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The development of a bio-inspired image sensor that can match the functionality of the 

vertebrate retina in terms of image resolution, power dissipation and dynamic resolution 

demands an extremely challenging standard in terms of efficiency and performance [1, 2, 3, 4]. 

At present, functional biological image processing possesses extremely high temporal 

resolution by asynchronously optimizing the sampling rate of a scene but suffer from low spatial 

resolution, noise, and an inability to process low frequency content [5]. Regardless, the use of 

dynamic vision sensors that emulate biological retina behaviors are important in performing 

classification tasks using high-speed motion detection at low-power requirements [6, 7, 8]. The 

difficulty in pushing image sensor performance to meet the specifications of the retina lies in 

the biological complexities of the underlying neural networks. Therefore, a prerequisite for 

hardware mapping of biological vision systems is understanding the bioprocessing between 

various retina cells. Here, we present a biologically plausible cellular network retina simulator 

where light stimuli are accepted at the front-end array of photoreceptor cells, and pass through 

a system of nonlinear integral equations derived from experimental voltage- and current-clamp 

data used to calculate the response of each sequential retina cell. It was shown in [9, 10] that 

integrating the system improves performance when compared with conventional numerical 

solvers. We expect that by placing our simulator in the hands of interdisciplinary researchers, 

especially computational neuroscientists, mathematical scientists and machine learning 

practitioners, it will foster the development of more efficient representations of visual inputs in 

deep learning applications.  

 

Retinomorphic Processing 

The retina can be approximated into five levels of cellular layers through which incident light 

passes: the rod and cone photoreceptors (outer boundary of the retina), horizontal cells, bipolar 

cells, amacrine cells and ganglion cells (inner boundary). When light enters the eye, it 

encounters two types of photoreceptors: the rod cells (highly sensitive in photopic conditions 

and that enable color vision) which convert light into nerve signals [11] and the cone cells 

(sensitive in scotopic conitions and assist with vision in dimly lit scenes). In retina modeling 

the electromagnetic frequency of a photon is often ignored due to the significant complexity 



associated with measurement of spectral sensitivity in a photoreceptor mosaic, in conjunction 

with simulating a large-scale cellular network. In the RGB color space, this would triple the 

throughput of a system. However, with the development of techniques that significantly reduce 

the computational resources needed for spike-train generation such as pre-integration of 

compartmental retina models, we can demonstrate a real-time retinal mode that reduces 

simulation runtimes by up to 50% over equivalent state-of-the-art methods without 

compromising signal accuracy in using larger time steps. Notably, this model not only produces 

ganglionic cell spike-trains that are dependent upon the intensity and wavelength of incoming 

light, but also the intermediary action potentials and graded potentials produced by the electrical 

and chemical intra- and inter-cellular interactions.  

Biologically plausible models of image capture and processing seek to bridge the physical gap 

between sensing and computation. In doing so, advantages in comparison to traditional camera-

processor approaches manifest in the form of heightened parallelism, small chip size and low 

power dissipation, and high dynamic range [12], [13]. To achieve this standard of neuromorphic 

hardware implementation, there are several barriers to overcome. These include the lack of 

access to experimental data from the vertebrate retina, the difficulty of processing large-scale 

compartmental models without introducing simplified assumptions in real-time, and the limited 

interconnectivity in silicon across a 2D planar chip.  

In this work, we seek to address the issue of real-time processing without compromising 

accuracy. For the first time, we provide open-access to a retinal simulation platform for 

researchers at the end of this paper, to facilitate a wholly integrated real-time model of a 

measurable retinal network with adaptive parameters, including a variation of cell membrane 

capacitance, maximum conductance, reversal potential, ion channel selection, and 

electrical/chemical synaptic parameterization. The work conducted in this paper also introduces 

variations in spectral sensitivity between different types of photoreceptor cone cells. We seek 

to open up the frontiers for accessible and reproducible benchmarks in neuromorphic 

instrumentation for vision processing, in both individual and populations of neuronal 

measurements to provide a more in-depth insight into the role of the various physical, chemical 

and electrical properties of the retinal cellular network. We will first demonstrate the high-level 

architecture of our retinal measurement platform as depicted in Fig. 1 before looking at the 

constituent low-level compartmental blocks, and the resultant data procured from the retinal 

network.  



Fig. 1 Higher-level architecture of photocurrent signal processing and computation. 

