
Abstract

A single chip FPGA-based Othello endgame solver is
presented in this paper. The solver includes all the
hardware for move checking, disc flipping, move selection,
board evaluation and alpha-beta pruning. On a Xilinx
Virtex XCV1000E-6 device operating at 50 MHz, the chip
can search 3.14 million Othello positions per second. The
endgame chip achieves a speedup of 3.5 over an 800 MHz
Pentium III machine, showing that performance similar to
that of a high end microprocessor can be achieved using
modest FPGA resources. By using a larger FPGA, a more
sophisticated search algorithm and an improved datapath,
we believe that a single FPGA based endgame solver with
at least two orders of magnitude better performance can
be developed.

1. Introduction

Big Blue was a high profile IBM project which
defeated the World Chess Champion, Garry Kasparov by
using a high speed VLSI chess chip which could search
100 million chess positions per second [12]. Othello is a
game which is simpler than chess and one in which
computer programs are already stronger than the human
world champion [15]. It is our belief that field
programmable gate array (FPGA) devices can be used to
accelerate the searching required in an Othello playing
program, leading to improved playing strength.

In this paper, we present a design and implementation
of an FPGA based endgame solver for Othello. In the
endgame, the entire game tree is searched and hence an
optimal move can be computed. If a hardware accelerated
endgame solver can be developed, and the game tree can
be searched to a greater depth than software in the same
time, playing strength can obviously be improved.

There are several key components our Othello
endgame solver: a legal move generator which finds all
legal moves in parallel given a board position; a disc
flipper which executes a move to produce a new board

position; a board evaluator which assigns a score to a
terminal board position; and a search engine which uses
the previous blocks to traverse the game tree using the
alpha-beta pruning algorithm to find the optimal move.
We present novel architectures to implement these blocks
and compare the performance of the resulting system with
a software based implementation.

To the best of our knowledge, the only previously
reported hardware Othello machine design was proposed
in 1987 by Hewlett [1]. In this design, 30 Signetics
PLS101 field programmable logic array (FPLA) devices
were used to develop a hardware disc flipper which takes
a board position and move position as inputs and produces
an updated board position as output.

This paper is organized as follow: In section 2, the
rules of Othello, Othello playing programs and a brief
review of the alpha-beta search algorithm are presented.
In section 3, the hardware implementation of the whole
system and some small main modules are presented. In
section 4, results are given. Conclusions are drawn in
section 5 and some ideas for further research in this area
are described in section 6.

2. Computer Othello

Othello is a two player game, played on an 8×8 board
of 64 squares with discs which are white on one side and
black on the other. Outflanking involves placing a disc of
your own color so that you have your color disc at each
end of a line of discs (in the horizontal, vertical or
diagonal directions), then all of your opponent’s discs
which have been outflanked (in all directions) are flipped
to your own color. Players consecutively take turns unless
no legal move is available to a player in which case the
player skips his/her turn. If neither player has a legal
move, the game is over. When the game is over, the player
with the most discs on the board is the winner. Please refer
to [13] for a more detailed description of the rules.

In a two player game such as Othello, the possible
outcomes can be represented as a directed graph which is

An FPGA-based Othello Endgame Solver

C.K. Wong, K.K. Lo and P.H.W. Leong
Department of Computer Science and Engineering,

The Chinese University of Hong Kong
Shatin, N.T., Hong Kong

{kitwong, loka}@alumni.cse.cuhk.edu.hk, phwl@cse.cuhk.edu.hk

known as the game tree. A node in the game tree
represents a state (or position) of the game, and the
children of that node are the states reached by making a
particular move. For endgame analysis, an evaluation
score is given to all leaf nodes, namely the difference in
number of discs between the players, representing the
winning margin in a game of Othello.

Given a game tree and the current state, a search can
be made to determine the best move. This optimal move is
the one which minimizes the maximum value of possible
replies to that move (i.e. the move to which the opponent
has the least best reply). The minimax algorithm is the
naïve implementation of this search and requires a
complete transversal of the tree.

Strong Othello programs use sophisticated search
techniques and pay particular attention to move ordering
which serves to increase the number of nodes which can
be pruned from the search, hence improving the search
speed. In the early 80’s, Iago [4] used iterative deepening
and killer heuristics. Bill [3] used iterative deepening,
hash and killer tables, a zero-window search and a
two-phase endgame search. Logistello used the
Multi-ProbCut algorithm which improves search speed by
a factor of ten compared with alpha-beta pruning [5, 16].

