
FPGA Implementation of N-BEATS for Time Series
Forecasting using Block Minifloat Arithmetic

Wenjie Zhou, Haoyan Qi, David Boland and Philip H.W. Leong

Computer Engineering Laboratory
School of Electrical and Information Engineering

The University of Sydney, Australia 2006
Email: {wenjie.zhou, haoyan.qi, david.boland, philip.leong}@sydney.edu.au

Abstract—The block minifloat (BM) number format uses an 8-
bit floating point format with additional shared exponent bias to
enable low-precision representation with large dynamic range.
While it has been shown that the BM format can support
low-precision training of convolutional neural networks such as
ResNet on ImageNet at precisions down to 6 bits, its applicability
to inference-only applications has not been studied. We present
a BM implementation of N-BEATS, a deep neural architecture
for univariate time series forecasting. N-BEATS utilises residual
and fully connected (FC) blocks to achieve high accuracy. It was
found that 8-bit BM had similar area and speed as 8-bit integer
arithmetic with NBEATS accuracy similar to 16-bit floating point.

Index Terms—Block minifloat, Minifloat, Neural network in-
ference

I. INTRODUCTION

Machine learning inference using low-precision arithmetic
has been a heavily researched topic as applications of inference
abound, and reducing precision requirements without greatly
sacrificing accuracy can enable new applications where con-
ventional inference implementations are too computationally
expensive. Field programmable gate arrays (FPGAs) are an
excellent platform for this type of application, particularly for
edge devices where size, weight and power (SWaP) are design
considerations.

Although many deep neural network (DNN) training and
inference accelerators use 16 or 32 bit floating point encoding
(such as IEEE-754 single-precision, half-precision [1], or
Google Brain Floating-Point 16 bits (BFLOAT16) [2]), lower
precision weights and activations offer significant implemen-
tation benefits including reduced memory bandwidth, memory
requirements, and implementation area. One popular scheme
for DNN accelerators design is fixed-point arithmetic which
requires significantly fewer hardware resources than floating-
point [3], [4]. However, one problem for fixed-point implemen-
tations is a small dynamic range, leading to reduced accuracy.
Quantization aware training techniques have been proposed
to address this problem [5]–[7], and commercial quantization-
aware training products are available from vendors such as
Advanced Micro Devices (AMD) and Intel (e.g. [8]).

There has been recent interest in low-precision floating-
point data formats for the training of DNNs. These utilise
8, or even 6 bit, floating-point representations and are able

to train neural networks from scratch [9], [10]. Minifloat
uses a standard floating point representation of exponent
and mantissa with small word lengths, whereas BM has
an additional shared block exponent to expand its dynamic
range. Little research has been conducted on inference using
these schemes but compared to a conventional floating-point
fused multiply accumulate (FMA), BM is computationally less
expensive, particularly for floating-point formats with small
exponent lengths as large shifters for alignment are avoided.
For example, 32-bit integer adders are approximately 10×
smaller and 4× more energy efficient than 16-bit floating-point
(FP16) units [11].

In this paper, we explore the applicability of BM to
time series prediction using the NBEATS algorithm [12] and
present a BM-based inference accelerator design. NBEATS
is a DNN for time series prediction which, at the time of
publication, achieved 3% improvement over the winner of the
M4 forecasting competition. The main contributions of this
work can be summarised as:

• The first implementation of an FPGA-based accelerator
using BM arithmetic.

• We present a novel architecture for acceleration of
NBEATS based on BM arithmetic and a systolic datapath.

• The accuracy and area trade-offs between BM, floating-
point and fixed-point are explored. It is found that 8-
bit BM achieves area and performance similar an 8-
bit signed integer (INT8) datapath with accuracy on
NBEATS similar to FP16.

The remainder of this paper is organised as follows. In
Section II we review the BM number format and NBEATS. In
Section III we present the architecture of our BM accelerator.
Results are presented in Section IV and finally, conclusions
drawn in Section V.