 

Signal Processing and Computation Architecture 

With higher precision and greater parameterization comes slower processing. Computer vision 

algorithms are often implemented without regard to the computer architecture or hardware they 

are designed to run on, and so similar structures and principles should ideally exist between 

algorithm and hardware. With the construction of a large system of integral equations it 

becomes necessary to accelerate computational efficiency, where from a mathematical 

perspective, a system of ordinary differential equations (ODEs) and integral equations describe 

identical phenomena. However, from an algorithmic-hardware co-design analysis, three salient 

benefits arise:  

• Ability to solve the large system of nonlinear integral equations in real-time using small 

time-steps of sub-nanosecond order. 

• Reduced reliance on off-chip memory, as hardware implementation of derivatives 

require memory and a delay line, whereas our integral formulation only requires 

summations for correct implementation. 

• Biophysically accurate representation of the retina at a cellular level. 

The formulation of a conductance-based compartmental retinal model initiates at the first input 

layer of photoreceptor cells, passes through three hidden layers, and triggers the output ganglion 

cells which respond with a spike-train sent to the visual cortex for further processing and 

interpretation. The system of ODEs can be generically characterized by: 
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where 𝐶" is the membrane capacitance, V is the membrane potential, 𝐼9:+(𝑉) = 𝑔(t)(𝐸9:+ −

𝑉) is the synaptic current input, 𝐸9:+ is the reversal potential, and 𝐼)*+ is the sum of all ionic 

voltage and calcium-dependent ionic currents. Here, [Ca45] is the intracellular concentration of 

free calcium, 𝐼HI(𝑉) denotes all voltage-activated calcium currents, while G represents all other 

voltage and calcium-dependent cellular processes. The gating variable is denoted χ, and 

forward-backwards propagation rates are represented by 𝛼@  and 𝛽@ , respectively. While the 

complete and detailed system of equations, initial conditions, biasing and physical descriptions 

are subsumed within the high-level description, their details can be found in an online appendix 

with a link provided in the references [14]. 

The signal processing architecture of the integrated form of equations (1) – (3) is shown in Fig. 

1. The architecture provides a visual understanding of how the system of nonlinear integral 

equations behaves within a nonlinear time-invariant system (that is, the light input is the time-

varying component measured in the number of rhodopsin, Rh* in Fig. 2, and 

photoisomerization molecules activated per second).  

The computational mapping of a photocurrent signal from the input photoreceptor layer through 

to the ganglion cell output layer requires an input conductance g(t) that is weighted by the 

spectral sensitivity of the cone cell it comes into contact with. The resulting signal is passed to 

the primary voltage/ionic current evolution block where it is used to derive the synaptic current. 

The summation of currents and gating variables is fed to the total calcium current in a secondary 

block that describes the evolution of calcium concentration. The signals are combined and 

integrated to generate new values for membrane potential and calcium at the next time step ti+1. 

This formulates the high-level architecture for the retinal network. A sequential demonstration 

of the first two layers of photoreceptor (rod and cone) and bipolar cells is provided in Fig. 2. 

 

 

 



Fig. 2 Front-end simulation results of rod cell, RGB (LMS) cone cells, and bipolar for a given light stimulus. 

Here, g(t) is the input conductance of the bipolar cell ion channel, gmax is the maximum conductance, and Vpost(t) 

is the postsynaptic potential in contrast to the presynaptic potential Vpre from Fig. 1. 

 

Retinal Model 

Spectral Sensitivity 

Light incident on the retina is a mixture of different wavelengths, and at least three different 

subclasses of cone photoreceptor cells have been experimentally verified to be wavelength-

dependent. Each of these subclasses can be classified based on the wavelength sensitivity of the 

photopigment in its outer segment:  long-wavelength (L), middle-wavelength (M) and short-

wavelength (S) peak sensitive cone cells.  