Although we intend to explore more sophisticated
search algorithms such as Multi-ProbCut in the future, a
simple algorithm, namely alpha-beta pruning, was chosen
so as to facilitate a simple hardware implementation.
More sophisticated searches can be implemented by
modifying the search finite state machine without
requiring modifications to other parts of the system.

The alpha-beta pruning algorithm is able to prune the
search space by avoiding unnecessary subtrees and can be
described in pseudocode as follows:

abeta (node, alpha, beta)
{
 if node is a leaf
 return the value of node
 if node is a minimizing node
 for each child of node
 beta = min (beta,
 abeta (child, alpha, beta))
 if beta <= alpha
 return alpha
 return beta
 if node is a maximizing node
 for each child of node
 alpha = max (alpha,
 abeta (child, alpha, beta))
 if beta <= alpha
 return beta
 return alpha
}

Figure 1. Alpha-beta pruning algorithm pseudocode.

3. Hardware Implementation

Figure 2. System block diagram

A block diagram of the endgame solver is given in

Figure 2. We had originally intended to implement the
search algorithm on a microprocessor and the rest of the
machine as a coprocessor on an external FPGA board, but
found that such an approach imposed a performance
bottleneck due to the large amount of I/O required. Thus
the alpha-beta pruning algorithm was implemented
on-chip using a finite state machine (FSM). An iterative
alpha-beta pruning algorithm was derived from the
recursive code of Figure 1, stacks being used to store
states for implementing the recursion.

In each iteration of the search’s main loop, all legal
moves are determined in parallel by the Legal Move
Checker and a bit-array returned. The Move Selector is
used to select a move and the board position is updated
using the Disc Flipper. The two Disc Counters compute
the number of white and black discs on the board. The
above process is repeated in accordance with the
alpha-beta pruning algorithm, and when a leaf node is
reached, the value of the node is simply the difference in
number of white and black discs.

Computation in the FSM proceeds according to the
node type which can be: a leaf node, a tree node, a pass
node and a search ended tree node. In each iteration, 1 of
the 4 states below is executed depending on the
characteristic of the current node. If the current node is a
game ended node, the leaf node state is executed and the
score calculated. If the current node is not game ended,
there are still some legal moves to consider and the tree

FSM of main
loop with
iterative

alpha-beta
pruning

algorithm

Legal Move
Checker

Disc Flipper

Move Selector

Disc Counter

Disc Counter

node state is executed and alpha and beta determined. If
beta <= alpha, searching will cut off. Otherwise, one of
the legal moves would be taken and a deeper search
initiated. If the player of the current node has no legal
moves and has to pass, the pass node state is executed. If
all the legal moves of the current node have been tested, it
will execute the search ended tree state. This is equivalent
to the return function in the recursive algorithm and is
used to return the score of the child node to the parent
node.

Figure 3. State diagram of FSM

3.1. Legal Move Checker

The Legal Move Checker is used to generate an array
representing all legal moves for the current board. It is
implemented purely in combinatorial logic as a sum of
products.

Figure 4. Interface of legal move checker

The Legal Move Checker takes a color bit (indicating
whether it is white or black’s turn) and a 128 Othello
board (in which two bits are used to indicate whether a
square is empty, white or black) as inputs, and generates a
64-bit output which indicates which positions are legal
moves.

In order to determine whether the square is a legal
move, we first consider the subproblem of determining
whether a move in a particular direction is legal. Since an
8×8 square board is used, in any direction, at most 8
squares need be tested. This leads to at most 6 cases in
which a legal move can occur and a Boolean expression of
these situations in which a white disc is legal is:

Relative positions are assumed and the above

equation, which we call a length 8 legal move checker,
says that it is legal to use a white piece at position W0 if
there is no piece already present AND it outflanks at least
one black piece (where, for example, B1 indicates that
there is a black disc in the adjacent square and W2
indicates there is a white disc adjacent to the black disc).
Some additional circuitry is used to allow both black and
white cases to be handled, this being controlled by the
color bit. Using the above technique, a unidirectional legal
move checker can be constructed.

When considering all 8 possible directions from a
square, 8 unidirectional legal move checkers of different
lengths can be combined. In order to generalize the design,
the Othello board can be divided into 10 different types of
squares.

