
A Monte-Carlo Floating-Point Unit for Self-Validating
Arithmetic

Jackson H. C. Yeung
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
hcyeung@cse.cuhk.edu.hk

Evangeline F. Y. Young
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
fyyoung@cse.cuhk.edu.hk

Philip H. W. Leong
School of Electrical and
Information Engineering
The University of Sydney

philip.leong@sydney.edu.au

ABSTRACT
Monte-Carlo arithmetic is a form of self-validating arith-
metic that accounts for the effect of rounding errors. We
have implemented a floating point unit that can perform ei-
ther IEEE 754 or Monte-Carlo floating point computation,
allowing hardware accelerated validation of results during
execution. Experiments show that our approach has a mod-
est hardware overhead and allows the propagation of round-
ing error to be accurately estimated.

Categories and Subject Descriptors
B.2.0 [Arithmetic and Logic Structures]: General

General Terms
Design

Keywords
FPGA, Floating-Point, FPU, Monte Carlo Arithmetic

1. INTRODUCTION
Rounding error is inevitable for all finite precision com-

putations. The most common solution is to perform each
arithmetic operation at sufficiently high precision so the ac-
cumulation of error in the result is within an acceptable
limit. Static analysis using affine arithmetic can also be
used to estimate the propagation of rounding error in fixed
point computations [3, 9] and this technique is widely used
in bit-width optimization of digital circuits.
Unfortunately, analysis of rounding error propagation in

floating point computations is not as straightforward. Un-
like fixed point operations, the error is not bounded in a
fixed interval and depends on the magnitude of the operands.
A method for static analysis of floating point error based
on affine arithmetic is proposed in references [4] and [5].
These methods depend on input range information and can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
FPGA’11, February 27–March 1, 2011, Monterey, California, USA.
Copyright 2011 ACM 978-1-4503-0554-9/11/02 ...$10.00.

produce overly pessimistic error bounds unless the range is
bound to a small interval. In a general computing problem,
the range of possible input values can either be large, or
simply unavailable before runtime. Moreover, associativity
of mathematical operations does not hold in floating point
computations and the analysis of rounding error is highly
dependent on the sequence of operations. In practice, to
produce correct results, numerical computing applications
implemented in software often rely on the inherent stability
of the algorithm rather than careful error analysis. When
such an algorithm is implemented in reconfigurable hard-
ware, any change to the floating point implementation and
sequence of operations can compromise its stability.

A different, complementary approach for dealing with round-
ing errors is to track their propagation at runtime. Such
self-validating numerical methods can produce not only the
required result, but also an error bound. A traditional ap-
proach is interval arithmetic [8] which produces strict upper
and lower bounds by operating on an interval instead of a
point. Unfortunately, the bound is overly pessimistic in most
cases, a major reason being that this technique does not take
correlations into account. Affine arithmetic [14] overcomes
this problem, however, the length of the error term grows as
the computation proceeds, and estimating the propagation
of rounding errors at runtime is very expensive. Another
approach suitable for runtime implementation is the CES-
TAC method [16] in which the computation is repeated us-
ing three different rounding modes and the part of the result
that is the same for all rounding modes are assumed to be
the significant digits.

Monte Carlo Arithmetic (MCA) [11] can track rounding
errors at runtime by applying randomization to make round-
ing errors behave like random variables. Over a number of
trials, a normal computation is turned into a Monte Carlo
simulation and hence statistics on the effect of rounding er-
rors can be obtained. Apart from floating point, MCA has
also been applied to logarithmic number systems [17]. In
this paper we focus on applying MCA to detect catastrophic
cancellation which is the major cause of loss of significant
digits in a computation.

While self-validating numerical methods produce valuable
information on how rounding error affects the accuracy of
the result, their implementation to date has mainly been
in software which suffers from poor performance compared
with hardware. This is especially problematic since applica-
tions that require high accuracy often require high perfor-
mance.

In a field-programmable computing device, the flexibility
to use custom floating point units to improve performance
is present. A limited number of hardware implementations
of interval arithmetic can be found in the literature [1, 12,
13]. A hardware implementation of the CESTAC method
has also been published [2]. We are not aware of any hard-
ware implementations of affine or Monte Carlo floating point
arithmetic.
In this paper we describe a novel self-validating floating

point unit (FPU) which uses MCA to track rounding error
propagation. We also show that the area and performance
overheads are modest compared to a standard FPU. We be-
lieve that self-validating numerical methods are important
in reconfigurable computing for the follow reasons:

• The ability to produce an error estimate at runtime
allows more aggressive optimizations to be used.