The photoreceptor mosaic of varying spectral sensitivities is implemented in the proposed 

model as input dependent weighting coefficients, where normalized sensitivity is represented 

by weights ŜS, ŜM and ŜL that are approximate models of cone cell responses across the spectrum 

of visible wavelength, based on corneal measurements presented in [15]. These models were fit 

using least squares regression with the 5th order polynomial, which quantitatively match the 

precision of the rest of the model: 

ŜK = L
−1.3 × 10QR + 3.1 × 10QS𝜆U − 2.9 × 10QX𝜆X														
+1.3𝜆4 − 310𝜆 + 2.9 × 10U,														400 ≤ 𝜆 ≤ 530

0,																																																						otherwise
  (4) 

 

 



Ŝd = L
−0.099𝑧f + 0.24𝑧f − 0.4𝑧X + 0.94𝑧4						
−0.37𝑧 + 0.87,																		400 ≤ 𝜆 ≤ 530	
0,																																																						otherwise

  (5) 

Ŝi = j
0.12𝑦f + 0.21𝑦U − 0.55𝑦X − 0.88𝑦4						
+0.59𝑦 + 0.9,																		450 ≤ 𝜆 ≤ 620	
0,																																																						otherwise

  (6) 

where 𝜆  is wavelength in nanometres, 𝑧 = mQf.U×no=

pS
 and 𝑦 = mQf.f×no=

qf
. Another reason for 

using polynomial forms, more generally, is the simplicity of using artificial neural networks to 

encode polynomial functions, which becomes essential for deep learning applications and 

predictive retinal networks.  

The cone cell variations in spectral sensitivity demonstrate that the biological retina does not 

respond equally to all types of light, and does not have a uniform sensitivity across the visible 

spectrum. In addition to this, there is further variation across the photoreceptor mosaic (our 

field of view) to light intensity where the fovea is considered to be the centre. Therefore, the 

Westheimer linespread function can be used to capture the characteristics of polychromatic 

light more accurately: 

Ŝ = 0.47𝑒QX.Xs= + 0.53𝑒Qo.RX|s|, (7) 

which now introduces a dependence on not only photon wavelength but also on the position 

upon the photoreceptor array where the light impinges, where i is the position on the retina (on 

a 2-dimensional axis) specified in terms of minutes of visual angle from the fovea. We can 

calculate the different weights based on input wavelength 𝜆 and position on which light falls on 

the retina i for a short-wavelength peak sensitive cone cell by taking the root of (4), and 

multiplying it by (7), which has been graphically illustrated in Fig. 3. 

This is a near perfect fit of the benchmark data of spectral sensitivities across the photoreceptor 

mosaic in [16], and also demonstrates that peak sensitivity occurs at i = 0 for a wavelength of 

𝜆 = 440 nm. To qualitatively summarize the function of (4) – (7), the input light is weighted 

using our spectral sensitivity model based on the following three features: 

• whether light targets a L, M or S cone cell; 

• the wavelength of the incoming light, and 

• the visual angle of incoming light concerning the targeted cell.  



 

Fig. 3 Simulation of normalized spectral sensitivity as a function of light wavelength and the visual angle 
away from the targeted S-cone cell as per the proposed model. 

 

A Conductance-Based Compartmental Model of the Retina 

Thus far, we have elucidated the time-invariant architecture of our model, the wavelength and 

spatial-dependence on impinging light. The computational bottleneck of most retinal systems, 

however, lies in emulation of the high-dimensional spaces that much of the molecular activity 

within biological cells occurs at. With neural modeling, there are often occasions where, due to 

an absence of data for a specific cell in a species, one is required to adopt and build neural 

models whose ionic mechanisms are not from the same class, but from related organisms. The 

reality is that no complete dataset that wholly characterizes the retinal cellular network of a 

single animal exists. In light of this, we have procured a substantial collation of experimental 

data that describes ionic channels, membrane channel densities, and temporal synaptic 

dynamics for each cell in the retina and performed our own fitting on information that was not 

previously characterized, in our endeavour to build a unified model with correct biophysical 

properties for the vertebrate retina. 

 

 

 



Table 1 depicts the sources of all experimental data that make up the system of nonlinear ODEs 

from (1) – (3), which is subsequently computed as a system of a total of 272 nonlinear integral 

equations and parameters in Fig. 1. Some of these sources have utilized their own collations of 

various species in developing either their models or experimental data, in which case, these 

references have been grouped in accordance with color. Notably, the squid is the only species 

on the list which is not classified as posessing a vertebrate retina. However, the Hodgkin-

Huxley conductance-based model, while derived from the squid, can be extended to the 

vertebrate retina due to the likeness in the ionic mechanisms underlying the initiation and 

propagation of action potentials [17]. The parameterizable features of electrical and chemical 

synapses between neurons include the maximum conductance, the reversal potential, the slope 

in millivolts, and the time constant. The detailed references from Table 1 can be found in the 

appendix in addition to all equations and variables [14]. 

