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ABSTRACT

This paper presents a method for optimising paralleli-

sation and scheduling of task graphs containing represen-

tation of loops for implementation in heterogeneous com-

puting systems with both software and hardware processors.

The method integrates loop unrolling with task scheduling

and determines the extent to which each loop should be un-

rolled to maximise performance, while meeting size con-

straints. A performance-driven strategy is proposed to find

the best unrolling factor for each loop, such that the closer

the match of run-time conditions and compile-time param-

eters, the higher the performance. Experimental results ob-

tained using a speech recognition system show the proposed

method outperforms an approach without unrolling by 2.1
times, and using the processing time of a 2.6GHz micropro-

cessor as a reference, a speed up of 10 times can be achieved

when compile-time and run-time parameters are matched,

while the performance drops gradually when they are differ-

ent.

1. INTRODUCTION

Computationally intensive tasks often involve iterative op-

erations such as loops. Scheduling such loops properly e.g.

parallelising the execution of various loop iterations, can

potentially achieve better performance. Previous work on

loop scheduling tends to address single loop only and as-

sumes operations are synchronised by a global clock, so that

a list scheduling strategy coupled with a simple model for

estimating speed and area would suffice [11]. Various ap-

proaches are listed in Table 1 and summarized as follows:

• Path based [1],[7]: this approach divides a graph into

sub-graphs, generating scheduling for each sub-graph

independently. Since sub-graphs are treated indepen-

dently, this approach may lead to sub-optimal solu-

tions. It does not target an implementation with greater

parallelism, since it does not cover multiprocessor sys-

tems.

• Modulo scheduling [2]: this approach generates a sched-

ule for one iteration of a loop such that all iterations

repeat the same schedule at regular interval, e.g. gen-

erating a software pipelining design.

• Loop transformation [8]: this approach converts a cyclic

graph to acyclic directly using graph traversal algo-

rithms such as depth first search. This approach does

not analyze task dependency in different iterations which

may result in less parallelism.

• Unrolling [13],[11],[10]: this is a common technique

to generate an implementation with greater parallelism.

It involves unrolling a loop and extracting parallel tasks

from different loop iterations. However, current works

focuses on parallelising a single loop.

• Dynamic scheduling [9]: this approach schedules tasks

in run-time making use of both online and offline pa-

rameters, run-time conditions such as loop condition

is monitored dynamically. However, loop parallelisa-

tion is not address in this approach.

Heterogeneous computing systems containing micropro-

cessors and dedicated hardware processors, e.g. reconfig-

urable hardwares, provide potentially more effective solu-

tions than single microprocessor systems for many real time

and embedded digital signal processing applications. While

previous work has focused on parallelising a single loop

[2],[8],[13],[11],[10], it is noted that reconfigurable hard-

ware in a heterogeneous system is capable of supporting

parallel execution of tasks; the challenge is to develop tech-

niques for effective exploitation of this capability. Recent

work has shown the promising performance of an integrated

mapping/scheduling system with multiple neighborhood func-

tion strategy [3] and the advantages of combining mapping/sc-

heduling process with loop unrolling [4], this work com-

plements previous work by providing a method for optimis-

ing the unrolling factors for multiple loops, which may be

mapped to reconfigurable hardware in a heterogeneous sys-

tem such that the performance of the system as a whole is



Table 1. Some approaches to address mapping/scheduling.

references approach examples of applications comments

[1] [7] Path-based scheduling
GCD, counter, multiprocessors system

Filtering not addressed

[2] Modulo scheduling DCT, FFT
analyze one iteration,

single loop

[8] Loop transformation random graphs
less parallelism,

single loop

[13] [11] [10] Loop unrolling
random graphs, FFT, solver

single loop unrolling
equalizer

[9] Dynamic scheduling fractal generation
loop unrolling not addressed,

single loop

this work Multi-loop unrolling speech system
global unrolling factors determining,

coarse-grained, heterogeneous systems

optimised. Moreover, additional management tasks are in-

cluded so that the resulting system will always behave as

expected, and the closer the match of run-time conditions

and compile-time parameters, the higher the performance.

The novel aspects are as follows:

• A static mapping and scheduling technique, capable

of handling cyclic task graphs, supports loop unrolling

such that the number of iterations may not be known

until run-time.

• A performance-driven strategy, combined with an in-

tegrated mapping/scheduling system with multiple neigh-

borhood function strategy, to find the best unrolling

factor for each loop.