• For applications where the accuracy of the result is
critical, a hardware generated error bound on the re-
sult is very useful.

• The ability to analyze rounding error at runtime en-
ables the construction of computer systems that can
dynamically tune themselves according to the input
data. Such an ability would fully capitalize on the
strength of reconfigurable hardware.

The remainder of the paper is organised as follows. In
Section 2, we provide background on floating point num-
bers and MCA. A modified hardware algorithm for MCA
addition and multiplication is described in Section 3. The
implementation of the MCA arithmetic unit is described in
Section 4. Results are shown in Section 5 and conclusions
drawn in Section 6.

2. BACKGROUND

2.1 Floating Point Numbers
A binary floating point number xfp can be represented as

a 3-tuple < n, f, e >, where n ∈ {0, 1} is the sign, f is an
unsigned fraction referred to as the significand, and e is the
integer exponent. Such a floating point number represents
the real value:

x = −1n · f · 2e.
The significand of a normalized floating point number has
a range of 1 ≤ f < 2. It has an implicit most significant
bit of 1, called the hidden bit and so the actual value stored
in the binary representation of the significand is f − 1. e is
represented as a signed binary integer in excess format.
We define machine precision, p, to be the number of bits

in the significand, excluding the hidden bit. For an IEEE
754 single precision floating point number, p = 23.
The IEEE-754 floating point standard also supports de-

normalized floating point numbers which represent those be-
low the range representable by normalized numbers. For
these numbers, the exponent is set to its smallest value and
no hidden bit is assumed. In this case, assuming single pre-
cision, < n, f, e > represents the real value:

x = −1n · (f − 1) · 2−126.

Our implementation is fully IEEE 754 compliant and hence
supports denormalized numbers. Without loss of generality,
normalized floating point numbers are assumed in the rest
of this paper unless otherwise specified.

2.2 MCA
MCA, proposed by Parker [10], is a way to detect catas-

trophic cancellation and overcome several arithmetic anoma-
lies in floating point calculations. Parker employs a high
precision floating point unit to perform low precision Monte
Carlo floating point computation. In his experiments, a dou-
ble precision floating point unit is used to perform single
precision Monte Carlo floating point computations.

Exact values are real numbers that can be represented
exactly within the floating point precision whereas inexact
values are rounded due to finite precision or real values that
are not completely known. In MCA, an inexact value x is
modeled with a random variable that agrees with x to s
digits:

x̃ = inexact(x, s, ξ) = x+ 2e−s+1ξ

where e is the base 2 exponent of x, s is a positive integer,
and ξ is a random variable in the interval (− 1

2
, 1
2
), repre-

senting the uncertainty. Exact values are represented as
their floating point value and are not random variables.

A full MCA floating point operation is computed as:

op(x, y) = round(inexact(op(

inexact(x, t, ξ), inexact(y, t, ξ))), t, ξ)

where t is the virtual precision, emulating a precision less
than the actual machine precision (t ≤ p), and ξ is a random
variable uniformly distributed in the interval (− 1

2
, 1
2
). The

function round() is any floating point rounding function. In
this paper, we assume round to the nearest.

In a full MCA floating point operation, the function inexact()
is applied: (1) once to each of the operands, and (2) also to
the result of the floating point operation before rounding.
The former is called precision bounding and can be used for
detection of catastrophic cancellation. The latter is random
rounding, which improves the statistical properties of float-
ing point rounding and can be used to address anomalies in
floating point arithmetic such as non-associativity and bias
of round-off errors. This is because, if random rounding is
applied, the expected value of the result converges to the
correct value.

Precision bounding and random rounding can be used in-
dependently. In this work, we only consider the precision
bounding operation since our objective is to estimate the
propagation of rounding error. The techniques described in
this paper could also be applied to random rounding,

In MCA, a computation is performed n times with the
same input, forming a Monte Carlo simulation. The output
is an n-tuple X =< x1, x2, . . . , xn >. The arithmetic mean
of X is used as the result, while the distribution of X can be
used to estimate the rounding error. Instability in rounding
is reflected by an X with large variance.

3. MCA ARITHMETIC UNIT
In Parker’s work, double precision floating point arith-

metic was used to perform single precision MCA so that
finite precision effects were negligible. This approach is obvi-
ously very inefficient for hardware implementations. In this
section, we propose a modified algorithm for MCA floating
point that uses lower precision arithmetic.

