
Abstract 
 

A single chip FPGA-based Othello endgame solver is 
presented in this paper. The solver includes all the 
hardware for move checking, disc flipping, move selection, 
board evaluation and alpha-beta pruning. On a Xilinx 
Virtex XCV1000E-6 device operating at 50 MHz, the chip 
can search 3.14 million Othello positions per second. The 
endgame chip achieves a speedup of 3.5 over an 800 MHz 
Pentium III machine, showing that performance similar to 
that of a high end microprocessor can be achieved using 
modest FPGA resources. By using a larger FPGA, a more 
sophisticated search algorithm and an improved datapath, 
we believe that a single FPGA based endgame solver with 
at least two orders of magnitude better performance can 
be developed. 
 
1. Introduction 
 

Big Blue was a high profile IBM project which 
defeated the World Chess Champion, Garry Kasparov by 
using a high speed VLSI chess chip which could search 
100 million chess positions per second [12]. Othello is a 
game which is simpler than chess and one in which 
computer programs are already stronger than the human 
world champion [15]. It is our belief that field 
programmable gate array (FPGA) devices can be used to 
accelerate the searching required in an Othello playing 
program, leading to improved playing strength. 

In this paper, we present a design and implementation 
of an FPGA based endgame solver for Othello. In the 
endgame, the entire game tree is searched and hence an 
optimal move can be computed. If a hardware accelerated 
endgame solver can be developed, and the game tree can 
be searched to a greater depth than software in the same 
time, playing strength can obviously be improved. 

There are several key components our Othello 
endgame solver: a legal move generator which finds all 
legal moves in parallel given a board position; a disc 
flipper which executes a move to produce a new board 

position; a board evaluator which assigns a score to a 
terminal board position; and a search engine which uses 
the previous blocks to traverse the game tree using the 
alpha-beta pruning algorithm to find the optimal move. 
We present novel architectures to implement these blocks 
and compare the performance of the resulting system with 
a software based implementation. 

To the best of our knowledge, the only previously 
reported hardware Othello machine design was proposed 
in 1987 by Hewlett [1]. In this design, 30 Signetics 
PLS101 field programmable logic array (FPLA) devices 
were used to develop a hardware disc flipper which takes 
a board position and move position as inputs and produces 
an updated board position as output.  

This paper is organized as follow: In section 2, the 
rules of Othello, Othello playing programs and a brief 
review of the alpha-beta search algorithm are presented. 
In section 3, the hardware implementation of the whole 
system and some small main modules are presented. In 
section 4, results are given. Conclusions are drawn in 
section 5 and some ideas for further research in this area 
are described in section 6. 

 
2. Computer Othello 
 

Othello is a two player game, played on an 8×8 board 
of 64 squares with discs which are white on one side and 
black on the other. Outflanking involves placing a disc of 
your own color so that you have your color disc at each 
end of a line of discs (in the horizontal, vertical or 
diagonal directions), then all of your opponent’s discs 
which have been outflanked (in all directions) are flipped 
to your own color. Players consecutively take turns unless 
no legal move is available to a player in which case the 
player skips his/her turn. If neither player has a legal 
move, the game is over. When the game is over, the player 
with the most discs on the board is the winner. Please refer 
to [13] for a more detailed description of the rules. 

In a two player game such as Othello, the possible 
outcomes can be represented as a directed graph which is 
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known as the game tree. A node in the game tree 
represents a state (or position) of the game, and the 
children of that node are the states reached by making a 
particular move. For endgame analysis, an evaluation 
score is given to all leaf nodes, namely the difference in 
number of discs between the players, representing the 
winning margin in a game of Othello.  

Given a game tree and the current state, a search can 
be made to determine the best move. This optimal move is 
the one which minimizes the maximum value of possible 
replies to that move (i.e. the move to which the opponent 
has the least best reply). The minimax algorithm is the 
naïve implementation of this search and requires a 
complete transversal of the tree.  

Strong Othello programs use sophisticated search 
techniques and pay particular attention to move ordering 
which serves to increase the number of nodes which can 
be pruned from the search, hence improving the search 
speed. In the early 80’s, Iago [4] used iterative deepening 
and killer heuristics. Bill [3] used iterative deepening, 
hash and killer tables, a zero-window search and a 
two-phase endgame search. Logistello used the 
Multi-ProbCut algorithm which improves search speed by 
a factor of ten compared with alpha-beta pruning [5, 16]. 

