could not be trained
successfully from random starting weights using either Nelder—Mead or Hooke—
Jeeves optimisation techniques. For a chip such as Kakadu, where analogue
simulation is not possible due to its size, a more reliable optimisation algorithm
is required.

Several techniques were used to train the Kakadu chip from random starting
weights by minimising Equation 4.6 described in Section 4.5.2. Nelder-Mead
[NM65], Hooke—Jeeves [HJ61], and the combined search algorithm (CSA) [X.J92]
were all used successfully in the training of Kakadu on different problems. An
experiment was conducted in an attempt to find the most reliable training algo-
rithm of the three.

In the following sections, the CSA algorithm will firstly be described, and

then the comparison experiment between algorithms will be discussed.

5.7.1 Combined Search Algorithm

The combined search algorithm [XJ92] employs two minimisation strategies,
namely modified weight perturbation and random search. Modified weight per-
turbation is a local search and the random search algorithm is a non—local search

technique. CSA can be described by the following pseudocode

while not converged
{
/* modified weight perturbation */
for 1 = 1 to 10
{
for each weight w
{
wsave = w;

w = w + DELTA; /* DELTA is usually set to 1 */
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evaluate error;
1f error has not improved

W = wSave;

b

/* random search algorithm */

for 1 =1 to 30

{
for each weight w
{
wsave = W;
w = uniformly distributed random number;
evaluate error;
1f error has not improved
W = wWsave;
+
+

The CSA algorithm is very simple and the results obtained are surprisingly
good, convergence being very fast for small problems. Although CSA has been
successfully used to train Kakadu on problems with more than 50 synapses, it is

expected that performance would degrade rapidly for larger problems.

5.7.2 Comparison between Training Algorithms

The algorithms were tested by attempting to train a quantised mathematical
model of Kakadu derived from Equation 4.3 on four different problems. These
problems were xor (Section 5.8.1), par3 (Section 5.8.2), pard (Section 5.8.3) and
morph (Section 5.8.5).
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Problem Nelder—-Mead
Number Trained | Iterations (mean) | Iterations (SD)
Xor 1 8348 —
par3 3 28253 9560
par4d 0 - -
morph 4 23554 9066
Problem Hooke—Jeeves
Xor 1 1044 —
par3 0 - -
par4d 0 - -
morph 3 18698 8289
Problem CSA
Xor 1 14584 —
par3 8 9781 13959
par4d 0 - -
morph 8 24644 1658

Table 5.2: Training experiment results (8 trials per problem).

The training started from random weights, and was considered successful if
the outputs of the neural network could be trained to within a margin value
of the desired values. This test was conducted 8 times for each algorithm and
training set, and the results are summarised in Table 5.2.

From the table, it is easily seen that CSA is the only algorithm of the three
that can reliably train the Kakadu architecture, and it was able to train all prob-
lems except for par4 and xor in all of the trials in the experiment. The method

which was finally used to train the par4 problem is discussed in Section 5.8.3.

5.8 Neural Network Training Examples

The Kakadu chip was trained on a number of benchmark ncural network classifi-
cation problems using the combined search algorithm and the Jiggle chip tester.
Training time for these problems was usually between 5 and 50 minutes and
the main bottleneck was Kakadu’s serial weight update interface. All of the ex-
periments were conducted using a 3 V supply and the performance and power

consumption results are presented in the following sections.
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Input (Volts) | Desired Output | Output (Volts)
0.2 10.010.0 0.0 0.031
0.2 10.2]0.0 0.2 0.215
0.2 10.0]0.2 0.2 0.173
0.2 102102 0.0 0.032

Table 5.3: Results of applying Kakadu to the XOR problem (6.9 pW).

5.8.1 XOR

XOR has been a benchmark problem for neural networks because it is a simple
yet highly nonlinear problem. The minimum network size which can solve this
problem is (3,2,1) with one input being a bias. To make Kakadu behave like
a smaller network, the weight values for the unconnected synapses are set to
zero. Kakadu was successfully trained on this problem, results of this test being
shown in Table 5.3. The bias current used was 6.63 nA. The chip was considered
successfully trained if the difference between the measured and desired output
less than a particular margin. For the XOR function, this margin was set to be
0.08 V.

For XOR, the power dissipated was 6.9 pW at 3 V. The same problem has
been successfully trained with bias currents down to 3.5 nA. For bias currents
lower than this, training could not be achieved. It was decided that further
tests would be conducted with a bias of 6.63 nA to be sure that sufficient DAC

linearity was achieved.

5.8.2 PARITY (3 BIT)

Three bit parity is another nonlincar benchmark problem which can be thought
of as XOR in three dimensions. The function and results of the problem are
tabulated in Table 5.4. Kakadu was successfully trained using a (4,3,1) network
with a margin set to 0.08 V and a bias current of 6.63 nA. The quiescent power

consumption for this problem was 9.0 ¢W.
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Input (Volts) Desired Output | Output (Volts)
0.2 -0.1 | -0.1 | -0.1 -0.1 -0.103
0.2 | -0.1 | -0.1 | 40.1 +0.1 +0.952
0.2 -0.1 | +0.1 | -0.1 +0.1 +0.103
0.2 -0.1 | +0.1 | +0.1 -0.1 -0.098
0.2 | +0.1] -0.1 | -0.1 +0.1 +0.103
0.2 | +0.1 | -0.1 | 40.1 -0.1 -0.073
0.2 {40.1 | 4+0.1 | -0.1 -0.1 -0.090
0.2 401 | +0.1 ] 40.1 +0.1 +0.105

Table 5.4: Results of applying Kakadu to the parity 3 problem (9.0 ¢ W).

5.8.3 PARITY (4 BIT)

The 4 bit parity problem was very difficult to train on a (5,4,1) network and
although many attempts were made at training the chip using CSA, none were
successful.

Training was finally achieved by using CSA on a mathematical model of
the chip to provide a starting point for further training using the chip. The
mathematical model was one which used Equation 4.3, and the weights were
allowed to be floating point values within the maximum range of the synapse
values (i.e. —31 < w < 31). This modified weight range had the following

benefits

e enabled training to be performed in the absence of quantisation effects

e makes Equation 4.6 continuous in this range
o allows CSA to be used with a DELTA less than 1

When the chip was trained with CSA using the starting values thus obtained, it
converged very quickly to a solution for this problem.

