
1

Long Short-term Memory for Radio Frequency Spectral
Prediction and its Real-time FPGA Implementation

Siddhartha1, Yee Hui Lee1, Duncan J.M. Moss1,
Julian Faraone1, Perry Blackmore2, Daniel Salmond3

David Boland1, Philip H.W. Leong1

Email: {siddhartha.siddhartha,yeehui.lee,duncan.moss,
julian.faraone, david.boland,philip.leong}@sydney.edu.au

{daniel.salmond,perry.blackmore}@dst.defence.gov.au

Abstract—Reactive communication waveforms hosted in current gener-
ation tactical radios often fail to achieve good performance and resilience
in highly dynamic and complex environments. Arguably, novel waveforms
that can proactively adapt to anticipated channel conditions may better
meet the challenges of the tactical environment. This motivates the ability
to accurately predict spectral behaviour in real-time. A Long Short-
Term Memory (LSTM) network is a type of recurrent neural network
which has been extremely successful in dealing with time-dependent signal
processing problems such as speech recognition and machine translation.
In this paper, we apply it to the task of spectral prediction and present
a module generator for a latency-optimised Field-Programmable Gate
Array (FPGA) implementation. We show that our implementation obtains
superior results to other time series prediction techniques including a
naïve predictor, moving average and ARIMA for the problem of radio
frequency spectral prediction. For a single LSTM layer plus a fully-
connected output layer with 32 inputs and 32 outputs, we demonstrate
that a prediction latency of 4.3 µs on a Xilinx XC7K410T Kintex-7 FPGA
is achievable.

I. INTRODUCTION

Over recent years, neural networks (NNs) have achieved re-
sults surpassing all other approaches on difficult pattern recognition
problems such as image analysis, speech recognition and machine
translation. In particular, the Long Short-Term Memory (LSTM) [13],
[9] has achieved the best results of any technique for time-series
applications such as handwriting recognition, speech recognition and
machine translation.

Communication channels can be characterised as a sequence of
observations – e.g. digital samples, bursts or short-time Fourier
transform vectors – and hence, they are amenable to processing
using LSTM architectures, whether to characterise, generate or pre-
dict channel behaviour. Prediction of spectral behaviour supports
proactive adaptation in response to anticipated channel behaviour as
opposed to the reactive implementations that are widely available
at present. This could take the form of novel waveforms that
dynamically adapt their parameters such as modulation scheme or
forward error correction. We believe low-latency spectral prediction
will support a family of waveforms that adapt on a burst-by-burst
basis, enabling more efficient channel utilisation and more resilient
communication networks.

Military communication networks operate in unanticipated and
dynamic environments, and stand to benefit from proactive wave-
forms that adapt to the ambient and anticipated conditions. Designing
waveforms to work in these environments is challenging because the
variety of operational contexts is too large to be exhaustive. Applying
deep learning for spectral prediction is attractive because, if trained
properly, deep learning models generalize well to unseen sequence
contexts.

Despite its dominance in other domains, little work in applying
LSTMs to real-time communications systems has been undertaken
due to the challenge of real-time processing of radio frequency

1The University of Sydney, Australia, 2Defence Science and Technology
Group, Canberra, Australia, 3Defence Science and Technology Group, Edin-
burgh, Australia.

signals. In this paper we describe a Field-Programmable Gate Array
(FPGA) implementation of an LSTM prediction system which is
energy efficient, parallel, integrated on the same chip as the software
defined radio hardware, and customised to achieve high performance.
Specifically the contributions are as follows:

• A flexible LSTM module generator which can produce opti-
mised, self-verifying LSTM inference cores of arbitrary size and
arbitrary fixed-point precision.

• A detailed comparison of LSTM spectral prediction accuracy
compared with standard techniques, showing that LSTM pro-
vides a significant improvement in accuracy, which is crucial
for resilient military communication applications.

• An empirical study of tradeoffs between fixed-point precision
and accuracy.

To the best of our knowledge, this is the first reported system-level,
real-time implementation of LSTMs for spectral prediction in radio
frequency applications.

II. BACKGROUND

A. Long short-term memory (LSTM)
The LSTM was introduced in 1997 by Hochreiter and Schmid-

huber [13]. Compared to earlier recurrent neural networks for time-
series prediction, mechanisms were introduced to protect state stored
in memory cells from being corrupted by weight updates from
irrelevant inputs and irrelevant memory contents. Many variants
of the original LSTM have been proposed. The version used in
this work is the BasicLSTMCell [8] class that can be found in
Google’s Tensorflow neural network package. This, in turn, is an
implementation of the network published in references [9] and [19].

Using the same notation as [19], let hl
t 2 Rnl be the output vector

of layer l at timestep t, and c
l
t 2 Rnl a memory cell. As illustrated

in Figure 1, an LSTM layer computes a new output and memory cell
value using the state transition: hl�1

t , h
l
t�1, c

l
t�1 ! h

l
t, c

l
t with the

formulae
0

BB@

i

f

o

g

1

CCA =

0

BB@

sigm
sigm
sigm
tanh

1

CCAT
l
(nl�1+nl),(4nl)

✓
h
l�1
t

h
l
t�1

◆
(1)

c
l
t = f � c

l
t�1 + i� g (2)

h
t
l = o� tanh(clt) (3)

where T
l
m,n : Rn ! Rm is an affine transformation (Wx + b for

some W and b) for layer l, � is elementwise multiplication, sigm is
the elementwise sigmoid activation function, tanh the elementwise
hyperbolic tangent activation function, xt is the input vector, and
h
0
t = xt. The LSTM output, hL

t , where L is the number of LSTM
layers is then used to predict the final output ft via a fully connected
(FC) layer

ft = T
L+1
nL,nL

h
L
t . (4)

In order to make predictions from a fixed-length sequence, we
apply a periodic context reset in which the memory cell and previous
output values for all layers are cleared. This is described in detail
in Sec. IV-C

B. Literature Review
LSTMs have been successfully employed in sequence prediction

problems such as RF anomaly detection [15] and solar radio spectrum
classification [18] but processing in real-time was not addressed.