Although we intend to explore more sophisticated 
search algorithms such as Multi-ProbCut in the future, a 
simple algorithm, namely alpha-beta pruning, was chosen 
so as to facilitate a simple hardware implementation. 
More sophisticated searches can be implemented by 
modifying the search finite state machine without 
requiring modifications to other parts of the system. 

The alpha-beta pruning algorithm is able to prune the 
search space by avoiding unnecessary subtrees and can be 
described in pseudocode as follows: 
 
abeta (node, alpha, beta) 
{ 
     if node is a leaf 
         return the value of node 
     if node is a minimizing node 
         for each child of node 
             beta = min (beta,  
  abeta (child, alpha, beta)) 
             if beta <= alpha 
                 return alpha 
         return beta 
     if node is a maximizing node 
         for each child of node 
             alpha = max (alpha,  
  abeta (child, alpha, beta)) 
             if beta <= alpha 
                 return beta 
         return alpha 
} 

Figure 1. Alpha-beta pruning algorithm pseudocode. 
 

        

3. Hardware Implementation 
 

 
 

Figure 2. System block diagram 
 
A block diagram of the endgame solver is given in 

Figure 2. We had originally intended to implement the 
search algorithm on a microprocessor and the rest of the 
machine as a coprocessor on an external FPGA board, but 
found that such an approach imposed a performance 
bottleneck due to the large amount of I/O required. Thus 
the alpha-beta pruning algorithm was implemented 
on-chip using a finite state machine (FSM). An iterative 
alpha-beta pruning algorithm was derived from the 
recursive code of Figure 1, stacks being used to store 
states for implementing the recursion. 

In each iteration of the search’s main loop, all legal 
moves are determined in parallel by the Legal Move 
Checker and a bit-array returned. The Move Selector is 
used to select a move and the board position is updated 
using the Disc Flipper. The two Disc Counters compute 
the number of white and black discs on the board. The 
above process is repeated in accordance with the 
alpha-beta pruning algorithm, and when a leaf node is 
reached, the value of the node is simply the difference in 
number of white and black discs. 

Computation in the FSM proceeds according to the 
node type which can be: a leaf node, a tree node, a pass 
node and a search ended tree node. In each iteration, 1 of 
the 4 states below is executed depending on the 
characteristic of the current node. If the current node is a 
game ended node, the leaf node state is executed and the 
score calculated. If the current node is not game ended, 
there are still some legal moves to consider and the tree 
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node state is executed and alpha and beta determined. If 
beta <= alpha, searching will cut off. Otherwise, one of 
the legal moves would be taken and a deeper search 
initiated. If the player of the current node has no legal 
moves and has to pass, the pass node state is executed. If 
all the legal moves of the current node have been tested, it 
will execute the search ended tree state. This is equivalent 
to the return function in the recursive algorithm and is 
used to return the score of the child node to the parent 
node. 

 
Figure 3. State diagram of FSM 

 
3.1. Legal Move Checker 
 

The Legal Move Checker is used to generate an array 
representing all legal moves for the current board. It is 
implemented purely in combinatorial logic as a sum of 
products. 

 
Figure 4. Interface of legal move checker 

 

The Legal Move Checker takes a color bit (indicating 
whether it is white or black’s turn) and a 128 Othello 
board (in which two bits are used to indicate whether a 
square is empty, white or black) as inputs, and generates a 
64-bit output which indicates which positions are legal 
moves. 

In order to determine whether the square is a legal 
move, we first consider the subproblem of determining 
whether a move in a particular direction is legal. Since an 
8×8 square board is used, in any direction, at most 8 
squares need be tested. This leads to at most 6 cases in 
which a legal move can occur and a Boolean expression of 
these situations in which a white disc is legal is: 
 

 
Relative positions are assumed and the above 

equation, which we call a length 8 legal move checker, 
says that it is legal to use a white piece at position W0 if 
there is no piece already present AND it outflanks at least 
one black piece (where, for example, B1 indicates that 
there is a black disc in the adjacent square and W2 
indicates there is a white disc adjacent to the black disc). 
Some additional circuitry is used to allow both black and 
white cases to be handled, this being controlled by the 
color bit. Using the above technique, a unidirectional legal 
move checker can be constructed. 