The results of the training on the chip are shown in Table 5.5. The margin was
set to 0.08 V and the bias current was 6.63 nA. The quiescent power consumption

for this problem was 15.6 pW.
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Input (Volts) Desired Output | Output (Volts)
0.2 -0.1 1 -0.1 | -0.1 | -0.1 -0.1 -0.071
0.2 -0.1 | -0.1 | -0.1 | 4+0.1 +0.1 +0.071
0.2 -0.1 | -0.1 | 40.1 | -0.1 +0.1 +0.066
0.2 -0.1 | -0.1 | 40.1 | +0.1 -0.1 -0.085
0.2 -0.1 | 4011 -0.1 | -0.1 +0.1 +0.061
0.2 -0.1 | +0.11] -0.1 | +0.1 -0.1 -0.073
0.2 -0.1 | +0.1 | 40.1 | -0.1 -0.1 -0.059
0.2 -0.1 | 4+0.1 | +0.1 | +0.1 +0.1 4+0.071
0.2 +011] -0.1 | -0.1 | -0.1 +0.1 +0.141
0.2 |+0.1 ] -0.1 | -0.1 | 4+0.1 -0.1 -0.117
0.2 | +0.1] -0.1 | 4+0.1 ] -0.1 -0.1 -0.103
0.2 | +0.1 ] -0.1 | 40.1 | +0.1 +0.1 40.051
0.2 {401} +0.1] -0.1 | -0.1 -0.1 -0.056
0.2 | +0.1 | 401 -0.1 | 4+0.1 +0.1 +0.022
0.2 {40.1|+0.1 ] 40.1 | -0.1 +0.1 +0.085
0.2 | +0.1 | 40.1 | 40.1 | +0.1 -0.1 -0.024

Table 5.5: Results of applying Kakadu to the parity 4 problem (15.6 ¢W).

5.8.4 Character Recognition

Figure 5.13 shows a simple character recognition problem to which Kakadu was
applied. A (10,6,4) network was divided into a bias unit and a 3 x 3 pixel array.
The network was trained (bias current 4.4 nA) on the characters ‘0°, ‘1°, ‘7" and
‘+’, each output being assigned to one character. Only four characters were
used because there are only four outputs on the Kakadu chip. After training,
one or more bits in each character was corrupted and the network output passed
through a “winner take all” decision to determine the network’s classification of
the corrupted character. The results of this experiment (shown in Tables 5.6 and
5.13) show that Kakadu was able to correctly classify patterns that it had not

been trained on. Kakadu draws 22.5 ¢W during this test.

5.8.5 ICEG Morphology Classification

The Kakadu chip was designed primarily to classity ICEG waveforms based on

morphology to aid in the identification of cardiac arrhythmias. This final example
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Input Output Class
1j1}1]-012 | -0.11 | -0.09 | 40.10 0
1 1
111
1|1}1]-0.10 | -0.04 | -0.16 | 4+0.09 0
111
1{1]1
1 -0.10 | -0.10 | 40.10 | -0.10 1
1
1
1 -0.05 | -0.09 | 40.00 | -0.13 1
1)1
1
111}1]-0.10 | 40.09 | -0.10 | -0.10 7
1
1111 -0.16 | 4+0.03 | -0.10 | -0.02 7
1
1)1
1 +0.10 | -0.10 | -0.09 | -0.09 +
111
1
1 +0.06 | -0.08 | -0.02 | -0.15 +
1)1

Table 5.6: Results of applying Kakadu to the character recognition problem
(22.5 pW). In the “Input” column a ‘1’ denotes an input voltage of 0.1 V and a
blank is -0.1 V. An additional bias input of 0.2 V was uscd.
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Figure 5.13: Character recognition example.

demonstrates Kakadu’s ability to identify abnormal heart signals based on the
shape of the signal.

A VT 1:1 patient was selected from an ICEG database and Kakadu was
trained on 4 NSR and 4 VT 1:1 complexes (bias current 6.63 nA). The patterns
were constructed by taking 10 samples centered about each QRS. The test set
comprised 68 VT and 447 NSR rhythms from the same patient. On this problem,
100% correct classification was achieved. The average power consumption for this

problem was 20 pW.

5.9 Summary

The Kakadu chip implements a (10,6,4) neural network using the same neuron
and synapse design as Bourke. In this chapter, the design and testing of the
Kakadu chip was detailed. A description of the Jiggle chip tester was presented

as well as a comparison between the Hooke—Jeeves, Nelder—-Mead and combined
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search algorithm training algorithms. O[ the three training algorithins, the com-
bined search algorithm was found to be the most reliable.

The measured and expected synapse transfer functions of the Kakadu test
chip were compared and found to be in close agreement. Linearity of the DAC
improved with increasing bias current. The DAC was found to be 6 bit monotonic
at a bias current of 15.3 nA although the chip has solved the XOR problem with a
bias as low as 3.5 nA. A bias current of 6.63 nA was selected as an operating point
for neural network training experiments to ensure good DAC linearity without
overly increasing the power dissipation of the chip.

The Kakadu chip was trained using the combined search algorithm on XOR, 3
bit parity, 4 bit parity, [CEG morphology classification and character recognition
problems. For the 4 bit parity problem, the combined search algorithm could not
find a solution from a random starting point. However, when a starting point was
obtained from a mathematical model of the chip, a solution was quickly found.

Also developed in this chapter was a linear model of the current consumption
of the Kakadu chip was a function of the synapse values. This model was found
to agree very well with the data and enables accurate estimates of the chip’s
power consumption to be made. The maximum measured power dissipation for

all of the problems described in this chapter was 20 pW.
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System Performance

6.1 Introduction

In this chapter, the performance of MATIC is evaluated using a large database of
ICEG signals taken from 67 patients. In order to provide a basis for comparison, a
simple threshold detector (STD) similar to the classification algorithm used in the
Telectronics Guardian 4210 is first applied to the database and the classification
performance noted.

The STD classifier is then compared with MATIC using a three layer per-
ceptron network with floating point weights (FPNN). This system shows the
performance of the MATIC algorithm with a “perfect” network which does not
suffer from problems of noise, matching and limited precision weights. Misclassi-
fied complexes are analysed and the causes of these misclassifications are justified.
The importance of the morphology classifier and the ability of a neural network
to store multiple morphologies are also demonstrated.

A MATIC system which employs the Kakadu chip is then described and the
classification performance on the ICEG database is presented. These results are
compared with those obtained with the FPNN. The chapter concludes with mea-
sured power consumption figures of the Kakadu chip obtained while performing

morphology classification.