II. BACKGROUND

A. BM data format

The real value of a f⟨e,m⟩ format minifloat is given by
Equation 1. This includes support for normal and denormalised

(denorm) numbers, but saturating arithmetic is employed in-
stead of IEEE-754 overflow and underflow, Inf and NaN.

f(s, E,M) =

{
S × 21−β<e>

E = 0 (denorm)
S × 2E−β<e>

E ̸= 0 (normal)
(1)

where e is the number of exponent bits, m the number of
mantissa bits, E and M are the unsigned integer exponent and
mantissa values, s is the sign bit, and β<e> = 2e − 1 is
the exponent bias for the binary-offset encoding scheme. Its
significand is:

S = g(s,m) =

{
(−1)s × (M ∗ 2−m) E = 0 (denorm)
(−1)s × (1 +M ∗ 2−m) E ̸= 0 (normal)

(2)
We also define an inverse which extracts the component

sign, exponent and mantissa values from a minifloat value x:

(s, E,M) = f−1(x) (3)

Similar to block floating-point (BFP) [13], the BM for-
mat [10], BM⟨e,m⟩, is used to describe a tensor X , where
each element ri ∈ X has a shared exponent bias βshare:

ri = f(si, Ei,Mi)× 2−βshare (4)

As an example, the BM⟨2, 5⟩ format (sometimes written as
BM8⟨2, 5⟩ to indicate the word length), with a shared bias of
0, has an exponent range of [0,3] and mantissa range of [0,31].

B. NBEATS network
Figure 1 illustrates the NBEATS architecture. It is composed

from a number of NBEATS blocks, each having 4 FC layers
with rectified linear unit (ReLu) activation, split into backcast
and forecast branches. Each NBEATS block is organised in
a doubly residual manner as illustrated, where for Block 2-N
the residual activation is the difference between the previous
block’s input and ackcast output. All forecast outputs are
summed to form the prediction output.

III. BM INFERENCE ACCELERATOR ARCHITECTURE

A. BM general matrix multiplication (GEMM) computation
The computational bottleneck of NBEATS lies in the com-

putation of the FC layers, which translates into tensor multi-
plication, implemented as a sequence of BM matrix multipli-
cations. The strategy for its acceleration is to use an efficient
GEMM core which computes the inner product between each
row and column of the input matrices, A and B (with shared
exponents βA and βB) to produce the output matrix C. For
the BM data format, each element of C is the inner product
cij =

∑
k f(saik

,Maik
, Eaik

)f(sbkj
,Mbkj

, Ebkj
)2βA+βB

The computation of minifloat GEMM is done in three steps:
computation of the inner-product, normalization of partial sum
to BM format, and alignment of the shared exponent bias. The
shared exponent bias of the new matrix is βshare = βA+βB .

For the inner product computation, operands a and b (in
BM⟨ea,ma⟩ and BM⟨eb,mb⟩ format) are multiplied as:

Smul = Sa ∗ Sb;

Emul = Ea + Eb

(5)

Fig. 1. NBEATS neural network model. The left-hand side shows the
NBEATS block. The input of each block goes first to the 4 layer FC stack,
and then the FC stack output activation goes to the backcast branch and
forecast branch. The backcast output size is same as the block input size, and
the forecast output size is same as the model output size. The right-hand side
shows the NBEATS model.A series of NBEATS blocks are connected to each
other. The input of each NBEATS block is the differential value of the output
and the input from the previous NBEATS block, and the model output is the
sum of all forecast values of the NBEATS block.

Smul and Emul are the significand and exponent values of the
minifloat multiplication result. These numbers are combined
and accumulated with the partial sum to form the signed
integer inner product Psum:

Psum = Psum + Smul << Emul. (6)

The inner product computation just described is imple-
mented using an integer Kulisch accumulator with sufficient
precision for error free accumulation [10], [14]. Its size
Kadd and shifter range Kshift is given in Equation 7. An
extra WI bits are assigned to avoid overflow over multiple
accumulations. For the BM data format, the minifloat exponent
value is small, which limits the required size of the adder.