The key idea is to use a random perturbation of operands
and operator result to model rounding error. For a round to
nearest scheme, the rounding error is at most 1

2
·2e−p, where

e is the exponent of the number. This is approximately half
the difference of the two adjacent floating point numbers.
Therefore, the rounding error can be modeled as a random
variable:

round(xreal) = xreal + ε

where ε is a random number distributed in [−2e−p−1, 2e−p−1].
If ε is assumed to be uniformly distributed, the forward er-
ror, δ, for a floating point operation can be computed as:

fop(x, y) + δ = fop(x+ ξx, y + ξy)

where ξx and ξy are random numbers uniformly distributed
in the interval [−2ex−p−1, 2ex−p−1] and [−2ey−p−1, 2ey−p−1].
Since ξx and ξy are less than 1

2
a unit in the last place

(ulp), computing fop(x, y) + δ requires extending the pre-
cision of the arithmetic unit. Our algorithm avoids this by
computing a result that matches the statistical distribution
of fop(x, y) + δ without directly evaluating the expression.
Since our objective is estimating the propagation of round-
ing error in IEEE floating point computation, we do not
apply random rounding.

3.1 MCA Addition
We define a function unround as the hardware equivalent

of the precision bounding operation:

unround(< n, f, e >) =< n, f + 2−p · Ξ, e >

where Ξ is a uniformly distributed random variable with a
probability density function

fΞ(x) =

{
1, if − 1

2
≤ x < 1

2

0, otherwise

For implementation purposes, we use the equivalent func-
tion:

unround(< n, f, e >) =< n, f + 2−p · Φ− 2−p−1, e > (1)

where Φ is a random variable uniformly distributed in the
interval [0, 1). The probability density function for Φ is:

fΦ(x) =

{
1, if 0 ≤ x < 1

0, otherwise

Let a, b, c be 3 floating point numbers such that

a = −1na · fa · 2ea
b = −1nb · fb · 2eb
c = −1nc · fc · 2ec
a > b.

MCA addition can be defined as

mc add(a, b) = c = unround(a) + unround(b).

This function is realized in hardware by making some changes
to the standard floating point addition algorithm. In the
standard algorithm, operand significands are aligned by shift-
ing the smaller operand to the right by an amount equal to
the difference of the exponents. The aligned operands are
then added together. If the normalization step is not consid-
ered, this step can be represented by the following equation:

fc = fa + fb · 2eb−ea + φa · 2−p + φb · 2−p · 2eb−ea

Our goal is to compute this expression without extending
the precision of the adder. In a floating point adder, the

adder is p + 4 bits wide, where p + 1 is the width of the
significand, and an additional 3 bits are used for rounding.
We will compute fc under this bit-width constraint. During
normalization, the rightmost eb−ea−3 bits of fb are shifted
out. In normal floating point addition, rounding of these
lost bits is tracked via the sticky bit. Since there are an
infinite sequence of random bits to the right of the least
significant bit, the sticky bit is not necessary. We denote
those bits shifted out fb0 and the remaining ones fb1. Hence,
fb = fb0 + fb1, and fc can be computed as:

fc = fa + fb1 · 2eb−ea + ε

ε = fb0 · 2eb−ea + φa · 2−p + φb · 2−p · 2eb−ea

Computing ε exactly would require enlarging the adder to a
width of 2p−3 bits. Instead, we approximate fb0 using a uni-
form random number. This approximation only produces a
small error (as confirmed experimentally later in the paper)
since the bits shifted out consist of the lower order bits of
the number, which are roughly randomly distributed. Under
this assumption, we can compute ε using the expression:

ε = φa · 2−p + φx · 2−p

where φx is a random number taken from the distribution
Φ, representing all lower order bits of fb that are not visible.
The lower order bits are the sum of two random numbers
distributed in the interval [0, 1]. Since the lower order bits
are not recorded, we only need to know how the sum of the
random numbers affect rounding. If A, B are independently
distributed uniform random variables U [0, 1], P (A + B ≥
1) = 1

2
and the uncomputed part of the addition generates a

carry 1
2
of the time, during rounding a carry input is added

to the least significant place with probability 1
2
. After taking

the carry operation into account, the unrecorded bits are
uniformly distributed and its value is simply rounded to the
nearest floating point number.