Table 1 – Feature collation for retinal modeling 
Species Function Literature 
Collated Bandpass filtering of rod photoreceptor network Kamiyama et al. (2009) 
Collated Ionic current in rod photoreceptor network Kamiyama et al. (1996) 
Salamander Voltage- and calcium-activated current of rod cell inner 

segment 
Bader et al. (1982) 

Lizard Calcium and calcium-dependent chloride currents in cone 
photoreceptor cells 

Maricq et al. (1988) 

Salamander Ionic channels of cone photoreceptors Barnes et al. (1989) 
Toad Phototransduction in rod cells Torre et al. (1990) 
Salamander The conductance of rod cells Baylor et al. (1986) 
Newt Phototransduction in rod cells Forti et al. (1989) 
Turtle Electrical responses of cone cells Baylor et al. (1974) 
Collated Ionic current in bipolar cells Usui et al. (1996) 
Goldfish Hyperpolarization of activated current in the cell body Kaneko et al. (1985) 
Goldfish Calcium current in the axon terminal Tachibana et al. (1991) 
Goldfish Ca-dependent chloride current in the axon terminal Tachibana et al. (1993) 
White bass Delayed rectifying potassium current in the cell body Lasater (1988) 
Axolotl GABA-induced current in the axon terminal Attwell et al. (1987) 
Axolotl Glutamate-induced current in the dendrite Attwell et al. (1987) 
Salamander Glutamate-induced current in the dendrite Nawy et al. (1990) 
Dogfish Glutamate-induced current in the dendrite Shiells et al. (1994) 
Collated Ionic channels of AII amacrine cell of the mammalian retina Smith et al. (1995) 
Rat Action potentials in Na+ and K+ channels of AII amacrine 

cells 
Boos et al. (1993) 

Cat Transient response in AII amacrine cell to light flashes Nelson (1982) 
Rabbit Transient response in AII amacrine cell to light flashes Dacheux et al. (1986) 
Salamander Impulse encoding mechanisms of ganglion cells Fohlmeister et al. (1997) 
Salamander Repetitive firing of ganglion cells Fohlmeister et al. (1990) 
Squid* Electric current flow through the surface membrane of a 

giant nerve fibre 
Hodgkin & Huxley (1952) 

Collated Gap junctions and ih conductance in the enhancement of the 
dynamic range 

Publio et al. (2009) 

Salamander Reciprocal modulation of calcium dynamics at rod and cone 
photoreceptor synapses by nitric oxide 

Kourennyi et al. (2004) 



 

Fig. 4 Photoreceptor stimulation to a spatially uniform pulse of light for a duration of 20 ms, shown across 
varying timescales. This is the equivalent of 100 Rhodopsin molecules activated per second (Rh*/sec) for rod cells, 
and 50,000 photoisomerizations per cone cell per second. For simplicity, only the S-cone cell was triggered. The 
ganglion membrane potential graph in (XV) includes an overlay of spike trains produced by intact cell recordings 
(current clamp) in the tiger salamander retina [19]. Note that amacrine cell simulations are shown in the rod cell 
pathway in plots VI and VII. Lateral connections via electrical synapses are modeled between the input 
photoreceptors. Horizontal cells facilitate signal transmission across different pathways, though have been omitted 
from these simulations to focus on the behavior of a pathway of a single event. 

 



Simulation Platform 

The simulation platform was developed in the C language, the user interface in Microsoft 

Foundation Class, and graph plotting using Kst and is recommended for use on Windows 10. 

Full-scale network simulation is depicted in Fig. 4 with decoupled rod and cone cell pathways, 

and the coupled pathway which exhibits horizontal lateral connections through electrical 

synapses, in response to a spatially uniform pulse of light that is activated for a duration of 20 

ms. Importantly, the simulation was conducted in real-time at a biological time scale, and all 

listed measurements in Fig. 4 present a new method to attain benchmarks for vertebrate retina 

signal extraction under a flexible user-configurable input.  