Kshift = 2ea + 2eb

Kadd = 1 + 2ea + 2eb + (1 +ma + 1 +mb) +WI
(7)

The GEMM produces a block of N values, P [N], which are
converted to minifloats using the BM normalization function
(Algorithm 1). This involves transforming the accumulator
outputs to a normalized C⟨enorm,m⟩ number with KulToBM
and then converting into A⟨e,m⟩ format with ExpAlign:

A, β′
share = ExpAlign(KulToBM(P), βshare) (8)

where enorm ≥ ⌈log2 Kadd⌉ In KulToBM, leading zeros are
determined using the count leading zero function CLZ, and
denormal, normal, underflow cases detected by comparisons
with the boundary values defined below:

Cntdenorm = WI + (2e+1 − β<e+1> + β<e> − 1)

Cntunderflow = Cntdenorm +m
(9)

Note that the result is in an intermediate C⟨enorm,m⟩
format. Exponent alignment back to the original BM format

is done using ExpAlign in Algorithm 1 where the shared
exponent bias is adjusted and normalized to A⟨e,m⟩ format.

Algorithm 1: Kulisch adder output integer to
BM⟨e,m⟩ conversion

Function KulToBM(P [N])
// Normalization (integer to C⟨enorm,m⟩)
for i← 0 to N − 1 do

s←(P [i] > 0) ? 0 : 1; // Sign bit
Z ← CLZ(|P [i]|); // Leading zeros
if Z ≥ Cntdenorm and Z < Cntunderflow

then
C[i]← f(s, 0, |P [i]| << (Cntdenorm− 1));

// Denorm
else if Z ≥ Cntunderflow then

C[i]← f(s, 0, 1); // Underflow
else

E ← (2e+1−1−β<e+1>)+WI−Z+β<e>;
C[i]← f(s, E, |P [i]| << Z); // Normal

Emax ← maxexp(C); // Max exponent in block
return C, Emax

Function ExpAlign(C[N], Emax, βshare)
// Exponent Alignment (C⟨enorm,m⟩ −→ A⟨e,m⟩)
β′
share ← βshare +max(Emax − (2e − 1), 0);

for i← 0 to N − 1 do
s, E,M ← f−1(C[i]);
E ← E −max(Emax − (2e − 1), 0);
if E ≤ 0 and E > −m then

A[i]← f(s, 0,M >> (1− E)); // Denorm
else if E ≤ −m then

A[i]← f(s, 0, 1); // Underflow
else

A[i]← f(s, E,M); // Normal

return A, β′
share;

The GEMM implementation is based on
de Fine Licht et al. [15], modified to support BM. As
illustrated in Figure 2, it is a 1D weight-stationary systolic
array with compile-time configurable size. The configuration
used is 32 processing elements (PEs) each with 16 parallel
multiply accumulate (MAC) units, and 512 memory tile size
for both input matrices. It supports matrix multiplication of
Ngemm × Ngemm blocks where Ngemm = 512. The input
data are streamed through the PEs, with the width of this bus
equal to the MAC per PE number (i.e. 16W , where W is
8 or 16-bits for BM8 and FP16). Data transfers are double
buffered and will flow to the following GEMM block without
interrupting computation.

As shown in Figure 2, the GEMM block receives BM data
as input (e.g. weights and input feature map (IFM) values), and
each PEs performs multiplication and Kulisch accumulation.
Intermediate results are stored in the Kul buffer. After the
GEMM computation finishes, the result will be transformed
to a BM format through KulToBM and the max exponent will

Fig. 2. Systolic GEMM block used for the NBEATS Inference Accelerator

be computed through maxexp.

B. BM Vector Addition

The BM addition is also conducted in fixed-point format
and computed as follows:

a± b =

{
(Sa2

Ea ± Sb2
Eb ∗ 2βB−βA) ∗ 2βA , βA ≥ βB

(Sa2
Ea ∗ 2βA−βB ± Sb2

Eb) ∗ 2βB , βA < βB

(10)

where Sa, Sb are the significands of a and b (Equation 2). The
shared exponent result used is the larger of βA and βB :

βshare = max(βA, βB) (11)

Algorithm 2: BM Vector Addition

Function BMVecAdd(A[N], B[N], βA, βB)
ebias← |βA − βB |;
for i← 0 to N − 1 do

sa, Ea,Ma ← f−1(a[i]);
sb, Eb,Mb ← f−1(b[i]);
Sa ← g(sa,Ma); // Equation 2
Sb ← g(sb,Mb);
Aisnorm ← (Ea == 0) ? 0 : 1;
Bisnorm ← (Eb == 0) ? 0 : 1;
if βA >= βB then