3.2 MCA Multiplication
Let a, b, c be 3 floating point numbers such that a =

−1na · fa · 2ea , b = −1nb · fb · 2eb , and c = −1nc · fc · 2ec .
Using the function unround() defined in Equation 1, MCA
multiplication can be defined as

mc mult(a, b) = c = unround(a)× unround(b).

This function is realized in hardware by making some changes
to the standard floating point multiplication algorithm. The
first step is to compute the product of the significand. Ig-
noring the normalization step, the significand of c can be
computed by the following equation:

fc = (fa + φa · 2−p) · (fb + φb · 2−p)

A random error is injected to both operands. Since a float-
ing point multiplier does not use any guard bit in the mul-
tiplication stage, the multiplier width must be increased
to accommodate the error injected. The number of extra
bits added affects how precise the error is propagated after
the multiplication. The absolute error of a multiplication
is (faφb + fb · φa) · 2−p + φaφb2

−2p. Since φaφb2
−2p is a

very small value, it is ignored. Taking normalization into
account, the relative error can be represented by the equa-
tion:

(fa + fb) · 2−p

�fa · fb�

x a y a

URNG1 URNG3URNG2 URNG4

FPADD FPADD

FPSUB

Figure 1: Example showing how correlated error is
handled for the expression (x+ a)− (y + a). URNG2
and URNG4 are initialized with the same seed and
hence have identical sequences.

Since both fa and fb are both normalized, fa ∈ [1, 2)
and fb ∈ [1, 2). The maximum relative error is 2(2−p), and
this translates to an error of at most 2 ulp in the result.
Since the final result is rounded to 1 ulp, the error cannot
be represented in high precision in the result, so there is
little advantage to computing the error propagated in high
precision. The multiplier width is increased by 1 bit to ac-
commodate the injected error. Zero error is injected with a
probability of 1

2
, an error of −1 and +1 is injected with a

probability of 1
4
.

Rounding is unchanged except that the extra 2 bits from
the multiplier output are included the calculation of sticky
bit.

3.3 Handling correlated rounding error
In a datapath circuit, when a intermediate result becomes

the input of more then one subsequent operation, the round-
ing error of the input is necessarily correlated. In such a case,
our scheme can partially account for the correlation between
rounding errors by arranging for all PRNGs corresponding
to the same variable to be initialized with the same random
seed. This causes all operations using the same intermedi-
ate result to perturbate the input using the same random
number. Figures 3 and 5 show the modifications made to
the adder and the multiplier for handling correlated error.
Figure 1 shows an example of how correlation can be han-

dled. In this example, the expression (x + a) − (y + a) is
computed, where a is the result from some previous compu-
tation. URNG2 and URNG4 are initialized with the same
random seed so that the same random sequence is used in
the all unround operations associated with the variable a.

4. IMPLEMENTATION
A floating point adder/subtractor and multiplier incorpo-

rating the MCA algorithm described in the previous section
is implemented. The floating point unit can operate in ei-
ther MCA mode or IEEE 754 single precision mode. Our
test design is based the floating point unit used in refer-

Listing 1: Combined-Tausworthe Generator

unsigned s1 , s2 , s3 , b ;

unsigned taus88 ()
{

b = (((s1 << 13) ˆ s1) >> 19) ;
s1 = (((s1 & 4294967294) << 12) ˆ b) ;
b = (((s2 << 2) ˆ s2) >> 25) ;
s2 = (((s2 & 4294967288) << 4) ˆ b) ;
b = (((s3 << 3) ˆ s3) >> 11) ;
s3 = (((s3 & 4294967280) << 17) ˆ b) ;
r e turn (s1 ˆ s2 ˆ s3) ;

}

ence [6], which itself is derived from an open source floating
point unit [15]. The floating point unit is a IEEE 754 com-
pliant single precision one, supporting all IEEE 754 round-
ing modes and denormalized numbers. Four pipeline stages
are employed, this being optimized for latency rather than
maximum clock frequency. It would be possible to add addi-
tional pipeline stages to operate at a higher clock frequency.
We will highlight the major changes made to support MCA
operation.

The architecture for the adder is shown in Figure 2. A
32-bit combined Tausworthe pseudo-random number gen-
erator [7] is used to generate the random numbers, and is
described in Listing 1. A 32-bit random number is produced
each clock cycle by combining the output of 3 Tausworthe
generators s1, s2 and s3.