 A B C D E F G H
1 A B C D D C B A
2 B E F G G F E B
3 C F H I I H F C
4 D G I J J I G D
5 D G I J J I G D
6 C F H I I H F C
7 B E F G G F E B
8 A B C D D C B A

Figure 5. 10 kinds of legal move checkers

Looping

LeafNode SearchEnded
TreeNode

Searching
TreeNode

PassNode

End
Stack empty

Find
alpha-beta

Find new
legal moves

Choose 1 from
legal moves

Flip that
selected move

Find
score

Player
pass

Return score
to parent node

alpha >
beta alpha <=

beta

Legal Move
Checker

1 bit color

128 bit Othello board

64 bits legal moves

()
()
()
()
()
()

⎪
⎪
⎪
⎪

⎭

⎪
⎪
⎪
⎪

⎬

⎫

⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪

⎨

⎧

••••••
•••••

••••
•••

••
•

••

7654322
654321

54321
4321

321
21

00

WBBBBBB
WBBBBB

WBBBB
WBBB

WBB
WB

BW
U

U

U

U

U

Table 2 indicates the number of AND terms in the
legal move checker equation for each of the 10 different
shaded square types in Figure 5.

Direction
Type

R BR B BL L TL T TR

A 6 6 6
B 5 5 6
C 4 4 6 1 1
D 3 3 6 2 2
E 5 5 5
F 4 4 5 1 1
G 3 3 5 2 2
H 4 4 4 1 1 1 1 1
I 3 3 4 2 2 1 1 1
J 3 3 3 2 2 2 2 2

R=right, BR=bottom-right, B=bottom, BL=bottom-left
L=left, TL=top-left, T=top, TR=top-right
Table 2. Table of number of product terms in legal move

expression for different groups of squares.

From the above table, it can be seen that the legal
move checker equation for some square types such as A
need only consider 3 directions whereas others need to
consider all 8 directions. Also, since type J positions are
already occupied at the start of the game, they do not need
to be considered. To implement legal move checking for
the non-shaded squares of Figure 5, symmetry is used.

3.2. Disc Flipper

The Disc Flipper is used to flip the outflanked pieces
when a move is made. The disc flipper is a combinatorial
circuit which propagates a signal from the position of the
newly placed disc, in all directions in parallel, until it can
be determined whether outflanking occurs.

Figure 6. Interface of disc flipper

128 bits are used to represent the original Othello
board, 6 bits to represent the row and column of the newly
placed disc, and 1 bit is used to identify the color of the
newly placed disc. The disc flipper returns a 128 bit
flipped Othello board.

In the disc flipper design, a ripple chain is used. A
chain can be either a row, a column or a diagonal in a
particular direction with a starting and ending square so 8
different directions (right, left, top, top-left, top-right,
bottom, bottom-left and bottom-right) need to be
considered.

Each chain is implemented in 3 phases: forward,
backward and flip phases.

Forward Phase:
a) The newly placed disc triggers a forward signal to its

neighbor square in a given direction (e.g. Left chain =>
left neighbor)

b) The neighbor square propagates the forward signal to
the neighbor in the same direction if it contains an
opposite color disc.

c) The propagation continues until the forward signal
reaches a square containing a disc with the same color
as the newly placed disc. In this case an endchain
signal and a backward signal are generated. The phase
is changed to the backward phase.

Backward Phase:
a) The generated backward signal is propagated to its

neighbor in the reverse direction (e.g. Left chain =>
right neighbor)

b) The neighbor square propagates the backward signal in
the opposite direction of the chain’s name if it contains
an opposite color disc.

c) The propagation continues until the backward signal
reaches the square containing the newly placed disc.

Flip phase:
a) All squares having both forward and backward signals

are changed to the color of the newly placed disc,
hence flipping the outflanked discs.

Figure 7. Example of chain concept in disc flipper

Newly placed disc

Forward Chain

Backward Chain

Endchain

Flip

Disc Flipper

1 bit color

128 bits Othello board

128 bit flipped Othello
board

6 bits new placed disc
location identifier

A newly placed disc generates 8 forward signals in
the different directions. If all the 8 directions can be
flipped, there would be a forward signal propagation line
and a backward signal propagation line in each chain. If
outflanking does not occur in a direction, the propagation
of the forward signals in those directions are stopped by
empty squares or board edges and no backward signals are
returned and they are not flipped.