Ka ← Ea −Aisnorm;
Kb ← Eb − ebias−Bisnorm;

else
Ka ← Ea − ebias−Aisnorm;
Kb ← Eb −Bisnorm;

t← Sa[i] << Ka + Sb[i] << Kb;
R[i]← KulToBM

′
(t);

β′
share ← max(βA, βB);

return R, β′
share;

The BM vector addition pseudocode is given in Algo-
rithm 2, with inputs and outputs being in BM format. The
significands are first extracted. Next Ka and Kb are computed.
These are the shifts required for alignment considering their
exponents, denormalisation and shared exponents. The sum

Fig. 3. NBEATS Inference Accelerator.

is then computed in t. Finally, t is converted into BM for-
mat using KulToBM’ (same as KulToBM with output format
BM⟨e,m⟩ instead of BM⟨enorm,m⟩) and returned along
with the new shared exponent.

C. NBEATS Inference Accelerator

The system-level architecture of our NBEATS inference
accelerator is illustrated in Figure 3. The weight, input dataset,
and output tensors are initially stored in double data rate
(DDR) memory. The IFM, output feature map (OFM) of
each FC layer are buffers on the FPGA. The intermediate
buffer (IM) buffer stores some intermediate results, including
the backcast output, forecast sum, and the FC stack output.
BMGEMM+KulToBM is used to compute the FC layers
and combines the GEMM block with integer outputs and
KulToBM so that inputs and outputs are in BM format. The
BMVecAdd block is used for computing residual inputs to
each NBEATS block and the final Prediction Output.

During inference computation, a batch of input data are
fetched from DDR and written to the IM buffer. The same data
are transferred to the IFM buffer to serve as input activations.
Off-chip weights are passed to the BMGEMM+KulToBM
block to compute each FC layer and the result placed in OFM.
The OFM result is then aligned, ReLu applied and written to
IFM. The backcast residual computation and Prediction Output
forecast sum are computed from the intermediate data in the
IFM and written to IM.

The activation and weights of each layer are organised in
separate BM⟨e,m⟩ blocks. Each weight layer has a shared
exponent bias, as does each activation layer.

IV. RESULTS

A. Experimental Configuration

We evaluated the performance of our implementation on
Xilinx Alveo U250 accelerator card with the Virtex Ultra-
Scale+ XCU250-L2FIGD2104E FPGA and 4 DDR memories.
The inference accelerator is written in Vitis HLS 2020.2 and
implemented using Vivado 2021.2 with target frequency of
300 MHz. The BM data representation and computations, in-
cluding Kulisch accumulation, conversion and vector addition,
are implemented using the HLS ap int or ap uint data types.

We use the model architecture and benchmarks from [12]
with parameters detailed in Table I. The model used Mblk=30
NBEATS blocks, with the weight matrix Ngemm × Ngemm

being 512 × 512 for all fully connected layers. Input data is
arranged as a 2D array of dimension B × Hlookback where

TABLE I
NBEATS EXPERIMENT MODEL CONFIGURATIONS

Yearly Quarterly Monthly Daily
Hforward 6 8 18 14
Hlookback 12 16 36 28
dim(θf) 18 24 54 42
dim(θb) 18 24 54 42
Samples 22850 64144 136603 187930

TABLE II
NBEATS ACCURACY (SMAPE LOSS) COMPARISON ACROSS BM8,

INT8, FP16

Yearly Quarterly Monthly Daily
FP32 13.462 11.992 11.278 3.869
FP16 13.454 11.986 11.273 3.868
INT8 19.661 18.713 15.279 9.489
BM8+round nearest 14.780 13.548 11.972 4.675

the batch size is B = 512 and a forecast horizon Hforward

is 6, 8, 18, 14 for each seasonal pattern. The backcast length
is Hlookback = 2Hforward. Experiments include training and
validation on the M4 benchmark of seasonal patterns, i.e. M4-
Yearly, M4-Quarterly, M4-Monthly and M4-Daily. The other
patterns, i.e. M4-Weekly, M4-Hourly, are discarded due to the
limited number of samples available in the original dataset.