105
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6.2 ICEG Database

MATIC was tested on a database of intracardiac electrogram (ICEG) signals
containing 12483 QRS complexes recorded from 67 patients during electrophysi-
ological studies. The patients had a wide variety of arrhythmias including sinus
tachycardia (ST), normal sinus rhythm, normal sinus rhythm with bundle branch
block, sinus tachycardia with bundle branch block, atrial fibrillation (AF), vari-
ous supraventricular tachycardias, ventricular tachycardia, ventricular tachycar-
dia with 1:1 retrograde conduction (VT 1:1) and ventricular fibrillation (see Ta-
ble 6.1). Within these arrhythmias, there were also numerous ventricular ectopic
beats, fusion beats, noise and other artifacts.

The tachycardias were initially classified manually into subclasses by a human
and the data was labelled with this information. The computer classification was
not available to the human during this process. Only regions of stable rhythms
were labelled, regions with unstable rhythms due to the programmed stimulation
were not used in the study. Multiple rhythms (usually NSR and a tachycardia)
were labelled in most patients and a total of 122 classified “regions” were obtained
in this manner from the 67 patients used in this study. The labelled data were
then confirmed by other human experts to double check the classifications.

Since the MATIC algorithm produces classifications which correspond to ICD
therapy, it only produces 4 different “superclasses”, namely NSR, SVT, VT and
VF (see Section 3.2.1.4). The mapping used to convert from a subclass to a

superclass is shown in the first two columns of Table 6.1.

6.3 Simple Threshold Detector

In order to compare the performance of MATIC with a classifier similar to one
currently in use, a classification system based on the algorithm employed in
the Telectronics Guardian ATP 4210 [Ltd89] was used (see Section 2.5 for a

description of the Guardian device). This is a simple threshold detector (STD)
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with the RR interval (measured in the RVA channel) being compared to fixed
thresholds. The “sudden onset” detector used in the Guardian 4210 was not
employed as all tachycardias in the database were initiated through programmed

stimulation. The default 4210 classification parameters were used —

VFE if RR < 250 ms
CLASS = VT if 250 ms < RR < 400 ms
NSR otherwise

Output of this threshold detector was then fed to an “8 out of 10” post processor
(as done in the 4210).

The results of the STD classifier are shown in the “confusion matrix” of
Table 6.1. The STD system output classes appear in the columns of the matrix
and human classifications appear in the rows. Correct classifications appear on
the diagonal of the matrix and are in bold type. The subclass classification made
by the human is mapped to an appropriate superclass (as shown in the first two
columns of the table) so that the performance of STD for various tachycardias
can be determined. As an example, the second row of Table 6.1 shows that the
database held 10 regions of subclass “ST” (superclass “NSR”). STD produced
1882 outputs for these (ST) regions, and of these, 1786 were NSR and 96 were
VT.

It can be clearly seen that the classifier does not produce reliable classification.
An overall classification performance of 75.9% was achieved. If the SVT patients
in the database are omitted (current ICDs are not used in patients susceptible
to SVTs), the revised correct classification rate of the STD classifier becomes
86.6%.

As expected, sinus tachycardia and supraventricular tachycardias produce VT
false positives, and the lack of atrial information in the STD logic means that
certain slower VT rhythms are classified as NSR.

Note that the threshold parameters used in a real STD classifier are normally

set in a patient dependent manner and one would expect a real ICD to give much
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‘ Subclass ‘ Superclass ‘ Regions ‘ NSR ‘ SVT ‘ VT ‘ VI ‘

NSR NSR 64 | 5032 0 4 0
ST NSR 10 | 1786 0] 96 0
SVT SVT 9 191 0| 860 0
AT SVT 2 51 0 8 0
AF SVT 3 123 0 1 0
VT VT 9 134 01226 0
VT 1:1 | VT 10 737 01351 | 110
VI VF 6 6 0 01157
VTF VI 9 6 0 79 31

Table 6.1: Subclass confusion matrix of STD classifier. Note that a classification
rate of 75.9% is achieved for all data and a rate of 86.6% for non—-SV'T data.
The rows represent the human classified subclass and the columns represent the
computer classification. Human subclass classifications are collapsed into super-
classes in the rows according to the “Superclass” column. The “Regions” column
is the total number of stable rhythms for that subclass. Correct classifications
arc in bold type.

better performance than that of Table 6.1. However, since only sinus rhythm and
a tachycardia were available for most patients in our database, setting a patient

dependent threshold would not give a true indication of the classifier’s ability

(since there would only be two different rhythms).

6.4 MATIC with FPNN

In order to provide a means whereby the hardware neural network could be
compared with a “perfect” neural network, the MATIC algorithm was first tested
using a three layer perceptron neural network with floating point weights. This

floating point neural network (FPNN) has the following differences to Kakadu

o Uses 64 bit IEEE floating point weights instead of the 6 bit values of
Kakadu.

e Implements a three layer perceptron (Equation 4.5) instead of the linear

neuron with nonlinear synapse model (Equation 4.3).

e Does not suffer from noise or drift.
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‘ Subclass ‘ Superclass ‘ Regions ‘ NSR ‘ SVT ‘ VT ‘ VI ‘
NSR NSR 64 | 5605 4 2 0
ST NSR 10 | 1535 24 2 1
SVT SVT 9 0| 1022 0 0
AT SVT 2 0 52 0 0
AF SVT 3 0| 165 0 0
VT VT 9 0 0] 332 0
VT 1:1 | VT 10 2 0] 1253 0
VF VF 6 0 0 2196
VTF VF 9 0 2 0116

Table 6.2: Subclass confusion matrix of MATIC classifier. Note that 99.6% of

classifications are correct.

For the classification experiments using the FPNN, the parameters of the

neural network morphology classifier (as described in Section 3.3.4) were a = 0.0,

#=1.0and v = 0.8.

6.4.1 FPNN Results

The MATIC algorithm with FPNN morphology classifier was used to classify the
ICEG database and the results are shown in Table 6.2; 99.6% correct classifica-
tion was achieved.

It can easily be seen that MATIC performs better than the STD classifier for
all arrhythmia subclasses. This success is mostly due to the extra information

which can be obtained from the additional atrial lead.

6.4.1.1 Misclassifications

In total, 10315 outputs were produced by MATIC from the 12483 input QRS
complexes (an output is generated only if the X out of Y criterion is satisfied so
the number of outputs is always less than number of QRS complexes). This also
causes different classifiers to produce a different number of outputs even though
the same database is used.

A total of 39 QRS complexes were incorrectly classified and these were caused

by the following
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e Fdge Effect (4 complexes). Upon onset of an arrhythmia, latency effects
in the X out of Y detector can cause the first complex to be incorrectly
classified if the last X complexes were the same. This is not a serious
problem as in practice it does not matter if correct classification is delayed

by a single QRS complex (see Figure 6.1 for an example).

e Bad QRS Detection (11 complexes). The QRS detector used was very good,
however there were some cases where it made false detections. Spikes in
the waveform could cause false detections or missed detections, causing

MATIC to produce an incorrect classification.

e MATIC Errors (24 complexes). These misclassifications are due to inad-
cquacics in the MATIC system. All of these 24 complexes came from a
single patient with sinus tachycardia and were classified as SVT. In this
patient, a 240 ms AV conduction time can be observed (see Figure 6.2),
and the patient has 1° AV block. MATIC will misclassity this condition as
SVT since (2PR > RR).