After finding the squares that require flipping, the
outflanked squares are flipped and the newly placed disc
is added to the flipped board.

Figure 8. Block diagram of disc flipper

3.3. Move Selector

For every branch of the game tree, the player must
select one of the legal moves from the output of the legal
move checker. In order to increase the amount of pruning,
it is best to consider the best moves first. Moves are thus
selected by the Move Selector based on position.

Figure 9. Interface of move selector

Squares are assigned different priorities based on

their position. For example, higher priority is given to the
corner squares because they cannot be flipped once placed

and hence serve as anchors for outflanking the opponent’s
pieces.

Using letters to represent columns and numbers to
represent rows (as illustrated in Figure 5), the corner
squares A1, A8, H1 and H8 are given the highest priority.
Consequently, squares B2, G2, B7 and G7 are given
lowest priority since placing a disc on that square makes it
possible for the opponent to gain a corner square.
Priorities are assigned as shown in Figure 10.

 A B C D E F G H

1 B I C E E C I B
2 I J H G G H J I
3 C H D F F D H C
4 E G F A A F G E
5 E G F A A F G E
6 C H D F F D H C
7 I J H G G H J I
8 B I C E E C I B

Figure 10. 10 classes of squares with class A for highest
preference for taking moves and class J for lowest

The board is classified into 10 regions with A having

the highest priority and J the lowest.
However, as squares in class A are the center squares,

which are always occupied, only classes B to J need be
considered.

The input to the move selector is a 64 bit signal where
each bit in the signal indicates the respective location on
the board where a legal move can be made. These inputs
are generated by the legal move checker.

In our design, the move selector is a priority encoder
implemented in a hierarchical fashion. The basic
components used in the Move Selector are 4-Input priority
selector and 4-to-1 priority MUXs as shown in Tables 3
and 4 together with Figures 11 and 12.

Figure 11. 4-input priority Selector

In[3:0] Enable Outcode[1:0]
0000 0 XX

1XXX 1 00
01XX 1 01
001X 1 10
0001 1 11

Table 3. The logic table of 4-input priority selector

Move
Selector

64 bits legal moves

6 bits selected legal
move

64 bits remaining legal
moves

Selector4

In[3:0] Enable

Outcode[1:0]

6-to-64
decoder

Check flip

Flip disc

Add disc

original board
(128 bits)

color (1 bit)

required flip
(64 bits)

flipped board (128 bits)

result board (128 bits)

newly placed
disc (6 bits)

placed
disc
(64
bits)

Figure 12. 4-to-1 priority MUX

Control[3:0] Out

0000 X
1XXX In[3]
01XX In[2]
001X In[1]
0001 In[0]

Table 4. The logic table of 4-to-1 priority MUX

Figure 13. Schematic of 16-input priority selector

By using five 4-input priority selectors and two 4-to-1

priority MUXs, a 16-input priority selector can be
constructed as shown in Figure 13. Similarly, by using
four 16-input priority selectors, one 4-input priority
selector and four 4-to-1 priority MUXs, a 64-input priority
selector can be implemented.

Figure 14. Schematic of 64-input priority selector

The inputs of the 64-input priority selector are
arranged according to the priority scheme of Figure 10. As
a result, an Input Converter is required to map the input

signals to the priority scheme and an Output Converter is
required to convert the selected move back to its actual
square number on the Othello board as shown in Table 5.

Priority Mapping Scheme
Class Squares involved

A 27,28,35,36
B 0,7,56,63
C 2,5,16,23,40,47,58,61
D 18,21,42,45
E 3,4,24,31,32,39,59,60
F 19,20,26,29,34,37,43,44
G 11,22,25,30,33,38,51,52
H 10,13,17,22,41,46,50,53
I 1,6,8,15,48,55,57,62
J 9,14,49,54

Table 5. Preference Scheme

3.4. Disc Counter

A Disc Counter is used to count the number ‘1’
signals within the 64 bit input and a simple tree based
adder is used.

3.5. Host Interface

A Pilchard reconfigurable computing card which uses
a memory slot interface [14] was used to implement the
design.

Figure 15. System Interface

In order to control the endgame chip, an ANSI C

program is used to read and write from a 64x256 dual port
block RAM on the FPGA. The Othello system accesses
the dual port block RAM to do its I/O.