2. MAPPING AND SCHEDULING

2.1. System overview

Figure 1 shows the approach used to find a best mapping/sch-

eduling solution for an input task graph. Given a task graph

and a target architecture specification including characteris-

tic of processing elements and communication channel, tabu

search is used to generate different mapping/scheduling so-

lutions (neighbors) iteratively. For each solution, an overall

processing time, which is the time to finish all tasks, is cal-

culated and used as the cost to guide the search. The goal is

to find a solution with minimum overall processing time.

2.2. Integrated mapping and scheduling

Given a set of tasks TK = {tk1, tk2, ..., tkn} to be exe-

cuted and a set of task lists PL = {pl1, pl2, ..., plm}, where

plj = (asj1, asj2, ..., asjq) is an ordered task sequence to

be executed by processing element pej , each task in plj will
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Fig. 1. Overview of mapping and scheduling solution gen-

eration.

be processed by pej in sequence when it is ready for exe-

cution, in other words, when all of its predecessors are fin-

ished. Task mapping and scheduling are thus integrated in

a single step that deal with assigning tasks to task lists. A

task assignment function is defined as A: TK → PL, e.g.

A(tki) = asrq denotes task tki being assigned to asrq of

list plr. This means that tki is the qth task to be executed

by processing element per. A mapping/scheduling solution

is characterized by assignments of all tasks to processing el-

ements, i.e. for every task tki ∈ TK , A(tki) = asrq for

a plr ∈ PL. In this work, a clustering technique is further



integrated with mapping and scheduling process which will

be introduced in the next Section.

2.3. Multiple neighborhood functions

The basis of heuristic search techniques is neighborhood

search, which starts with a feasible solution and attempts to

improve it by searching its neighbors, i.e. solutions that can

be reached directly from the current solution by an operation

called a move. Tabu search keeps a list of the searched space

and uses it to guide the future search direction; it can for-

bid the search moving to some neighbors. In our proposed

tabu search technique with multiple neighborhood functions

strategy, after an initial solution is generated, two neighbor-

hood functions are used to generate neighbors simultane-

ously. If there exists a neighbor of lower cost than the best

solution so far and it cannot be found in the tabu list, this

neighbor is recorded. Otherwise a neighbor that cannot be

found in the tabu list is recorded. If all the above condi-

tions cannot be fulfilled, a solution in the tabu list with the

least degree, i.e. a solution being resident in the tabu list for

the longest time, is recorded. If the recorded solution has a

smaller cost than the best solution so far, it is recorded as the

best solution. The searched neighbors are added to tabu list

and solutions with the least degree are removed. This pro-

cess is repeated until the search cannot find a better solution

for a given number of iterations.

Given that s denotes current mapping/scheduling solu-

tion, the following two neighborhood functions NFx(s),
which have been shown to provide best performance [3], are

used in this work:

NF1: guided-relocation

(1) Randomly select a task at list plp position aspq.

(2) For all lists plj ∈ PL and positions asjk:

relocate task (plp, aspq) to (plj , asjk) which

yields lowest cost.

(3) Relocate largest data flow parent of task

(plp, aspq) to a position in plj which yields

lowest cost.

NF2: guided-swap

(1) Randomly select a task at list plp position aspq.

(2) For all lists plj ∈ PL and positions asjk:

swap task (plp, aspq) with task (plj , asjk)

which yields lowest cost.

Based on the observation that mapping tasks with large

data flow to the same processing element can potentially re-

duce data transfer overhead, a clustering technique which

tries to group tasks with large data flow together and allo-

cate them to the same processing elements, is proposed [12].

However, clustering, mapping, and scheduling are solved

separately, which may result in sub-optimal solutions. our

approach provides an improvement that integrates the clus-

tering with mapping/scheduling steps, by introducing neigh-

borhood function NF1. So after relocating a task, the sys-

tem tries to move the largest data flow parent, which has

the largest data flow among all parents of the current task,

to the same processing element. If such move yields lower

cost, this move is accepted and a new neighbor is generated,

otherwise, it is discarded.

2.4. Cost function

As mentioned before, overall processing time is used as the

cost to guide the heuristic search. This is the time for pro-

cessing all tasks using the reference heterogeneous comput-

ing system and includes data transfer time. The processing

time of a task tki on processing element pek is calculated

as the execution time of tki on pek plus the time to retrieve

results from all of its predecessors. The data transfer time

between a task and its predecessor is assumed to be zero if

they are assigned to the same processing element.

A speed up coefficient is defined to measure the quality

of a mapping/scheduling solution, it is calculated as the pro-

cessing time using a single CPU divided by the processing

time using the heterogeneous computing system:

SU =

processing timesingle CPU

processing timeReference system

(1)

It is noted that tasks cannot be randomly moved to any

location due to data dependency, i.e. a task cannot be moved

to a location such that it will execute prior to its predecessor.