6.4.2 Performance of MATIC without Morphology

In order to assess the usefulness of the morphology classifier, the MATIC al-
gorithm with morphology disabled was applied to the VT 1:1 patients. The
confusion matrix of this experiment is shown in Table 6.3. Of the 2358 classifi-
cations made, 1045 were incorrect (55.7% correct classification). MATIC (with
morphology disabled) did not correctly classify any VT 1:1 rhythms since the

timing logic requires AV dissociation for a VT classification (see Section 3.3.3).

6.4.3 Multiple Morphologies

An additional experiment was conducted to demonstrate the ability of the neural

network classifier to store multiple morphologies. The 8 training samples from
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Figure 6.1: ICEG misclassified because of the edge effect. The VI is classified
as a VT since the 5 previous QRS complexes (out of 6) were VT, causing the X
out of Y detector to assume that it is VT.
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Figure 6.2: Misclassification due to 1° heart block (PR = 244 ms). MATIC
misclassifies this ST as SVT because (2PR > RR).
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‘ Subclass ‘ Superclass ‘ Regions ‘ NSR ‘ SVT ‘ VT ‘ VI ‘

NSR NSR 10 | 1313 0 0 0
VT 1:1 | VT 10 127 | 894 0| 24

Table 6.3: Subclass confusion matrix of MATIC classifier for VT 1:1 data with
morphology detection disabled. 55.7% are correctly classified. Note that all VT
1:1 rhythms are incorrectly classified.

‘ Subclass ‘ Supcrclass ‘ Regions ‘ NSR ‘ SVT ‘ VT ‘ VF ‘

NSR NSR 10 | 1252 0 1 0
VT 1:1 | VT 10 0 25| 982 0

Table 6.4: Subclass confusion matrix of MATIC classifier for VT 1:1 data using
a single set of weights, demonstrating the network’s ability to store multiple
patterns. 98.8% are correctly classified.

each of the 10 patients with VT 1:1 were used to form a training set of 80 QRS
complexes. A larger network consisting of 10 input units, 8 hidden units and 1
output unit was found to produce the best results. After training, the resulting
network was used to classify all of the VT 1:1 patients. Thus the network was
required to store 20 different morphologies (NSR and VT 1:1 for each of the 10
patients). The results, shown in Table 6.4, show a degraded performance com-
pared with a separate classifier for each patient with 26 misclassified complexes.
However, 24 of the 25 VT 1:1 rhythms misclassified as SVT were from a single
patient whose NSR morphology is very similar to another patient’s VT 1:1 mor-
phology. From this result, we observe that multiple patterns can be stored by
the neural network, but if NSR and VT 1:1 patterns in the training set are very
similar, incorrect results may occur. It should be noted that the same problem

will exist for any template matching algorithm and even for humans.
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Figure 6.3: Block diagram of MATIC classifier system in an ICD.

6.5 MATIC Implemented using Kakadu

A system architecture for implementing the MATIC algorithm using a neural
network coprocessor was presented in Section 3.4.2. In this section, the im-

plementation of this architecture using the Kakadu chip as the coprocessor is

described.

6.5.1 System Architecture

A slightly more detailed block diagram of Figure 3.11 which employs a bucket
brigade device and a neural network chip is shown in Figure 6.3.

In this architecture, the microprocessor inside an ICD is used to implement
all of the timing algorithm of MATIC except for the morphology classifier. The
morphology classifier is implemented in a neural network chip operating in par-
allel with the ICD. The morphology classifier obtains a 0.1-50 Hz band limited

RVA input from the ICD and passes this through an analogue delay line to obtain
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a window of previous samples. These form the input to the neural network and
thus a classifier the same as Figure 3.10 is implemented and morphologies can
be analyzed by the neural network. The output of the neural network is passed

through a comparator producing a digital output which can be read by the ICD.

6.5.1.1 Analogue Delay Line

A charge transfer device can be used to produce a sampled analogue delay line,
charge transfer techniques being both power efficient as well as small in size.
There are two different devices which are suitable for this purpose, the charge
coupled device (CCD) and the bucket brigade device (BBD).

A CCD is an array of closely spaced MOS diodes [Sze81]. By applying the
appropriate clocking sequence to a CCD, packets of charge can be stored and
moved across a semiconductor substrate. The CCD offers the advantages of lower
noise and smaller area over a BBD. However, CCDs require a special fabrication
process, generally require a more complicated clocking sequence, and are more
difficult to implement. To avoid the difficulties of implementing and fabricating
a CCD, and considering that only an extremely short analogue delay line was
required (10 stages), a BBD was chosen.

The design and test of a bucket brigade device which was fabricated on the
Bourke chip is described in Appendix B. At the 125 Hz operating frequency,
the prototype BBD circuit was found to have a charge transfer inefficiency of
0.35% and an estimated power consumption of 40 nW (see Section B.5.1). The
addition of a BBD would not change the power consumption of a chip such as
Kakadu since it consumes many orders of magnitude less power than that of the
synapses.

In order to ensure that the neural network output is read at the correct time,
the ICD device must read the output of the neural network when the QRS is

complex is centered within the window. In the case of 10 inputs, the ICD device
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should read the output of the comparator 5 samples after the occurrence of an

R wave.

6.5.1.2 Test System

A test system using Kakadu and Jiggle to serve as the morphology classifier for
MATIC was developed to evaluate the performance of the system described in
the previous section.

When compared with the morphology classifier block shown in Figure 6.3,
Kakadu implements the NN block of the morphology classifier and the Jiggle
chip tester replaces the other circuitry in the morphology classifier as well as the
ICD.

The Jiggle based system is completely software controllable and thus facil-
itates experimentation. In particular, replacing the BBD with 10 DACs from
Jiggle removes the real-time constraint of the system and so data can be pro-
cessed in a batch environment. This simplifies debugging of the system and
makes experimentation easier.

Since the linear range of the synapse in Kakadu is less than 200 mV (Fig-
urc 5.9), 0.35% of this valuc is 0.7 mV  less than the resolution of the Jiggle
test jig (which is 1.2 mV). Thus the CTI of this BBD would have an insignificant
effect on the operation of the neural network morphology classifier in MATIC,

especially considering the good generalisation properties of a neural network.