For our hardware implementation, we maintain the same
input data size configuration as Table I. To match the GEMM
size, inputs, θb, θf are zero padded to Ngemm. Both weight and
input data are stored in off-chip DDR memory encoded with
BM8⟨2, 5⟩ data type, and the IFM data type is BM8⟨2, 5⟩,
the OFM data type is BM12⟨6, 5⟩. The Kulisch accumulator
length Kadd = 25, which is derived from Equation 7 with
WI = 4,ma = mb = 5, ea = eb = 2. All the shared
exponents are placed in on-chip buffers and encoded using
INT8.

B. Accuracy and Performance
Table II shows the symmetric mean absolute percentage er-

ror (sMAPE) for various data types using the Yearly, Quarterly,
Daily datasets from the M4 benchmark. This experiment was
conducted using post training static quantization [16] with
BM8 being a significant improvement on INT8 and close FP16
accuracy.

Table III compares the hardware resource and power con-
sumption of individual multipliers and adders for the different
data types. All of the designs are synthesized from C. It can
be seen that the BM8 area and power consumption is close to
INT8, and much smaller than FP16.

Table IV shows the NBEATS accelerator resource utili-
sation, with the percentage being that of the total FPGA

TABLE III
MAC UNIT RESOURCE UTILISATION AND POWER CONSUMPTION ACROSS

BM8, FP16, INT8

LUT DSP FF Power
FP16 multiply 44 2 34 1.582W
FP16 add 108 2 34 2.5W
BM8 multiply 47 0 0 0.524W
BM8 add 24 1 0 1.047W
INT8 multiply 35 0 0 0.328W
INT8 add 8 0 0 0.117W

TABLE IV
NBEATS INFERENCE ACCELERATOR RESOURCE CONSUMPTION USING

BM8, INT8, FP16

LUT REG BRAM URAM DSP
BM8 38131 50762 373 23 192

2.45% 1.59% 15.67% 1.8% 1.56%
INT8 27112 38418 439 16 512

1.74% 1.2% 18.45% 1.25% 4.17%
FP16 119246 157588 1019 0 2048

7.66% 4.94% 42.82% 0 16.68%

TABLE V
NBEATS INFERENCE ACCELERATOR PERFORMANCE AND POWER

CONSUMPTION USING BM8, INT8, FP16

Frequency Latency Peak Performance Power
BM8 300MHz 0.232s 277 GOPS 21.44W
INT8 300MHz 0.228s 282 GOPS 21.97W
FP16 200MHz 0.354s 182 GOPS 22.674W

resources. Table V shows peak performance which is achieved
when inputs, θb, θf are divisible by Ngemm. The BM8 and
INT8 inference accelerator can operate at 300 MHz frequency,
but the FP16 accelerator can only satisfy a 200 MHz timing
constraint. As a result, the BM8 design can achieve 277 GOPS
performance which is similar to INT8 and significantly better
than the FP16 design. The total operations can be estimated
by Equation 12 with 2Mblk accounting for the number of
operations per MAC and the number of NBEATS blocks. The
first term in braces accounts for the 3 FC layers; the next term
for the FC layer input, backcast and forecast branches; and the
final term corresponds to the last 2 FC layers for the backcast
and forecast. The computation for forecast sum and backcast
residual is small and hence omitted in Equation 12. For the
parameters in Table I, performance (Op/Oppeak) varies from
38.7% to 41.2% of the peak, where Oppeak is achieved when
Hforward = Hloopback = Ngemm.

Op ≈ 2Mblk{3N3
gemm +N2

gemm(2Hforward + 3Hlookback)

+BNgemm(Hforward +Hlookback)
2}

(12)

The power in Table V is the total on-chip power. All three
implementations are configured with two DDR bank with one
bank for input/output and the other for weight. The power
consumption of BM8 and INT8 is slightly better than FP16.
Using a single DDR bank results in the same performance but
decreases power consumption by 11%.