When considering all 8 possible directions from a 
square, 8 unidirectional legal move checkers of different 
lengths can be combined. In order to generalize the design, 
the Othello board can be divided into 10 different types of 
squares. 
 

 A B C D E F G H 
1 A B C D D C B A 
2 B E F G G F E B 
3 C F H I I H F C 
4 D G I J J I G D 
5 D G I J J I G D 
6 C F H I I H F C 
7 B E F G G F E B 
8 A B C D D C B A 

Figure 5. 10 kinds of legal move checkers 
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Table 2 indicates the number of AND terms in the 
legal move checker equation for each of the 10 different 
shaded square types in Figure 5. 
 

Direction 
Type 

R BR  B BL L TL T TR 

A 6 6 6      
B 5 5 6      
C 4 4 6 1 1    
D 3 3 6 2 2    
E 5 5 5      
F 4 4 5 1 1    
G 3 3 5 2 2    
H 4 4 4 1 1 1 1 1 
I 3 3 4 2 2 1 1 1 
J 3 3 3 2 2 2 2 2 

R=right, BR=bottom-right, B=bottom, BL=bottom-left 
L=left, TL=top-left, T=top, TR=top-right 
Table 2. Table of number of product terms in legal move 

expression for different groups of squares. 
 

From the above table, it can be seen that the legal 
move checker equation for some square types such as A 
need only consider 3 directions whereas others need to 
consider all 8 directions. Also, since type J positions are 
already occupied at the start of the game, they do not need 
to be considered. To implement legal move checking for 
the non-shaded squares of Figure 5, symmetry is used. 
 
3.2. Disc Flipper 
 

The Disc Flipper is used to flip the outflanked pieces 
when a move is made. The disc flipper is a combinatorial 
circuit which propagates a signal from the position of the 
newly placed disc, in all directions in parallel, until it can 
be determined whether outflanking occurs.  

 

 
Figure 6. Interface of disc flipper 

 

128 bits are used to represent the original Othello 
board, 6 bits to represent the row and column of the newly 
placed disc, and 1 bit is used to identify the color of the 
newly placed disc. The disc flipper returns a 128 bit 
flipped Othello board. 

In the disc flipper design, a ripple chain is used. A 
chain can be either a row, a column or a diagonal in a 
particular direction with a starting and ending square so 8 
different directions (right, left, top, top-left, top-right, 
bottom, bottom-left and bottom-right) need to be 
considered. 

Each chain is implemented in 3 phases: forward, 
backward and flip phases. 
 
Forward Phase: 
a) The newly placed disc triggers a forward signal to its 

neighbor square in a given direction (e.g. Left chain => 
left neighbor) 

b) The neighbor square propagates the forward signal to 
the neighbor in the same direction if it contains an 
opposite color disc. 

c) The propagation continues until the forward signal 
reaches a square containing a disc with the same color 
as the newly placed disc. In this case an endchain 
signal and a backward signal are generated. The phase 
is changed to the backward phase. 

 
Backward Phase: 
a) The generated backward signal is propagated to its 

neighbor in the reverse direction (e.g. Left chain => 
right neighbor) 

b) The neighbor square propagates the backward signal in 
the opposite direction of the chain’s name if it contains 
an opposite color disc. 

c) The propagation continues until the backward signal 
reaches the square containing the newly placed disc. 

 
Flip phase: 
a) All squares having both forward and backward signals 

are changed to the color of the newly placed disc, 
hence flipping the outflanked discs. 

  
Figure 7. Example of chain concept in disc flipper 
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A newly placed disc generates 8 forward signals in 
the different directions. If all the 8 directions can be 
flipped, there would be a forward signal propagation line 
and a backward signal propagation line in each chain. If 
outflanking does not occur in a direction, the propagation 
of the forward signals in those directions are stopped by 
empty squares or board edges and no backward signals are 
returned and they are not flipped. 

After finding the squares that require flipping, the 
outflanked squares are flipped and the newly placed disc 
is added to the flipped board. 

 
Figure 8. Block diagram of disc flipper 

 
3.3. Move Selector 
 

For every branch of the game tree, the player must 
select one of the legal moves from the output of the legal 
move checker. In order to increase the amount of pruning, 
it is best to consider the best moves first. Moves are thus 
selected by the Move Selector based on position. 