MUX4
In[3:0]

Out

Othello
System

64x256
Dual port

Block
RAM

Input
Board

Register

Input
Color

Register

Best 9 steps
(6 bitsx9)

128
bits

1 bit

Best score
(8 bits)

To PC
DIMM

Memory
Slot

Pilchard Card

Control[3:0]

4. Results

The Othello endgame solver was implemented in
VHDL with automatic Place-and-route (PAR). Simulation
was done using Modelsim PE 5.5f and the result was
verified to be correct by comparison with a C program
running on a Pentium processor. Synthesis, PAR,
bit-stream implementation and timing measurement were
done using Xilinx ISE 6.1 package. The target FPGA was
a VirtexE XVC1000E-HQ240 device with speed grade -6.
The design occupied 36% (4428/12288) of slices and 25%
(24/96) of block RAMs resources.

The move generator had a maximum delay of 19.902
ns and can operate at a maximum frequency of 50.246
MHz.

For the iterative alpha-beta pruning algorithm, the
nodes being processed can be can be classified into 5
different types: Leaf Node, Search Ended Tree Node, Pass
Node, Searching Tree Node and Cut-off Node.

Each type of node requires a different number of
cycles as described in Table 6.

Node Type Cycles
Leaf Node 4

Search Ended Tree Node 4
Pass Node 4

Searching Tree Node 16
Cut-off Node 3

Table 6. Cycles required for different node types

For each iteration, 3 cycles are used for score comparison.
6 cycles for initialization and 2 cycles would be used in
the end stage. Thus the total number of cycles can be
computed with the formula:

Total Cycle = 6 + 3 x ({LeafNode} + {TreeEndNode} +

{PassNode} + {CutOffNode} +
{TreeNode}) + 4 x {LeafNode} + 4 x
{TreeEndNode} + 4 x {PassNode} + 3 x
{CutOffNode} + 16 x {TreeNode} + 2

As an example, in a case with 15 empty squares, there

are a total of 11,207,919 nodes with 42% (4,474,594)
being Searching Tree Nodes, 12% (1,316,494) Leaf Nodes,
34% (3,861,848) Search Ended Tree Nodes, 4% (435,747)
Pass Nodes and 8% (851,236) Cut-off Nodes.

The most time consuming node is the Searching Tree
Node which is used to select 1 legal move and take that
move to search 1 step deeper.

Percentage = cut-off ÷ [cut-off + searching]

Cut-off percentage of the above example is 15.2%.

The cut-off percentages for other board examples are

close to 15%. As a result, the iterative alpha-beta pruning
algorithm used has a cut-off percentage of about 15%

4.1. Comparison with software

Table 7 shows the average execution time (in seconds)
of the FPGA-based and the software-based end-game
move generator with alpha-beta pruning algorithm for
different numbers of empty squares. The FPGA-based
move generator was found to be faster than the
software-based implementation by a factor of 3.67.

Execution Time (second) No. of
Empties Software-based FPGA-based

Speed
up

16 6 1 6
17 26 7 3.71
18 44 12 3.67
19 451 120 3.76
20 1378 375 3.67

Table 7. Performance comparison between FPGA-based
and software-based move generators with alpha-beta

pruning.

5. Conclusion

In this paper we presented a novel architecture and
implementation for an Othello end game analyzer. The
move generator used 4428 (36%) Slices and 24 (25%)
Block RAMs of the XCV1000E-HQ240-6 device. Its
highest operation frequency is 50 MHz. Using 16 cycles
per search position, it can search 3.14 millions Othello
positions per second. By comparing the performance with
the software-based recursive alpha-beta pruning of
different number of empties, a speed up factor 3.67 has
been found which is independent of the number of
empties on the board.

This work demonstrates that it is possible to create a
complete search engine on a relatively small FPGA which
has performance similar to that of a high end
microprocessor. By using a larger device, higher clock
rate and a more sophisticated search algorithm, we expect
a performance improvement of two or more orders of
magnitude can be achieved using the same architecture.

6. Future work

A larger device such as the XCV6000E has six times

more slices than the XCV1000E used in this design.
Furthermore, our design currently only occupies 36% of
the XCV1000E and hence we expect to be able to use
more area to improve parallelism and achieve a
twelve-fold speedup over the present design. The finite
state machine used in the design is far from optimal, the

bottleneck being the disc flipping circuit. A synchronous
design methodology forced us to implement a disc
flipping operation in several cycles. A faster design which
uses a fully combinatorial disc flipper and waiting
multiple cycles for its completion would speedup the
design by a factor of two and allow a higher clock rate.