6.5.2 Kakadu Results

The MATIC algorithm with Kakadu biased at 6.63 nA was applied to the ICEG
database. The results are tabulated in Table 6.5; 99.3% correct classification was
achieved. The results of classifying only the VT 1:1 patients (the neural network
is not used for other patients) are shown in Table 6.6.

In order to achieve the results just presented, the morphology parameters «,

$ and v (Section 3.3.4) were selected by trial and error in a patient dependent
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‘ Subclass ‘ Superclass ‘ NSR ‘ SVT ‘ VT ‘ VF

NSR NSR 5406 41 20 0
ST NSR 1535 24 2 1
SVT SVT 0] 1022 0 0
AT SVT 0 52 0 0
AF SVT 0] 165 0 0
VT VT 0 0332 0
VT 1.1 | VT 0 16 | 974 0
VI VF 0 0 21196
VTF VF 0 2 01116

Table 6.5: Subclass confusion matrix of MATIC classifier using the Kakadu chip.

Note that 99.3% of classifications are correct.

‘ Sublass ‘ Superclass ‘ NSR ‘ SVT ‘ VT ‘ VF ‘

NSR NSR 1114 0 18 0
VT 1:1 | VT 0 16 | 974 1

Table 6.6: Subclass confusion matrix of MATIC classifier using Kakadu. 98.4%

are correctly classified.

fashion. The actual values used are shown in Table 6.7. Patient dependent
morphology parameters were not necessary for the FPNN but were required for
Kakadu mainly to compensate for the low resolution of the synapse values (6

bits). For the FPNN, synapses can take on floating point values and so arbitrary

output levels can be achieved.

Patient ‘ o ‘ I¢] ‘ ~ ‘
0.0 1.0]0.8
0.0 1.0]0.8
0.010.51]04
0.0]0.2]0.1
0.010.51]04
-0.1 10.1(0.0
0.010.51]04
0.010.51]04
0.0 1.0]0.8

0 00]1.0]038

— O 00~ O O = W o —

Table 6.7: Morphology parameters of Kakadu chip for the 10 VT 1:1 patients.
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Figure 6.4: Patient misclassified because of large baseline drift.
6.5.2.1 Misclassified Morphologies

It is interesting to note that nearly all of the morphologies misclassified by
Kakadu came from two patients. These patients were classified correctly by
the FPNN.

In the first patient (Figure 6.4) a low frequency drift of the baseline sig-
nal occurred. This was caused by the amplifiers of the recording system being
overloaded following stimulation therapy. In the FPNN, this does not present
problems since it can tolerate a large input range. In Kakadu, however, inputs
which are outside the linear range of the synapses (see synapse transfer function
in Figure 5.9) are compressed and clipped. This causes all inputs above and be-
low the linear range to appear the same to the neural network. A small baseline
drift can be tolerated, but for this particular patient, the drift was too large for
Kakadu. This is not a potentially dangerous situation since such large drifts were
recorded only because of the data collection system recovering from the effects
of applying stimulation. For this reason ICDs ignore the first few classifications
following shock therapy. High pass filtering can also minimise this effect.

In the second patient (Figure 6.5), the morphology change between NSR and
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Figure 6.5: Patient misclassified because of similar NSR/VT 1:1 morphology.
The top ICEG is a QRS from the RVA channel of the patient’s NSR and the
bottom is one from the same patient’s VT 1:1.

VT 1:1 was not great enough for Kakadu to detect, although the FPNN could
detect the change. This is again caused by the saturating input characteristic
of the Kakadu network. The morphology change seen between NSR and VT 1:1
is a higher R wave. The Kakadu network cannot distinguish between the two
morphologies since it compresses the input and so they appear very similar. It
would not be recommended that morphology criterion alone be used to classify
patients with such a small change between their NSR and VT 1:1 morphologies,
even if a FPNN (which achieves good results) was employed since minor mor-
phology changes such as caused by bundle branch block or drug therapy, could

easily cause misclassifications.
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‘ Patient ‘ Power ‘

1 18.3 pW
16.5 W
12.6 uW
13.8 uW
20.1 pW
21.6 pW

9.0 uW
15.6 pW
13.5 W
0 24.0 pW

= © 0 - O O = W I

Table 6.8: Power consumption of Kakadu chip for the 10 VT 1:1 patients.

6.5.2.2 Kakadu Power Consumption

The power consumed by Kakadu when classifying the 10 VT 1:1 patients is shown
in Table 6.8. All patients required less than 25 pW.

Since the Kakadu chip draws practically no current (< 100 pA) when the
bias transistor is grounded (see Table 5.1), a further reduction in the power
consumption of Kakadu whilst being used for MATIC can be achieved. The
propagation delay of the chip is approximately 30 xS (see Table 5.1), if a very
conservative value of 1000 uS is allowed for the outputs to settle and a heart
rate of 1 Hz is assumed, the Kakadu chip need only be biased 1/1000 th of the
time, reducing the average current consumption of the system from 25 pW to a

maximum of 25 nW.

6.6 Summary

MATIC classifies patients based on timing and morphological featurcs. For 57
of the 67 patients, morphology analysis was not required because timing based
classification was conclusive. For these cases, patient independent classification
was achieved. Ten patients had VT with 1:1 retrograde conduction which could
not be classified on the basis of timing alone, so patient dependent morphological

considerations were employed to obtain reliable classification. A total correct
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classification rate of 99.6% was achieved by MATIC using a floating point neural
network, compared to the 75.9% achieved by a simple threshold detector. MATIC
is simple enough to realise on a low power integrated circuit yet achieved near
perfect classification results on a large database of ICEG signals.

MATIC implemented using Kakadu was applied to the same database of sig-
nals, suffering a slight degradation in performance down to 99.3%. Two patients
that could be classified using a FPNN morphology classifier could not be classi-
fied using Kakadu. In each case, this was due to the compression of the input
signal by the first synapse layer. The Kakadu neural network chip could discrim-
inate between normal and abnormal morphologies whilst consuming a maximum
of 25 microwatts continuous power. This figure could be further reduced to less

than 25 nW by turning off the bias of the chip when it is not used.



Chapter 7

Conclusion

The aim of this thesis has been to develop a system for classifying tachyarrhyth-
mias which is suitable for usc in an implantable cardioverter defibrillator (ICD).
The main difficulty encountered was that an ICD imposes a very restrictive power
budget and so computationally expensive classification algorithms could not be
implemented.