 
Figure 9. Interface of move selector 

 
Squares are assigned different priorities based on 

their position. For example, higher priority is given to the 
corner squares because they cannot be flipped once placed 

and hence serve as anchors for outflanking the opponent’s 
pieces.  

Using letters to represent columns and numbers to 
represent rows (as illustrated in Figure 5), the corner 
squares A1, A8, H1 and H8 are given the highest priority. 
Consequently, squares B2, G2, B7 and G7 are given 
lowest priority since placing a disc on that square makes it 
possible for the opponent to gain a corner square. 
Priorities are assigned as shown in Figure 10. 

 
 A B C D E F G H 

1 B I C E E C I B 
2 I J H G G H J I 
3 C H D F F D H C 
4 E G F A A F G E 
5 E G F A A F G E 
6 C H D F F D H C 
7 I J H G G H J I 
8 B I C E E C I B 

Figure 10. 10 classes of squares with class A for highest 
preference for taking moves and class J for lowest 

 
The board is classified into 10 regions with A having 

the highest priority and J the lowest. 
However, as squares in class A are the center squares, 

which are always occupied, only classes B to J need be 
considered. 

The input to the move selector is a 64 bit signal where 
each bit in the signal indicates the respective location on 
the board where a legal move can be made. These inputs 
are generated by the legal move checker.  

In our design, the move selector is a priority encoder 
implemented in a hierarchical fashion. The basic 
components used in the Move Selector are 4-Input priority 
selector and 4-to-1 priority MUXs as shown in Tables 3 
and 4 together with Figures 11 and 12. 
 

 
Figure 11. 4-input priority Selector 

 
In[3:0] Enable Outcode[1:0] 
0000 0 XX 

1XXX 1 00 
01XX 1 01 
001X 1 10 
0001 1 11 

Table 3. The logic table of 4-input priority selector 
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Figure 12. 4-to-1 priority MUX 

 
Control[3:0] Out 

0000 X 
1XXX In[3] 
01XX In[2] 
001X In[1] 
0001 In[0] 

 
Table 4. The logic table of 4-to-1 priority MUX 

 

 
Figure 13. Schematic of 16-input priority selector 

 
By using five 4-input priority selectors and two 4-to-1 

priority MUXs, a 16-input priority selector can be 
constructed as shown in Figure 13. Similarly, by using 
four 16-input priority selectors, one 4-input priority 
selector and four 4-to-1 priority MUXs, a 64-input priority 
selector can be implemented. 

 

Figure 14. Schematic of 64-input priority selector 
 

The inputs of the 64-input priority selector are 
arranged according to the priority scheme of Figure 10. As 
a result, an Input Converter is required to map the input 

signals to the priority scheme and an Output Converter is 
required to convert the selected move back to its actual 
square number on the Othello board as shown in Table 5. 
 

Priority Mapping Scheme 
Class Squares involved 

A 27,28,35,36 
B 0,7,56,63 
C 2,5,16,23,40,47,58,61 
D 18,21,42,45 
E 3,4,24,31,32,39,59,60 
F 19,20,26,29,34,37,43,44 
G 11,22,25,30,33,38,51,52 
H 10,13,17,22,41,46,50,53 
I 1,6,8,15,48,55,57,62 
J 9,14,49,54 

Table 5. Preference Scheme 
 
3.4. Disc Counter 
 

A Disc Counter is used to count the number ‘1’ 
signals within the 64 bit input and a simple tree based 
adder is used. 

 
3.5. Host Interface 
 

A Pilchard reconfigurable computing card which uses 
a memory slot interface [14] was used to implement the 
design.  

 

 
Figure 15. System Interface 

 
In order to control the endgame chip, an ANSI C 

program is used to read and write from a 64x256 dual port 
block RAM on the FPGA. The Othello system accesses 
the dual port block RAM to do its I/O. 
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4. Results 
 

The Othello endgame solver was implemented in 
VHDL with automatic Place-and-route (PAR). Simulation 
was done using Modelsim PE 5.5f and the result was 
verified to be correct by comparison with a C program 
running on a Pentium processor. Synthesis, PAR, 
bit-stream implementation and timing measurement were 
done using Xilinx ISE 6.1 package. The target FPGA was 
a VirtexE XVC1000E-HQ240 device with speed grade -6. 
The design occupied 36% (4428/12288) of slices and 25% 
(24/96) of block RAMs resources. 