The floating point adder is composed from 4 major mod-
ules: the prenormalization unit, the fixed point adder/sub-
tractor, the post-normalization unit and the rounding unit.
The parts that are modified for MCA are highlighted in Fig-
ure 2. Here we list the modifications made to each of the
modules.

• In the prenormalization unit, 3 bits from the URNG
are appended to the significand of each operand. A bi-
nary value ’100’ is then subtracted from the significand
of each operand.

• In the fixed point adder/subtractor, 1 is added to the
sum with a probability 1

2
for addition. For subtraction,

1 is subtracted from the sum with a probability 1
2
. This

is implemented by feeding a random bit to the carry
in so no additional adder is required.

• In the normalization left shift, random digits are filled
into the least significant bit (LSB) instead of zero.

• In Monte Carlo mode, the sticky bit is ignored, the
result is rounded up if and only if the round bit is 1.

Figure 3 shows the modifications made to the adder to
account for rounding error correlation. Different PRNGs
are used for each operand. The PRNG corresponding to
each variable is initialized with a different random seed so
the same pseudo-random sequence is used by each fan-out
of a variable, as shown in Figure 1.

A diagram for a floating point multiplier using the pro-
posed algorithm is shown in Figure 4. A 32-bit combined

S EXP SIGNIFICAND S EXP SIGNIFICAND

SUB SUB

Append

Append

32-bit URNG

Append

1 1

Swap

Compare

Exponents

Align

Fraction

Append

ADD/

SUB

Normalize and Round
Adjust

Exponent

Sign Logic

S EXP SIGNIFICAND

Figure 2: MCA adder data-path.

SUB SUB

Append

Append

Append

1 1

Append

URNG

A

URNG

B

XOR

SIGNIFICAND A SIGNIFICAND B

To Adder,

Normalization

and Round

Figure 3: Modification made to adder to account for
correlation of rounding error.

S EXP SIGNIFICAND S EXP SIGNIFICAND

ADD ADD

Append

32-bit URNG

Append

-1/0/1

Exponent

Logic

Normalize and Round
Adjust

Exponent

Sign Logic

-1/0/1

MULT

S EXP SIGNIFICAND

Figure 4: MCA multiplier data-path.

ADD ADD

Append Append

-1/0/1 -1/0/1

URNG

A

URNG

B

To multiplier

SIGNIFICAND A SIGNIFICAND B

Figure 5: Modification made to multiplier to ac-
count for correlation of rounding error.

Tausworthe pseudo-random number generator is used and
only 4 bits of the output are used. The modifications for
MCA are highlighted in Figure 2. For clarity, only relevant
signals are shown. Here we list the modifications made.

• Both operands are extend by 1 bit by appending a
zero. Then 1 is either subtracted from or added to the
least significant bit with a probability of 1

4
for addition

and 1
4
for subtraction.

• The multiplier is extended by one bit to 25× 25.

• During rounding, the addition output bits from the
multiplier is included in the calculation of the sticky
bit.

Figure 5 shows the modifications made to the multiplier
to account for rounding error correlation. Different PRNGs
are used for each operand. The PRNG corresponding to
each variable is initialized with a random seed so that the
same pseudo-random sequence is used by each fan-out of a
variable.

The adder and multiplier are synthesized on a Xilinx Vir-
tex 5 XC5VLX50T FPGA using ISE 11.1 using the de-
fault settings of optimising for timing performance with IOB
packing. In the current implementation, a single Monte
Carlo floating point adder occupied 460 slices and runs at
86 MHz while the unmodified adder occupied 304 slices and
runs at 110 MHz. The Monte Carlo multiplier occupies 419
slices, and runs at 90 MHz, while the unmodified multiplier
occupies 284 slices, and runs at 86 MHz. Note that the

adder uses only 26 of the 32 output bits of the URNG while
the multiplier uses only 4 of the 32 bits. If both the adder
and multiplier are implemented, the URNG can be shared,
eliminating a URNG.