The first step taken towards addressing the problem was the development of
the MATIC algorithm. This algorithm and an architecture for its implementation
was described in Chapter 3. MATIC is a tachyarrhythmia classifier which follows
a classification process similar to that used by cardiologists. Classifications are
performed by combining timing and morphological criteria to produce a system
which can make very reliable classifications on a wide range of arrhythmias. The
computationally expensive part of the MATIC algorithm is the neural network
morphology classifier and the implementation of this using the microprocessor
of an ICD was shown to be prohibitively expensive. To overcome this problem,
an architecture which employs a low power neural network coprocessor chip was
developed.

The design and implementation of two prototype low power analogue neu-
ral network chips was undertaken in order to produce a morphology classifier

suitable for use with the MATIC algorithm. The first chip, called Bourke, was
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designed to test the building block circuits and is described in Chapter 4. Bourke
implemented a bucket brigade and a small (3,3,1) neural network and it was suc-
cessfully tested on the XOR problem.

The second chip, called Kakadu, is described in Chapter 5 and was based on
the same circuit elements as Bourke. Kakadu implemented a (10,6,4) feedforward
neural network. The synaptic elements in Kakadu are multiplying digital to ana-
logue converters (MDACs), and the nonlinearity of the multiplier in the MDAC
is used to provide the nonlinearity of the neural network. Neurons are imple-
mented as off chip resistors and have a linear transfer function. The low power
consumption of the Kakadu chip is achieved by operating the MDACs at low
bias currents, typically 6.63 nA. Kakadu was successfully tested on a number of
classification problems and had a typical power dissipation of tens of microwatts.

In Chapter 6, the performance of the MATIC algorithm was tested on a large
database of intracardiac electrograms. In order to provide a basis for compari-
son, a classifier similar to that used in an existing ICD, the Telectronics Guardian
ATP 4210, was tested on this database and achieved 75.9% correct classification.
MATIC achieved 99.6% correct classification with a floating point neural net-
work implemented in softwarc. When the Kakadu chip was used to replace the
floating point neural network, the classification performance dropped to 99.3%.
This small decrease was attributable to two patients that could not be classified
reliably. In both cases, the problem was due the compression effect of the input
synapses of Kakadu. This limitation would only affect the morphology classifier
performance in very marginal cases, and in such cases, it would not be recom-
mended that any morphology classifier be used. When performing classification,
the Kakadu chip dissipated less than 25 microwatts of continuous power. This
figure could be further reduced to less than 25 nW by turning off the bias of the

Kakadu chip in the period between QRS complexes.
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7.1 Future Work

7.1.1 MATIC

The MATIC algorithm is, of course, not the last word in arrhythmia classification.
Future work will further improve on the present classifiers and it is hoped that
ideas from this thesis may inspire advances in this area.

The construction of a test ICD which incorporates the Kakadu chip and
MATIC algorithm could be made by modifying an existing ICD. Such a system
could be used in animal trials to take the realisation of an ICD device with
a neural network morphology classifier one step further. Of course, the final
goal would be to produce a new ICD device which incorporates algorithms like
MATIC to perform morphology classification that could be used in humans. The
increased reliability of improved algorithms like MATIC would make ICD therapy
available to a larger group of patients and have an improved mortality rate in
recipients, thus moving towards reducing the incidence of sudden cardiac death
mortality.

ICEG signals may not be the best sensors for recognising tachyarrhythmias.
Biosensors which monitor right heart pressure, impedance, stroke volume, tem-
perature, oxygen content, cardiac output and pH are being investigated [CL91].
Some are able to more easily and clearly identify the hemodynamically signifi-
cant tachyarrhythmias. By incorporating additional sensors and algorithms to

analyze them in an ICD, classification performance can only improve.

7.1.2 Low Power Neural Network Chips

A large part of this thesis was devoted to the design of a low power analogue
neural network chip. The power consumption of the Kakadu chip is dominated by
the synapse design. The synapse design, in turn was constrained by the problem

of producing a nonvolatile analogue storage device in standard CMOS. This is
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one of the major problems facing VLSI neural network design, and if a method
can be found to achieve small, high resolution and low power analogue storage,
much more powerful neural network chips could be developed.

As the popularity and application of artificial neural networks classifiers in-
creases, the use of low power neural network chips like Kakadu will also increase.
Neural networks have been successfully applied to many fields of research includ-
ing telecommunications, speech recognition, character recognition, image pro-
cessing etc.. However, neural network research is still in its infancy and there
are still very few actual hardware devices that incorporate neural network tech-
nology. As research on neural network applications progresses, any battery or
solar powered system requiring computationally expensive nonlinear mapping
could incorporate low power neural network chips to reduce power consumption.
Some possible applications include handwriting input devices, speech recognition

devices, toys and of course, implantable medical devices.

7.2 Closing Remarks

The aim of this thesis was to solve a difficult classification problem given a very
limited power budget. The approach taken was to combine two classifiers: one
based on a decision tree which implemented rules which were well understood
and a second which used a neural network to perform classification based on
examples. The neural network was well suited to the morphology recognition
problem and by virtue of its architecture of simple processing elements, mapped
well to analogue VLSI. The approach of using decision trees plus ncural networks
seems a particularly simple and elegant method of producing low power classi-
fiers and this approach should be suitable for many other applications besides

tachyarrhythmia classification.
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Artificial Neural Networks

A.1 Introduction

An artificial neural network (ANN) is an architecture for computing inspired
by biological neural systems. ANNs consist of a large number of simple com-
putational elements (neurons) operating in parallel. The neurons are connected
through programmable synaptic connections (also called weights) which modify
the strength of the connections between neurons.

The connection topology of the ncurons and weights form the architecture
of the neural network. The architecture used in this thesis is a three layer per-
ceptron, meaning that the neurons are organised into three layers (input layer,
hidden layer and output layer), with any particular neuron being connected to all
neurons in the layer above (see Figure A.1). The network operates in a strictly
feedforward manner with the signal propagating from input layer through the
hidden layer to the output layer via the weights (represented by lines which
connect between neurons).

A neuron has a single input and a single output. The input is the weighted
sum of the outputs of all neurons in the previous layer and the transfer function is
usually a squashing function such as the sigmoidal function f(z) =1.0/(14¢")

or f(x) = tanh(z). Neurons in the input layer are slightly different to those in the
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Figure A.1: Three layer perceptron architecture.

other layers as they have the identity transfer function f(x) = x. Mathematically,

the output of a neuron in layer [+ 1 is given by

ai(l+1) = flu(l+1)) (A.2)

where [ denotes the [th layer (0 < [ < L — 1), L = total number of layers, N,
= number of neuron units at the /th level, ¢ is the neuron number (1 < ¢ < V)
and f is the activation function.