The move generator had a maximum delay of 19.902 
ns and can operate at a maximum frequency of 50.246 
MHz. 

For the iterative alpha-beta pruning algorithm, the 
nodes being processed can be can be classified into 5 
different types: Leaf Node, Search Ended Tree Node, Pass 
Node, Searching Tree Node and Cut-off Node. 

Each type of node requires a different number of 
cycles as described in Table 6. 

 
Node Type Cycles 
Leaf Node 4 

Search Ended Tree Node 4 
Pass Node 4 

Searching Tree Node 16 
Cut-off Node 3 

Table 6. Cycles required for different node types 
 

For each iteration, 3 cycles are used for score comparison. 
6 cycles for initialization and 2 cycles would be used in 
the end stage. Thus the total number of cycles can be 
computed with the formula: 
 
Total Cycle = 6 + 3 x ( {LeafNode} + {TreeEndNode} + 

{PassNode} + {CutOffNode} + 
{TreeNode} ) + 4 x {LeafNode} + 4 x 
{TreeEndNode} + 4 x {PassNode} + 3 x 
{CutOffNode} + 16 x {TreeNode} + 2 

 
As an example, in a case with 15 empty squares, there 

are a total of 11,207,919 nodes with 42% (4,474,594) 
being Searching Tree Nodes, 12% (1,316,494) Leaf Nodes, 
34% (3,861,848) Search Ended Tree Nodes, 4% (435,747) 
Pass Nodes and 8% (851,236) Cut-off Nodes. 

The most time consuming node is the Searching Tree 
Node which is used to select 1 legal move and take that 
move to search 1 step deeper. 

 
Percentage = cut-off ÷ [cut-off + searching] 
 
Cut-off percentage of the above example is 15.2%. 

The cut-off percentages for other board examples are 

close to 15%. As a result, the iterative alpha-beta pruning 
algorithm used has a cut-off percentage of about 15% 
 
4.1. Comparison with software 
 

Table 7 shows the average execution time (in seconds) 
of the FPGA-based and the software-based end-game 
move generator with alpha-beta pruning algorithm for 
different numbers of empty squares. The FPGA-based 
move generator was found to be faster than the 
software-based implementation by a factor of 3.67.  
  
 

Execution Time (second) No. of 
Empties Software-based FPGA-based 

Speed 
up 

16 6 1 6 
17 26 7 3.71 
18 44 12 3.67 
19 451 120 3.76 
20 1378 375 3.67 

Table 7. Performance comparison between FPGA-based 
and software-based move generators with alpha-beta 

pruning. 
 
5. Conclusion 
 

In this paper we presented a novel architecture and 
implementation for an Othello end game analyzer. The 
move generator used 4428 (36%) Slices and 24 (25%) 
Block RAMs of the XCV1000E-HQ240-6 device. Its 
highest operation frequency is 50 MHz. Using 16 cycles 
per search position, it can search 3.14 millions Othello 
positions per second. By comparing the performance with 
the software-based recursive alpha-beta pruning of 
different number of empties, a speed up factor 3.67 has 
been found which is independent of the number of 
empties on the board.  

This work demonstrates that it is possible to create a 
complete search engine on a relatively small FPGA which 
has performance similar to that of a high end 
microprocessor. By using a larger device, higher clock 
rate and a more sophisticated search algorithm, we expect 
a performance improvement of two or more orders of 
magnitude can be achieved using the same architecture. 

 
6. Future work 

 
A larger device such as the XCV6000E has six times 

more slices than the XCV1000E used in this design. 
Furthermore, our design currently only occupies 36% of 
the XCV1000E and hence we expect to be able to use 
more area to improve parallelism and achieve a 
twelve-fold speedup over the present design. The finite 
state machine used in the design is far from optimal, the 



bottleneck being the disc flipping circuit. A synchronous 
design methodology forced us to implement a disc 
flipping operation in several cycles. A faster design which 
uses a fully combinatorial disc flipper and waiting 
multiple cycles for its completion would speedup the 
design by a factor of two and allow a higher clock rate. 