To avoid generating infeasible solution, our approach inflicts

a huge penalty on the cost of the reference system if such

move is infeasible.

3. MULTI-LOOP PARALLELISATION

3.1. Single loop parallelisation

In order to parallelise an application, an unrolling based

approach is used. The basic strategy is unrolling a loop

and process different iterations of the loop body in parallel.

Given an unrolling factor, which is defined as the number of

iterations to be unrolled, the parallelisation process is shown

as follows:

1. Unroll the loop for a given unrolling factor.

2. Construct a new task graph by treating each unrolled

iteration as a new task.

3. Generate a management task to synchronise results

produced by different iterations, and insert this task

into task graph.

4. Generate a complete mapping/scheduling solution us-

ing the strategy described in Section 2.



If there is only one loop in an application, it is obviously

that this loop will be selected for unrolling. However, if

an application contains various loops, a questions is raised:

how to determine the unrolling factor for each loop? This is

addressed in the following section.

3.2. Determination of unrolling factors

The advantage of considering unrolling of all loops globally

is that tasks in different iterations of various loops can po-

tentially be executed in parallel. An iterative search using

a performance driven strategy is proposed to find the best

unrolling factor for each loop (Algorithm 1), it is noted that

this strategy is applicable to applications containing multi-

ple parallel loops or nested loops. Initially, unrolling factor

UFi of all loops are set to 1. For each loop i, a speed up

improvement ISUi is then calculated which is the speed up

difference before and after unrolling. A loop with maximum

ISU is selected and the unrolling factor of this loop is in-

creased by one, and the unrolled iterations are pre-mapped

to FPGA, forming a partial mapping solution. Subsequently,

a complete mapping/scheduling solution is generated using

the technique described in Section 2. This process is re-

peated until there is not enough FPGA resources for map-

ping tasks.

If an estimated loop count for a particular loop is pro-

vided by user or a loop count is pre-defined in compile-time,

this loop count is used as the maximum iteration number for

unrolling, i.e. the maximum value for the unrolling factor

UFi. A loop is fully unrolled if the unrolling factor UFi

reach this maximum.

3.3. Management task

One of the problems introduced after unrolling is data syn-

chronisation: since results are produced by unrolled itera-

tions in parallel, they need to be organised in correct order

(Figure 2). Another problem is loop count uncertainty, e.g.

a loop is being unrolled n times, but the actual loop count

at run-time may not be a multiple of n. That means some

unrolled iterations have produced useless results and these

results need to be discarded. We propose a strategy to han-

dle these problems by generating a management task to han-

dle data synchronisation. The management task is treated as

a task and inserted into the task graph, which is then pre-

sented to the mapping/scheduling tool. For loops without

data dependency between iterations, the following pseudo-

code shows an example of data synchronisation for unrolling

three iterations.

for (i=0; i<(M-1); i++) {

rst[i*3] = d0[i];

rst[i*3+1] = d1[i];

Algorithm 1 Search of best unrolling factor

1: set all unrolling factors UFi ⇐ 1
2: currentSU ⇐ 0
3: usedFpgaResource ⇐ 0
4: while usedFpgaResource < totalFpgaResource

do

5: maxISU ⇐ 0
6: for all loop LPi do

7: curUF ⇐ UFi + 1
8: Unroll LPi for curUF iterations

9: Map unrolled iterations of LPi to FPGA

10: Generate a complete mapping/scheduling MSi

11: Calculate speed up SUi for MSi

12: ISUi ⇐ SUi − curSU

13: end for

14: find loop max i with maximum ISU

15: UFmax i ⇐ UFmax i + 1
16: Unroll loop LPmax i for UFmax i iterations

17: Map unrolled iterations of LPmax i to FPGA

18: BestMS ⇐ MSmax i

19: currentSU ⇐ SUi

20: Update usedFpgaResource

21: end while

22: return BestMS and UF

rst[i*3+2] = d2[i];

}

tc = M * 3 - N;

switch(tc) {

case 0:

rst[(M-1)*3] = d0[M];

rst[(M-1)*3+1] = d1[M];

rst[(M-1)*3+2] = d2[M];

break;

case 1:

rst[(M-1)*3] = d0[M];

rst[(M-1)*3+1] = d1[M];

break;

case 2:

rst[(M-1)*3] = d0[M];

break;

}

where M is the actual count of executing the unrolled loop,

N is the original loop count. d0, d1 and d2 are the results

produced by the unrolled three iterations respectively. rst is

the original array to store results.