A three layer perceptron can, by virtue of the non-linearity of the neurons,
form arbitrarily complex nonlinear mappings [Cyb89, HSW89]. Without the

non-linearity of the neurons, only linear mappings can be achieved.

A.2 Training

In order to train an artificial neural network, a set of a number of input and

output vector pairs is supplied by the user to provide examples for the training.
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The input vectors are applied to the network, the network output is compared
with the training set output and the weights of the neural network are updated
to minimise this difference.

Training is commonly achieved using the backpropagation algorithm [Lip87].
Backpropagation simply performs minimisation of the multidimensional error

function

e(w) = (Q_(dy — ay(w))*)/ P (A.3)
where p iterates through the input patterns of the training set, P is the number
of training patterns, w is a vector of weight values, d, is the desired output, and
a, 1s the output of the neural network when the pth training pattern is applied to

the inputs. Backpropagation uses the method of gradient descent, weights being

updated by the formula
de(w
. a( )
Wiy

Awij = (A4)

where Aw;; is the change to be applied to the weights (w;; «— w;; + Aw;;),
de/0w;; is the partial derivative of e with respect to w;;, and 5 is a constant.

By substituting Equations A.1, A.2 and A.3 in Equation A.4, and taking the

partial derivatives, we obtain the backpropagation formulae

Awy = 961+ 1) f (ui(l 4 1))a;(1) (A.5)
5.(1) = a6l 4 Dwye it 1 # L (A.6)

where all the variables are as defined earlier.

For n sufficiently small the error function of the new w will always be less
than or equal to the error function for the previous value of w and hence we can
reduce the error until we reach a minima. This minima, in general, is not the
global minimum, but for a wide class of problems the algorithm is able to find a

satisfactory solution. The derivation of the backpropagation formula is detailed

in Rumelhart and McClelland [RM86].
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After training, when a supposedly optimal weight configuration is found,
input patterns which were not in the training set are applied to the network. The
neural network is said to generalise in these cases with the intent of producing

sensible outputs for previously unseen inputs.
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Bucket Brigade Devices

B.1 Introduction

A bucket brigade device is an analogue shift register which operates by transfer-
ring charges between capacitors which are connected together by MOS transis-
tors. The signal is represented by a charge deficit and this is transferred between

a series of storage capacitors by applying the appropriate switching sequence.

B.2 Simple Bucket Brigade

The simple BBD uses capacitors isolated via a MOSFET. The circuit shown in
Figure B.1 is driven by the nonoverlapping clocks ¢; and ¢3. This sequence

causes deficits of charge to move from node S to node D.

B.2.1 Operation

Suppose that the signal is represented by the amount of charge () and a deficit of
charge equal to this value is stored at the source node S of Figure B.1. Assume
also that the voltage at the destination node D is Vj;—V; where V; is the threshold
voltage. When the ¢, clock is brought to V4, the voltage at D changes to

2Vie — Vio An amount of charge equal to ) flows from D to S, changing the
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voltage at S to Vg — Vi and transferring the charge deficit from S to D. Since
AQ = CAV, the charge deficit can be measured as a voltage on nodes V() and
V(D).

Similarly, during ¢, a charge deficit is transferred from D to the next storage
capacitor and so on. Thus by providing nonoverlapping clocks for ¢; and ¢,

charge deficits representing the signal are shifted along the bucket brigade device.

B.2.2 Charge Transfer Inefficiency

The total charge transfer inefficiency (CTI) of a BBD is the sum of the intrinsic
CTI and the drain conductance CTI. The intrinsic CTI is a high frequency effect
caused by the fact that charging up the storage capacitors takes a finite amount
of time, so if the BBD is clocked too fast, the CTI will increase.

The low frequency CTI of the simple BBD is caused by the output drain
conductance of the transistors. As the charge transfer proceeds, the controlling
transistor’s region of operation moves from being in saturation to being sub-
threshold since the source and drain voltages tend to equalise. As the output
conductance of the FET is finite, the subthreshold current is a function of the
drain voltage (i.e. ¢ = i(vp(t))) causing a different current flow for different
signals.

The expression for the low frequency CTI, a;y, was derived by Berglund and
Thornber [BT73] and can be expressed as

oy ~ (Bl)

where ¢,, is the forward conductance of the transfer FET, ¢, is the reverse con-
ductance of the transfer FET, Cs is the source node capacitance and Cp is the

drain node capacitance.
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Figure B.1: Bucket brigade waveforms.
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B.2.3 Frequency Response

The frequency response of a BBD circuit can be viewed in terms of incomplete

charge transfer and is given by the following formula derived by Berglund [Ber71]

1—2a -2 :
H(f) = (g 20 yemiontl iy (B2)

where « is the low frequency CTI, § is the transfer attenuation per stage of the

BBD, n is the length of the delay line and f; is the sampling frequency.

B.3 Tetrode Bucket Brigade

The low frequency charge transfer inefficiency (CTT) of the simple BBD is limited
by the output drain conductance of the BBD. The tetrode configuration shown
in Figure B.2 reduces the effect of finite output conductance by using an extra
transistor with gate connected to a voltage Vi = V3 — 0.2 V which makes

the voltage swing at A and B smaller. This causes the low frequency CTI to

c c :
be reduced to (1 + ﬁ)(ﬁ) where g,, = —0t/dvg (forward conductance),
g4 = —0i/Jvp (reverse conductance), Cg is the storage capacitor capacitance,

Cp is the parasitic capacitance between the two transistors, and C; is the gate

capacitance of the isolating transistor.

B.4 Test Circuit Design

When designing the bucket brigade circuit, it was not known whether the simple
bucket brigade would have a sufficiently low CTT for the purposes of ICEG mor-
phology classification. For this reason, a tetrode circuit was used, noting that
the tetrode BBD can be made into a simple BBD by tying Vsg to V. Table B.1

demonstrates how the two configurations can be achieved.
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Figure B.2: Tetrode clocking scheme.
| Device | Vir | $1 | 2 |
Simple BBD Vid Clocked 0 — V,; | Clocked 0 — Vyy

Tetrode BBD | Vidd — 0.2 V | Clocked 0 — V4 | Clocked 0 — Vi,

Table B.1: Clocking of BBDs on test chip.