For a 20 empties case, a sophisticated software 
endgame solver [17] performs its analysis in 17 seconds, 
which is 22 times faster than the alpha-beta scheme on the 
same Pentium machine. This program uses a fastest-first 
heuristic which sorts the moves in increasing order on the 
number of available opponent responses and results in a 
much higher cut-off percentage than alpha-beta pruning. 
Furthermore, a hash table is used to avoid reevaluating 
already visited nodes. With an added cost of greater 
hardware complexity, the same algorithm can be 
implemented in hardware which would greatly reduce the 
search time. When implementing more sophisticated 
search algorithms, it may be better to use an on-chip 
microprocessor such as the Microblaze or PowerPC to 
replace the FSM of the current design.  

We also wish to implement a full evaluation function 
which can assign scores to non-leaf node positions, 
considering issues such as position, disc stability and 
parity [2,3,4,5]. With this feature the machine can also be 
used for the midgame and the benefits of FPGA based 
hardware acceleration can be utilized in all 
computationally expensive stages of play. 
 
References 
 
[1] Clarence Hewlett, “Hardware Help in an Othello 

Endgame Analyzer”, in Heuristic Programming in 
Artificial Intelligence: the first computer Olympiad, 
pp. 219-224, 1989 

[2] Anders Kierulf, “New Concepts in Computer Othello: 
Corner Value, Edge Avoidance, Access, and Parity”, 
in Heuristic Programming in Artificial Intelligence: 
the first computer Olympiad, pp. 225-240, 1989 

[3]  Lee, Kai-Fu, and Mahajan, Sanjoy, "The 
Development of a World Class Othello 
Program,”Artificial Intelligence, 1990, Vol. 43, pp. 
21-36. 

[4] Rosenbloom, P. S., "A World-Championship-level 
Othello program," Artificial Intelligence, 1982, Vol. 
19, pp. 279-320. 

[5] Michael Buro, “LOGISTELLO --- A Strong Learning 
Othello Program”, NEC Research Institute, Princeton, 
NJ. 
http://www.cs.ualberta.ca/~mburo/ps/log-overview.pd
f 

[6] Mark G. Brockington, Jonathan Schaeffer, “APHID: 
Asynchronous Parallel Game-Tree Search”, 
Department of Computing Science, University of 
Alberta, Edmonton, Alberta T6G 2H1, Canada, 

February 1999 
[7] Richard A. Delorme, a program to solve Othello 

endgame script 
http://perso.club-internet.fr/abulmo/radoth/ 

[8] Minimax algorithm, From Wikipedia, the free 
encyclopedia. 

 http://en2.wikipedia.org/wiki/Minimax+algorithm 
[9] Introduction to AI Programming, CSC 243, Computer 

Based Learning Unit, University of Leeds, 1995-1996 
http://www.comp.lancs.ac.uk/computing/research/aai-
aied/people/paulb/old243prolog/subsection3_6_4.htm
l#SECTION0006400000000000000 

[10] Principal Variation Search --- An enhancement to 
alpha-beta, Computer Chess, Programming Topics, 
Bruce Moreland, 2001 

 http://www.seanet.com/~brucemo/topics/pvs.htm 
[11] Xilinx Virtex-II Data Sheet, 

http://direct.xilinx.com/bvdocs/publications/ds031.pd
f 

[12] IBM Deep Blue website, 
http://www.research.ibm.com/deepblue/meet/html/d.3
.1.html) 

[13] http://home.nc.rr.com/Othello/rules/ 
[14] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung, 

C.M. Kwok, M.Y. Wong and K.H. Lee, ``Pilchard - A 
Reconfigurable Computing Platform with Memory 
Slot Interface,'' Proceedings of the IEEE Symposium 
on Field-Programmable Custom Computing 
Machines (FCCM), California USA, 2001 

[15] M. Buro, The Othello match of the year: Takeshi 
Murakami vs Logistello, ICCA Journal, 20(3): pp. 
189-193, 1997. 

[16] M. Buro, Experiments with Multi-ProbCut and a 
New High-Quality Evaluation Function for Othello, 
Games in AI Research, H.J. van den Herik, H. Iida 
(ed.), ISBN: 90-621-6416-1, 2000 

[17] G. Andersson’s endgame solver, 
http://www.nada.kth.se/~gunnar/endgame.c 

 
 