5. RESULTS

5.1 Logarithmically Distributed Inputs
To test the effectiveness of the algorithm, pairs of double

precision floating point numbers are drawn by independently
generating the significand and exponent from uniform distri-
butions in the required range. The resulting floating point
numbers are logarithmically distributed. The numbers are
then rounded to single precision and fed to the MCA float-
ing point unit. A total of 64 Monte Carlo iterations are
performed for each pair and the standard deviation of the
output computed. The floating point unit is also run in
non-MCA mode for 1 iteration to obtain an IEEE 754 single
precision result. The results are compared by performing
the same operation in double precision using the original
pair of double precision floating point number. The round-
ing error is the difference between the MCA result and the
double precision calculation.
Figure 6 shows the results from the MCA floating point

adder. A total of 5000 pairs of numbers distributed in the
full range of single precision floating point number are tested
and the rounding error is plotted against the standard devi-
ation. Here we test how the standard deviation of the MCA
simulation can be used to estimate the distribution of the
rounding error. If the result of the Monte Carlo iterations
are approximately normally distributed, we will expect that
most of the values will lie within 3 standard deviation of
the population. The dotted line indicates the point where
the rounding error is equal to 3 standard deviations. It can
be seen that, as expected, the data-points lie below the 3
standard deviation line. Figure 7 shows the same test with
the MCA multiplier and similar results are observed.

5.2 Inputs in the range [1.0, 2.0]

Figures 8 and 9 show the results of a similar test with the
generated range limited to [1.0, 2.0]. The exponent is equal
to 0 and the significand is uniformly distributed over its full
valid range. A total of 100000 pairs of number are tested for
the MCA adder and 10000 for the multiplier. The ratio of
the rounding error and standard deviation is plotted against
the result and a range between 0 and 3 observed. This shows
that the standard deviation of the Monte Carlo iterations
give a good indication of the distribution of rounding error.

5.3 Comparison with Double Precision Simu-
lation

The addition of pairs of single precision random numbers
using MCA is compared to a double precision MCA simu-
lation using a virtual precision of 23 bits. An example of
the output distribution for −1.0+ 1.0009765625 is shown in
Figure 10. The values were chosen to have a large relative
error. The output distribution closely matches the double
precision simulation. Figure 11 shows the result of a similar
test for the MCA multiplier calculating 1.5 × 1.5, with the
x-axis plotted in ulp. The sparse distribution is due to the
fact that the error propagation is small compared to 1 ulp.

5.4 Catastrophic Cancellation
Catastrophic cancellation occurs when two inexact float-

ing point values, similar in magnitude, are subtracted. Con-
sider the example a = 1.100000000000000000000002 × 20,
b = 1.100000000000000000000012 × 20, c = a − b. When
computed in single precision, the value of c is
1.000000000000000000000002×2−23 ≈ 1.19209×10−7. This
would be the exact result if a and b are exact values. How-
ever, when a and b are result of some previous floating point
operations, they are subjected to rounding errors. In this
case, the value of c contains no more then 1 binary sig-
nificant digit, the other digits being rounding errors from
previous operations. When the same computation is run on
our floating point unit in MCA mode over 1024 iterations,
we obtain a mean of 1.18244651× 10−7, and standard devi-
ation of 4.913304× 10−8. These values clearly indicate that
the result contains large rounding errors.

6. CONCLUSION
Based on Monte Carlo Arithmetic, an hardware algorithm

for randomising rounding errors was devised and an IEEE
754 compliant single precision floating point unit incorpo-
rating the algorithm implemented. Experiments show that
the floating point unit gives an accurate estimation of the
propagation of rounding error. In our implementation using
4 pipeline stages, the multiplier has no speed penalty and
occupies 51% more area than a standard one. The adder has
a 22% increase in delay and 47% increase in area. We did
not make any attempt to optimize the speed and area of the
implementation. Speed could be improved by better balanc-
ing of pipeline stages and area can be reduced by sharing of
the PRNGs between the adder and multiplier.

This work shows our approach can effectively estimate the
propagation of rounding error with a minimal impact on per-
formance. Future work will involve applying this approach
at a system level and exploring aggressive floating point op-
timizations that reduce hardware resources while tracking
rounding errors at runtime.

7. REFERENCES
[1] A. Amaricai, M. Vladutiu, and O. Boncalo. Design of

floating point units for interval arithmetic. In Research
in Microelectronics and Electronics, 2009. PRIME
2009. Ph.D., pages 12 –15, july 2009.

[2] R. Chotin and H. Mehrez. A floating-point unit using
stochastic arithmetic compliant with the IEEE-754
standard. In Electronics, Circuits and Systems, 2002.
9th International Conference on, volume 2, pages 603
– 606 vol.2, 2002.