Table 2 – Execution Time as a Function of Time Steps 
 

Time step (s) 

Normalized Execution Time 

S-Cone Pathway 

Midpoint RK4 ODE15s 

1.00×10-1 2.33 1.00 1.00 

1.00×10-2 1.67 2.67 168 

1.00×10-3 16.0 20.0 183.3 

1.00×10-4 180.7 231.0 375.3 

1.00×10-5 1,182 1,738 2,139 

1.00×10-6 11,150 17,194 21,184 

 

Time step (s) 

Normalized Execution Time 

Rod Pathway 

Midpoint RK4 ODE15s 

1.00×10-1 3.25 1.00 1.00 

1.00×10-2 1.5 2.00 1,100 

1.00×10-3 13.3 16.5 1,190 

1.00×10-4 139.8 186.3 1,268 

1.00×10-5 1,044 1,518 2,038 

1.00×10-6 10,049 14,899 15,108 

 

 

 

 

 

 



Fig. 5 Absolute error over biological time for the S-cone cell pathway. In all cases, cells display a maximum 
error at the same time the stimulus is applied for 20 ms.  

 

The light input is first passed through a weighted conditional switch in Fig. 1 as determined by 

the wavelength of light input, and the type of cone cell. The polynomial/linespread response 

(demonstrated in Fig. 3 under a specific test case) is processed using the integral form of (1) – 

(3), through repeated cycles of iterating time steps until the solution converges. Table 2 provides 

a comparative analysis of speed between various numerical solvers, namely the classical fourth- 

order Runge-Kutta (RK4) method, the more atypical ODE15s solver, and the midpoint methods 

– the latter two being our points of comparison for a conventional system of ODEs. In addition 

to collectively providing the fundamental basis for our retinal model, the studies undertaken in 

Table 2 are used as a basis of comparison for a qualitative verification of accuracy, while a 

quantitative analysis is undertaken in Fig. 5. To quantify the accuracy of the proposed model, 

the benchmark used was the conventional ODE15s solver from the MATLAB ODE suite at a 

very small time step of 1.00×10-9 s. The error for the ganglion membrane potential and the 

calcium concentration accumulates over time, which arises due to slight misalignments between 

spike patterns leading to an overstatement of absolute error. When the data is manually time-

scaled such that peaks of spikes match, the error is bounded and ceases to accumulate.   

A range of other conventional ODE solvers were tested (namely, ODE45, ODE23s and 

ODE113). ODE45 and ODE113 are well-suited for solving non-stiff systems and require 

unreasonably low time steps for stable and accurate solutions. This significantly increased 

computation time. ODE15s and ODE 23s are both appropriate for stiff systems, but ODE23s 

tends to only operate effectively with crude error tolerances. As such, ODE15s was selected as 

 



both fastest and most accurate of all the solvers, and we selected only the best performing 

method as the benchmark for comparison against our proposed system of nonlinear integral 

equations. Ultimately, the RK4 method is consistently faster than the ODE solver for fixed time 

steps demonstrating the feasibility of generating real-time predictive retinal measurements. 

The values in Table 2 have been normalized to the value of the ODE15s execution time with a 

time step of 1.00×10-1 s. One discrepancy in the results has been highlighted and occurs with 

the midpoint method which is computationally slower at a time step of 1.00×10-1s than 1.00×10-

2 s. This is explained as a result of the time step simply being too large at 1.00×10-1 s to 

characterize the full spike at the spike-train output of the ganglion cell, which occurs on the 

order of milliseconds, and can be verified by reference to the ganglion cell simulation shown 

by curve (XV) in Fig. 4, which depicts both decoupled and coupled retinal pathways of the 

ganglion membrane potential in millivolts.  

Conclusions 

A biologically plausible integral based simulation platform is described in this paper. The 

simulator is expected to both provide a benchmark for computational neuroscientists who need 

fast and accurate predictive networks of the retina, and to also assist fundamental studies in 

mathematics and biomedical sciences that are exploring how the retina is processing 

information to inspire new ways to introduce sparsity into computer vision. While we are still 

some distance from a perfect one-to-one model of the retina, we anticipate this simulation 

platform will help accelerate those studies in order to gain a more in-depth insight into the roles 

of constituent cells and their associated parameters, and how they may leverage the use of 

spiking neural networks in assisting other maturing deep learning tasks. Longer-term research 

motivations can make use of biological real-time simulation for use in bio-hybrid 

experimentation. The simulator is available for download at the following link: 

https://github.com/sbbaek-cbnu/artificial_retina_simulator_github. 
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