
A FPGA based Forth microprocessor

P. H. W. Leong, P. K. Tsang and T. K. Lee

Department of Computer Science and Engineering

The Chinese University of Hong Kong

Shatin, N.T. Hong Kong

Systems which employ a microprocessor together
with an application speci�c FPGA based coproces-
sor are common today. These applications can re-
duce power consumption and system costs by incor-
porating the microprocessor in the FPGA. For such
applications, a microprocessor which has good per-
formance, occupies a minimal amount of FPGA re-
sources, has a good high level language software de-
velopment environment and good code density is de-
sirable. In this paper a 16 bit FPGA based micro-
processor, called MSL16, optimised for such applica-
tions is described. MSL16 utilises a stack architecture
with each instruction occupying only 4 bits, leading
to a small instruction set, simple datapath and con-
trol, and high code density. MSL16 was speci�cally
designed to e�ciently execute the programming lan-
guage \Forth". The Forth language has the desirable
features of portability and high code density, and it is
well suited to control, DSP, real{time and embedded
applications.

The architecture for MSL16 is similar to that of
the MuP21 [2]. The MuP21 is a 20 bit CPU which
has 25 5{bit instructions and implemented in 1.2 mi-
cron CMOS process, uses 7000 CMOS transistors and
has a peak execution rate of 100 MIPS. Compared
with the MuP21, the MSL16 architecture has 16 4{
bit instructions, and when implemented using a Xilinx
Inc, 4000 series FPGA, occupies 175 con�gurable logic
blocks (CLBs) at a peak clock frequency of 33 MHz
on a 4006E{1 device (i.e. a peak execution rate of 33
MIPS).

The datapath of MSL16 is shown in Figure 1.
MSL16 is a 2 stack machine with 16 bit data and mem-
ory buses. The data stack is used for temporary vari-
able storage and subroutine parameter passing, and
the return stack is used mainly to hold subroutine re-
turn addresses. The data and return stack are im-
plemented internally on the FPGA which allows them
to be accessed in parallel with instruction fetches on
the memory bus. A two stage FETCH/EXECUTE
pipeline is employed. Instructions involving a mem-

ory reference (@ and !), change the
ow of execution,
(CALL and GOTO) and SWAP take two cycles and
the remaining instructions are single cycle. The main
components in the datapath of MSL16 are a 16 deep
data stack (DS) for temporary variables and subrou-
tine parameters; the T register which holds the very
top element of the stack so that the top two stack el-
ements are available to the ALU simultaneously; a 16
deep return stack (RS) to store subroutine return ad-
dresses; an instruction register (IR) which holds the
four 4-bit instructions to be executed; a PC (Program
Counter) which stores the address of the next instruc-
tion; an IR (Instruction Register) which stores the ad-
dress of the next instruction; and an ALU which takes
operands from T and the top element of either DS or
RS and returns the result to T.

Excepting the CALL instruction, MSL16 instruc-
tions (see Table 1) are encoded with 4 bits, allowing
four instructions to be packed into a 16 bit word. A
CALL instruction is recognised by the most signi�cant
bit of the IR being set, the remaining 15 bits forming
the address. A consequence of this implementation of
the CALL instruction is that the �rst slot is restricted
to those instructions which has the high bit low (see
top part of Figure 1), namely those with opcodes 0
to 7. The addition of a \SPECIAL" instruction which
retrieves its opcode from the stack would enable the in-
struction set to be extended to any size, although obvi-
ously a performance penalty would be experienced for
such instructions. A 16{bit instruction fetch obtains
4 instructions, reducing the required memory band-
width and overall system power consumption. All of
the instructions with the exception of CALL and LIT
expect their operands to be on the stack. LIT expects
its operands to be the remaining part of the IR. Thus
if the LIT appears in the �rst slot of the IR, the re-
maining 12 bit constant of the IR is sign extended and
pushed onto the stack; if the LIT is in the third slot,
the remaining 4 bit constant is used. This feature im-
proves code density since pushing small constants such
as 0, -1 and 1 is reasonably common.