[3] J. Cong, K. Gururaj, B. Liu, C. Liu, Z. Zhang,
S. Zhou, and Y. Zou. Evaluation of static analysis
techniques for fixed-point precision optimization. In
FCCM ’09: Proceedings of the 2009 17th IEEE
Symposium on Field Programmable Custom
Computing Machines, pages 231–234, Washington,
DC, USA, 2009. IEEE Computer Society.

[4] C. Fang, T. Chen, and R. Rutenbar. Floating-point
error analysis based on affine arithmetic. In
Proceedings of the 2003 IEEE International
Conference on Acoustics, Speech, and Signal
Processing. IEEE Computer Society, 2003.

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

10
20

10
30

10
40

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

10
20

10
30

10
40

Standard Deviation of Monte Carlo Iterations σ

Ro
un

di
ng

 E
rr

or

���������	

�

�σ

Figure 6: MCA adder - comparison of rounding error to standard deviation of Monte Carlo iterations.

10
−50

10
−40

10
−30

10
−20

10
−10

10
0

10
10

10
20

10
30

10
40

10
−60

10
−40

10
−20

10
0

10
20

10
40

Standard Deviation of Monte Carlo Iterations δ

R
ou

nd
in

g
E

rr
or

Rounding Error
3δ

Figure 7: MCA multiplier - comparison of rounding error to standard deviation of Monte Carlo iterations.

1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6

Product

δ
/ σ

, (
ro

un
di

ng
 e

rr
or

)/
 (

st
an

da
rd

 d
ev

ia
tio

n)

Figure 8: MCA multiplier - rounding error vs standard deviation.

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.5

1

1.5

2

2.5

3

3.5

Sum

δ/
σ,

 (
ro

un
di

ng
 e

rr
or

)/
(s

ta
nd

ar
d

de
vi

at
io

n)

Figure 9: MCA adder - rounding error vs standard deviation.

Figure 10: Comparison between hardware MCA addition and double precision MCA simulation.

Figure 11: Comparison between hardware MCA multiplication and double precision MCA simulation.

[5] C. F. Fang, R. A. Rutenbar, M. Püschel, and T. Chen.
Toward efficient static analysis of finite-precision
effects in DSP applications via affine arithmetic
modeling. In Design Automation Conference (DAC
2003, pages 496–501, 2003.

[6] C. H. Ho, C. W. Yu, P. Leong, W. Luk, and S. J. E.
Wilton. Floating-point FPGA: architecture and
modeling. IEEE Trans. Very Large Scale Integr. Syst.,
17(12):1709–1718, 2009.

[7] P. L’Ecuyer. Maximally equidistributed combined
tausworthe generators. In Math. Computation,
volume 65, pages 203 –213, 1996.

[8] R. E. Moore. Interval Analysis. Prentice-Hall, 1966.

[9] W. Osborne, R. Cheung, J. Coutinho, W. Luk, and
O. Mencer. Automatic accuracy-guaranteed bit-width
optimization for fixed and floating-point systems. In
Proc. International Conference on Field Programmable
Logic and Applications (FPL), pages 617–620, 2007.

[10] D. S. Parker. Monte carlo arithmetic: exploiting
randomness in floating-point arithmetic. 1997.
http://www.cs.ucla.edu/∼stott/mca/CSD-
970002.ps.gz.

[11] D. S. Parker, B. Pierce, and P. R. Eggert. Monte carlo
arithmetic: How to gamble with floating point and
win. Computing in Science and Engineering,
2(4):58–68, 2000.

[12] M. Schulte and J. Swartzlander, E.E. A family of
variable-precision interval arithmetic processors.
Computers, IEEE Transactions on, 49(5):387 –397,
may 2000.

[13] J. Stine and M. Schulte. A combined interval and
floating point multiplier. In VLSI, 1998. Proceedings
of the 8th Great Lakes Symposium on, pages 208 –215,
feb 1998.

[14] J. Stolfi and L. H. de Figueiredo. Self-validated
numerical methods and applications. Brazilian
Mathematics Colloquium Monograph, IMPA, Rio De
Janeiro, Brazil, 1997.

[15] R. Usselmann. Floating point unit, 2009.
http://opencores.org/project,fpu.

[16] J. Vignes. A stochastic arithmetic for reliable scientific
computation. Math. Comput. Simul., 35(3):233–261,
1993.

[17] P. Vouzis, M. Arnold, S. Collange, and M. Kothare.
Monte Carlo logarithmic number system for model
predictive control. In Proc. International Conference
on Field Programmable Logic and Applications (FPL),
pages 453–458, 2007.