V. CONCLUSION

We presented an HLS C library for the implementation of
matrix multiplication using BM arithmetic. This was used to
implement an FPGA-based NBEATS accelerator which can
achieves a peak performance of 277 GOPS on a Xilinx Alveo
U250 board. The performance in terms of power, area and
throughput is similar to INT8 (282 GOPS) with accuracy
similar to FP16 (182 GOPS).

NBEATS acceleration is ideally suited to acceleration via
a GEMM accelerator because its computational bottleneck
are fully connected layers. In future work we will explore

inference and training using BM arithmetic with other deep
neural networks.

ACKNOWLEDGMENT

This work was supported in part by AMD under the Het-
erogeneous Accelerated Compute Clusters (HACC) program
(formerly known as the XACC program - Xilinx Adaptive
Compute Cluster program).

REFERENCES

[1] IEEE standard for floating-point arithmetic. IEEE Std 754-2019 (Revi-
sion of IEEE 754-2008), pages 1–84, 2019.

[2] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,
Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In OSDI, volume 16, pages 265–283, 2016.

[3] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,
Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, et al. Going deeper
with embedded FPGA platform for convolutional neural network. In
Proceedings of the 2016 ACM/SIGDA international symposium on field-
programmable gate arrays, pages 26–35, 2016.

[4] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin
Li, Dongliang Xie, Hong Luo, Song Yao, Yu Wang, et al. ESE:
Efficient speech recognition engine with sparse LSTM on FPGA. In
Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, pages 75–84, 2017.

[5] Kaiyuan Guo, Lingzhi Sui, Jiantao Qiu, Jincheng Yu, Junbin Wang, Song
Yao, Song Han, Yu Wang, and Huazhong Yang. Angel-eye: A complete
design flow for mapping cnn onto embedded FPGA. IEEE transactions
on computer-aided design of integrated circuits and systems, 37(1):35–
47, 2017.

[6] Wenlin Chen, James Wilson, Stephen Tyree, Kilian Weinberger, and
Yixin Chen. Compressing neural networks with the hashing trick.
In International conference on machine learning, pages 2285–2294.
PMLR, 2015.

[7] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2704–2713, 2018.

[8] Convolutional neural network with INT4 optimization on Xilinx devices.
Xilinx White Paper, 2020.

[9] Naigang Wang, Jungwook Choi, Daniel Brand, Chia-Yu Chen, and
Kailash Gopalakrishnan. Training deep neural networks with 8-bit
floating point numbers. Advances in neural information processing
systems, 31, 2018.

[10] Sean Fox, Seyedramin Rasoulinezhad, Julian Faraone, Philip Leong,
et al. A block minifloat representation for training deep neural networks.
In International Conference on Learning Representations, 2020.

[11] William J Dally. High performance hardware for machine learning,
2015. https://media.nips.cc/Conferences/2015/tutorialslides/Dally-NIPS-
Tutorial-2015.pdf.

[12] Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua
Bengio. N-beats: Neural basis expansion analysis for interpretable
time series forecasting. In International Conference on Learning
Representations, 2019.

[13] David Elam and Cesar Lovescu. A block floating point implementation
for an n-point fft on the tms320c55x dsp. Texas Instruments Application
Report, 2003.

[14] Ulrich W Kulisch and Willard L Miranker. Computer arithmetic in
theory and practice. Academic press, 2014.

[15] Johannes de Fine Licht, Grzegorz Kwasniewski, and Torsten Hoefler.
Flexible communication avoiding matrix multiplication on FPGA with
high-level synthesis. In The 2020 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays (FPGA’20), 2020.

[16] Introduction to quantization on pytorch. https://pytorch.org/blog/
introduction-to-quantization-on-pytorch/.

https://pytorch.org/blog/introduction-to-quantization-on-pytorch/
https://pytorch.org/blog/introduction-to-quantization-on-pytorch/

	Introduction
	Background
	BM data format
	NBEATS network

	BM inference accelerator architecture
	BM GEMM computation
	BM Vector Addition
	NBEATS Inference Accelerator

	Results
	Experimental Configuration
	Accuracy and Performance

	Conclusion
	References