D S

R S

dspop

dspush

rspop

rspush

dsin

rsin

ALU

dsout

rsout

t

MUX

MUX

M
U

X

M
U

X
M

U
X

Sign Ext

Ma in Memory
address

P C

IR

14 2

w
r

data

w
r

inst

co
nt

ro
l u

ni
t

M
U

X

4x
4

4

MUX
+1+4

rd

F IRST
SLOT

FOURTH
SLOT

THIRD
SLOT

SECOND
SLOT

034781215

1 CALL ADDRESS
15 14 0

any 4-bi t
instruct ion

≤0 opcode<8
(restr icted set of 4-bit

instruct ion)

Figure 1: The datapath and instruction format of
MSL16.

Opcode Instruction Action
0 NOP no operation
1 AND T (T AND DS, pop DS
2 XOR T (T XOR DS, pop DS
3 + T (T + DS, pop DS
4 0= T (-1 if (T=0) else T (0
5 LIT push T to DS and load

a literal value to T
6 2/ T (T / 2
7 - T (DS � T, pop DS
8 DUP push T to DS
9 DROP pop DS
10 GOTO Jump to T if T 6= 0
11 R> pop T to DS, pop RS to T
12 >R pop T to RS, pop DS to T
13 @ LOAD mem[T] to T
14 ! STORE T to mem[ds]
15 SWAP Swap T with DS
MSB=1 CALL PUSH PC to RS, jump to T

Table 1: The MSL16 instruction set

In the current implementation the memory speed
is assumed to be the same as the processor's cycle
time (33 MHz). A version in which the memory is 4
times slower than the processor's clock rate has also
been developed, allowing either higher clock speeds
or slower memory devices. A disadvantage of running
the processor 4 times faster than memory is that when
a memory operation such as a load, store or jump
instruction is encountered, the pipeline must be stalled
and 4 cycles used for the access hence greatly reduce
the performance of the processor.

MSL16 has a simple instruction set and hence a
short critical delay path. The two stage pipeline
has low latency so the e�ect of stalling the pipeline
during memory operations and branches is reduced.
Operands to the ALU are normally the two top ele-
ments of the stack and the result is usually stored in
the T register. This scheme virtually eliminates the in-
struction decoding and register fetch process normally
required in a RISC machine.

Figure 2: MSL16 prototype board.

The MSL16 design was synthesised from a VHDL
description using the Synopsys Inc. FPGA compiler.
The use of a high level language for the implementa-
tion of MSL16 enables easy customisation of the de-
sign. For example, the stack, sizes datapath widths,
memory interface width and instruction set could be
changed in the design. The resulting design occupied
175 con�gurable logic blocks (CLBs) and the VHDL
description is generic except that the Xilinx RAM
feature was used to implement the two stacks and
program memory. A prototype printed circuit board
containing MSL16 (implemented in a Xilinx 4006E{1
FPGA), static RAM, an Intel 8255 PPI chip, display
LEDs and a RS232 interface was developed (see Fig-
ure 2). The system was tested with a program which
utilises every MSL16 instruction as well as exercises
the critical paths of the chip. It was found to be op-
erational up to 33 MHz.

Forth machines are eminently suited for embedding
in FPGA applications because they o�er good code
density, easy customisation, easily developed software
development tools, high performance and small area.
A 16 bit Forth processor was described which enjoys
the above characteristics. This design, when synthe-
sised from a VHDL description, occupies 175 Xilinx
4000 series con�gurable logic blocks (CLBs) and can
operate at 33 MHz.

References

[1] P. Koopman. Why stack machines? Computer
Architecture News, 21(1), March 1993.

[2] C. H. Ting and C. H. Moore. Mup21{a
high performance misc processor. Forth Dimen-
sions (also available at http://www.dnai.com/-
ejfox/mup21.html), January 1995.