B.4.1 Storage Capacitor Size

The size of the storage capacitor determines the signal to noise ratio of the BBD.
As the data will be clocked into this BBD at a rate of 125 Hz, the noise at low
clock frequencies is the only one of interest. In this case, the noise voltage is

[Hen90]
2y m kT
[vn] - 2 C

(B.3)

where m is a measured value of approximately 2.0.
In order to achieve the desired signal to noise ratio of 78 dB for a maxi-
mum input range of 0.5 V at body temperature (310 K), one can calculate from

Equation B.3 that the capacitance must be 1 pF.
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B.4.2 Transistor Size

The low frequency CTI of the BBD is related to the ratio ¢4/¢. (Equation B.1)
and Scott and Chamberlain [SC80] have shown that ¢4/¢, o 1/L. Thus we
can reduce the low frequency CTI by increasing the length of the transistors.
However, increasing the length reduces the drive capability of the transistor and
this in turn increases the intrinsic CTI. As a compromise between these two
effects, a moderate length of 9.6 ym was chosen.

Secondly, the widths of the transfer and isolating transistors must be chosen.
The widths do not have any bearing on the drain conductance CTI, however,

Henderson [Hen90] shows that the intrinsic CTT is

(1+ 1 kp Zs/ZBB
€ = —
Cs 2 Zs+ ZBn

t(Ves — Vi — Vs(0))) ™2 (B.4)
where Zs and Zpp are the width to length ratios of the transfer and isolating
transistors respectively and the optimal ratio is 1:1.

In deciding on the absolute value for the width, increasing the width will
reduce the intrinsic CTI. However it will also increase the parasitics. The optimal
absolute value of the width is that which reduces the intrinsic CTI to the same

order as the drain conductance CTI. For these reasons, widths of 48.6 ym were

selected.

B.5 Results

A 10 stage test BBD having the circuit of Figure B.2 was fabricated on the
Bourke chip (see Figure 4.6). The size was chosen since that is the same size
delay line required by MATIC.

The chip’s CTI was calculated by measuring the impulse response of the
BBD chip (in simple BBD mode), computing the frequency response, and curve
fitting this measured frequency response to Equation B.2. Measurements were

performed using a Hewlett Packard HP3561A Dynamic Signal Analyzer, and the
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Figure B.3: BBD frequency response. Dotted line represents theoretical fre-
quency response for agp = 0.35%.
circuit was operated from 3 V at 125 Hz. The curve fit is shown in Figure B.3
and indicates a low frequency CTI of 0.35%.

The Bourke chip was only tested as a simple BBD since this was found to
have an adequately low CTI. Although a lower CTI is expected in the tetrode

configuration, extra power would be required to generate the tetrode bias voltage.

B.5.1 Power Consumption of the BBD

The power drawn by the BBD was very small and the clocking frequency very low.
Since power is consumed only during switching, an accurate power measurement
could not be obtained.

The dominant term in the power consumption of the BBD is that used to
charge the capacitance of the ¢; and ¢, nodes of Figure B.2. Since the circuit
consists of ten stages, each with two 1 pF capacitors, the approximate capacitance
which must be charged is 20 pF. If we allow another 20 pF for the capacitance

of the routing, the power consumed charging this capacitance at a frequency of
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125 Hz is then

P = CV*f (B.5)
= 40 x 107" x 3* x 125 (B.6)
= 45 nW (B.7)

This value is many orders of magnitude less than the power used in Kakadu
(which is tens of microwatts) and so the BBD device will not greatly affect the

total power consumed by a neural network chip such as Kakadu.

B.6 Summary

Equations for the charge transfer inefficiency (CTI) and frequency response of
the simple BBD were derived and used to design a BBD with a signal to noise
ratio of 78 dB at body temperature. A 10 stage simple BBD was implemented
and tested on the Bourke chip. This BBD was found to have a CTI of 0.35%
from a 3 V supply at 125 Hz and power consumption of the BBD was estimated
to be 45 nW.
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Glossary

AF abbreviation for atrial fibrillation

ANN abbreviation for artificial neural network
AV node abbreviation for atrioventricular node
arrhythmia any abnormal heart rhythm

atria singular form of atrium

atrial fibrillation supraventricular tachycardia causing twitching of the atria

with an absence of atrial contractions

atrioventricular node part of the heart’s conduction system which delays

transmission of the action potential

atrium chanber in the heart which receives blood from the veins and pumps

blood into the ventricles
BBB abbreviation for bundle branch block
BBD bucket brigade device
bigeminy aberrant beats which occur after every normal beat
bradycardia slow heart rate (< 60 beats per minute)
bundle branch block a delay in the ventricular conduction system

CSA abbreviation for combined search algorithm
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cardioversion restoration of a heart’s rhythm to normal by an electrical shock
EPS abbreviation for electrophysiological studies
ectopic aberrant

electrophysiological studies procedure whereby temporary catheters are in-
serted in the surface of the heart and tachyarrhythmias induced by stimu-

lation so that the conduction sequence of the heart can be studied
HRA abbreviation for high right atrium
high right atrium location in the atria in which an ICD lead is often placed
ICD abbreviation for implantable cardioverter defibrillator
ICEG abbreviation for intracardiac electrogram

implantable cardioverter—defibrillator
permanently implanted device which can deliver shock therapy in event

of a tachycardia

intracardiac electrogram time recording of the potentials within the cham-

bers of the heart

morphology shape of the intracardiac electrogram (usually refers to the shape

of the QRS complex)
NSR abbreviation for normal sinus rhythm
normal sinus rhythm heart rhythm originating from the sinoatrial node
PP interval between successive P waves
PR interval between the last P and R waves

P wave deflection on an ICEG occurring when depolarisation of the atria occur
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paroxysmal sudden onset
RR interval between successive R waves

R wave deflection on an ICEG occurring when depolarisation of the ventricles

occur
RVA abbreviation for right ventricular apex

refractory period period after depolarisation in which no further depolarisa-

tion can occur

retrograde conduction conduction of the wave of depolarisation in a reverse

direction

right ventricular apex location in the ventricle in which an ICD lead is often

placed
SA node abbreviation for sinoatrial node
ST abbreviation for sinus tachycardia
STD abbreviation for simple threshold detector
SVT abbreviation for supraventricular tachycardia
sinoatrial node the heart’s pacemaker

sinus tachycardia heart rhythm greater than 100 beats per minute but other-

wise normal

supraventricular tachycardia tachycardia originating in the atria or atri-

oventricular node
tachycardia fast abnormal heart rhythm (> 100 beats per minute)

tachyarrhythmia tachycardia
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trigeminy ectopic beats which occur after every two normal beats

VF abbreviation for ventricular fibrillation

VT abbreviation for ventricular tachycardia

VT 1:1 abbreviation for ventricular tachycardia with 1:1 retrograde conduction
VTEF abbreviation for fast ventricular tachycardia

ventricle bottom part of the heart which pumps arterial blood

ventricular fibrillation tachycardia causing twitching of the ventricular mus-

cle and no cardiac output

ventricular tachycardia tachycardia originating in the ventricles