For a 20 empties case, a sophisticated software
endgame solver [17] performs its analysis in 17 seconds,
which is 22 times faster than the alpha-beta scheme on the
same Pentium machine. This program uses a fastest-first
heuristic which sorts the moves in increasing order on the
number of available opponent responses and results in a
much higher cut-off percentage than alpha-beta pruning.
Furthermore, a hash table is used to avoid reevaluating
already visited nodes. With an added cost of greater
hardware complexity, the same algorithm can be
implemented in hardware which would greatly reduce the
search time. When implementing more sophisticated
search algorithms, it may be better to use an on-chip
microprocessor such as the Microblaze or PowerPC to
replace the FSM of the current design.

We also wish to implement a full evaluation function
which can assign scores to non-leaf node positions,
considering issues such as position, disc stability and
parity [2,3,4,5]. With this feature the machine can also be
used for the midgame and the benefits of FPGA based
hardware acceleration can be utilized in all
computationally expensive stages of play.

References

[1] Clarence Hewlett, “Hardware Help in an Othello

Endgame Analyzer”, in Heuristic Programming in
Artificial Intelligence: the first computer Olympiad,
pp. 219-224, 1989

[2] Anders Kierulf, “New Concepts in Computer Othello:
Corner Value, Edge Avoidance, Access, and Parity”,
in Heuristic Programming in Artificial Intelligence:
the first computer Olympiad, pp. 225-240, 1989

[3] Lee, Kai-Fu, and Mahajan, Sanjoy, "The
Development of a World Class Othello
Program,”Artificial Intelligence, 1990, Vol. 43, pp.
21-36.

[4] Rosenbloom, P. S., "A World-Championship-level
Othello program," Artificial Intelligence, 1982, Vol.
19, pp. 279-320.

[5] Michael Buro, “LOGISTELLO --- A Strong Learning
Othello Program”, NEC Research Institute, Princeton,
NJ.
http://www.cs.ualberta.ca/~mburo/ps/log-overview.pd
f

[6] Mark G. Brockington, Jonathan Schaeffer, “APHID:
Asynchronous Parallel Game-Tree Search”,
Department of Computing Science, University of
Alberta, Edmonton, Alberta T6G 2H1, Canada,

February 1999
[7] Richard A. Delorme, a program to solve Othello

endgame script
http://perso.club-internet.fr/abulmo/radoth/

[8] Minimax algorithm, From Wikipedia, the free
encyclopedia.

 http://en2.wikipedia.org/wiki/Minimax+algorithm
[9] Introduction to AI Programming, CSC 243, Computer

Based Learning Unit, University of Leeds, 1995-1996
http://www.comp.lancs.ac.uk/computing/research/aai-
aied/people/paulb/old243prolog/subsection3_6_4.htm
l#SECTION0006400000000000000

[10] Principal Variation Search --- An enhancement to
alpha-beta, Computer Chess, Programming Topics,
Bruce Moreland, 2001

 http://www.seanet.com/~brucemo/topics/pvs.htm
[11] Xilinx Virtex-II Data Sheet,

http://direct.xilinx.com/bvdocs/publications/ds031.pd
f

[12] IBM Deep Blue website,
http://www.research.ibm.com/deepblue/meet/html/d.3
.1.html)

[13] http://home.nc.rr.com/Othello/rules/
[14] P.H.W. Leong, M.P. Leong, O.Y.H. Cheung, T. Tung,

C.M. Kwok, M.Y. Wong and K.H. Lee, ``Pilchard - A
Reconfigurable Computing Platform with Memory
Slot Interface,'' Proceedings of the IEEE Symposium
on Field-Programmable Custom Computing
Machines (FCCM), California USA, 2001

[15] M. Buro, The Othello match of the year: Takeshi
Murakami vs Logistello, ICCA Journal, 20(3): pp.
189-193, 1997.

[16] M. Buro, Experiments with Multi-ProbCut and a
New High-Quality Evaluation Function for Othello,
Games in AI Research, H.J. van den Herik, H. Iida
(ed.), ISBN: 90-621-6416-1, 2000

[17] G. Andersson’s endgame solver,
http://www.nada.kth.se/~gunnar/endgame.c