If there is data dependency between iterations, the func-

tionality of the management task is selecting the correct re-

sult from unrolled iterations:

tc = M * 3 - N;

switch(tc) {

case 0:

rst = d2;
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Fig. 2. Unroll loops without data dependency between iter-

ations: (a) Original loop. (b) Unrolled loop and data syn-

chronisation.

break;

case 1:

rst = d1;

break;

case 2:

rst = d0;

break;

}

By generating these management tasks to handle data

synchronisation, the generated mapping/scheduling solution

does not require the designer to know run-time conditions

accurately. Consider the case when a user specifies an esti-

mated loop count at compile time: the loop is unrolled using

this information and a mapping/scheduling solution is gen-

erated. If the estimated loop count matches the actual value

at run-time, maximum performance can be achieved. How-

ever, if the loop count at run-time is different, the generated

data management task can handle data synchronisation dy-

namically, which means the generated mapping/scheduling

solution is still feasible. These management tasks can easily

be implemented in software or in hardware state machines.

4. RESULTS

4.1. Experimental setup

The reference heterogeneous computing system used here

contains one 2.6 GHZ AMD Opteron(tm) Processor and one

Celoxica RCHTX-XV4 FPGA board with a Xilinx Virtex-4

XC4VLX160 FPGA. Both the FPGA board and the micro-

processor are connected by HTX interface with a maximum

data transfer rate up to 3.2 GB/s.

An isolated word recognition system [6] is selected as

a case study which uses 12th order linear predictive cod-

ing coefficients (LPCCs), a codebook with 64 code vectors,

and 20 hidden Markov models (HMMs), each has 12 states.

One set of utterances from the TIMIT TI 46-word database

[5] containing 5082 words from 8 males and 8 females are

used for recognition. Profiling results on the AMD proces-

sor show that loops in vector quantisation (vq), autocorrela-

tion (autocc) and hidden Markov model decoding (hmmdec)

consuming largest CPU resource, which are 71.19%, 15.4%
and 6.11% respectively.

4.2. Multi-loop unrolling

The proposed unrolling strategy is applied to find the best

unrolling factor for each loop and generate the best map-

ping/scheduling solution for the speech system. In this ex-

periment, it is assumed that the order of LPCC, size of code-

book, number of HMMs and states are known at compile-

time. It is found that vector quantisation is being unrolled

for 3 iterations (vq1-3), autocorrelation process is fully un-

rolled for 12 iterations (autocc1-12). Hidden Markov model

decoding contains nested loops, the inner loop is unrolled

for 12 iterations (hmmdec1-12) which is equal to the num-

ber of HMM states, the outer loop is further unrolled for 2 it-

erations which means two HMM decoding processes are ex-

ecuted in parallel. The corresponding FPGA resource usage

is shown in Table 2 and the operating frequency is 318.7 MHz.

The speed up obtained after unrolling is 10 and the speed up

obtained without unrolling is 4.7, where vector quantisation,

autocorrelation and HMM decoding are executed in FPGA

without unrolling. Hence an improvement of 2.1 times is

obtained using the proposed unrolling technique (Table 3).

4.3. Run-time vs compile-time parameters

In the above experiment, mapping/scheduling solutions are

generated based on a pre-defined LPCC order of 12. How-

ever, this value may be modified to cope with different cir-

cumstances at run-time. Using a mapping/scheduling so-

lution generated with 12 LPCCs, Figure 3 shows the per-

formance of this system for different run-time LPCC or-

ders. It is found that maximum performance is achieved at

12 LPCCs, and the performance drops when the run-time



Table 2. FPGA resources of different speech processes, the

total resource is calculated by counting two “hmmdec1-12”.

Process Resource (slice)

vq1-3 21819

autocc1-12 10272

hmmdec1-12 15948

Total slices used 63987

Total slices available 67584

Table 3. Performance comparison before and after un-

rolling.

Speed up
Used FPGA

resource

Without unrolling 4.7 14%

With multi-loop unrolling 10 94.7%

Improvement 212.8%

LPCC order is different from compile-time value, but the

proposed strategy can still provide a feasible system.

5. CONCLUSIONS

A static loop unrolling based task graph mapping/scheduling

technique is presented. It is capable of generating generic

mapping/scheduling solutions which do not require design-

ers to know the run-time conditions accurately. A perfor-

mance driven based strategy is proposed to find the best un-

rolling factor for each loop. Experimental results obtained

using a speech analysis system show that the proposed un-

rolling strategy outperforms an approach without unrolling

by 2.1 times, and a speed up of 10 times is achieved. The

more accurate the compile-time information about the run-

time conditions, the higher the performance; however, a fea-

sible solution can always be produced.
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