Only a small number of FPGA implementations of LSTM net-
works [13] have been reported. Chang et. al. [4] in 2015 implemented

2

hl
t

xt (=hl-1
t)

f i g o

!Cl
t-1

Cl
t

tanh

hl
t-1 Δ

xt (=h0
t)

h2
t

h1
t

C2
t-1

Δ

Δ

C1
t-1

C1
t

C2
t

(a) Two LSTM layers (b) LSTM cell

!
!

!

Figure 1. Illustration of the LSTM dataflow, with output given by Equ. 3. � represents a unit delay.

an LSTM network on a Zynq 7020 FPGA using a matrix-vector
multiplier architecture. Their 2 layer, 128 hidden unit design operated
at 142 MHz and was 21⇥ faster than the ARM Cortex A9 processor
on the same FPGA. In 2017 Guan et. al. [10] describe an optimised
32-bit floating point LSTM implementation which achieved 7.26
GFLOPS on a Xilinx Virtex7-485t FPGA at 150MHz. Finally,
Han et. al. [11] describe a load-balance-aware pruning method to
introduce sparsity and quantisation in an LSTM implementation. On
a Xilinx XCKU060 FPGA running at 200MHz with 12-bit precision,
their design achieved 282 GOP/s, corresponding to 2.52 TOPS on an
equivalent dense network. In contrast to previous implementations,
our work focuses on a comparison with conventional RF spectral pre-
diction techniques, achieving high accuracy, and optimising latency
at the system level through integration. This paper is conceptually
similar to our previous work on real-time anomaly detection of RF
signals [14] which focused on anomaly detection rather than spectral
prediction, and used an autoencoder instead of an LSTM.

III. LSTM-BASED SPECTRAL PREDICTION

A. RF Spectral Prediction
Spectral prediction, also known as spectral inference, aims to

infer the state of unknown radio spectrum based on previous/known
spectrum statistics. In recent years, spectral prediction has gained
popularity in wide range of cognitive radio networks applications
such as dynamic spectrum access, smart topology control, adaptive
spectrum sensing, and predictive spectrum mobility. In practical cog-
nitive radio implementations, prediction accuracy, low latency, and
low energy consumption have been the major technical concerns [7].
As the core of many cognitive radio networks applications, the need
for high speed spectral prediction with low power consumption is
imminent.

B. 802.11p Dataset
The data set used in this study was generated via "over-the-

air" captures of IEEE 802.11p frames.1 An 802.11p framework
described in [1] was used and deployed on the GNU Radio software
toolkit interfaced to an Ettus ResearchTM Universal Software Radio
Peripheral (USRPTM) X310 with SBX RF daughterboard.

Frames encapsulating 500 bytes were generated, comprising of a
mix of QAM-64 and BPSK modulation types. Three captures were

1The 802.11p standard was chosen in preference to a/b/g/n standards due
to its lower spectral bandwidth (5 MHz) Transmissions were constrained to
a co-axial medium to avoid interference with other networks.

recorded: a 112 µs QAM-64 frame, a 498 µs BPSK frame, and a
10 µs noise floor sample. The digital storage oscilloscope that was
tapped into the network autosampled at 20 GSa/s, 10 GSa/s and
5 GSa/s respectively.

Post-processing was performed, first creating frequency-shifted
(5MHz) variants of the frame captures. All sequences were then
downsampled before concatenation to create a 10 MHz dual band
signal. The first band contained six bursts, while the second band
comprised of three bursts of varying duration. The data was stored as
a series of 8-byte complex IEEE-754 floating point entries baseband
I/Q samples. The signal could then be continuously replayed with a
period of 1857 µs. We denote the data set as D = {xi}, i 2 [0, T),
where T is the size of the data set.

C. Number Representation

In order to minimise latency, the lowest precision should be used.
Unfortunately, low precisions adversely affect prediction accuracy. To
best navigate this tradeoff, processing can be performed in a variable
precision fixed-point format that is determined at compile time.

A n-bit fixed-point representation of a number x = xINT + xFR

consists of integer and fraction components using I and F bits
respectively, where n = I + F . I determines the range of numbers
that can be represented and F controls the precision, Equ. 5 shows
the notation in a binary form. We represent the integer and fractional
sizes using the notation QI.F .

X = (X(I�1) . . . X1X0.X�1 . . . X�F) (5)

where Xi 2 {0, 1} represents the i’th bit, i 2 [�F, I � 1]. In the
two’s complement system used in our work, xINT = �XI�12

I�1+PI�2
0 Xi2

i and xFR =
P�1

�F Xi2
i. It follows that these numbers

represent:

x = xINT + xFR = �XI�12
I�1 +

I�2X

�F

Xi2
i (6)

In our implementation, the ap_fixed type available in Xilinx
Vivado HLS [17] was used with convergent rounding (AP_TRN) and
saturating arithmetic (AP_SAT).

D. Training

The spectral prediction problem is to make a prediction of the
future spectrum vector from previous values. This is achieved by

3

using a sliding-window of the previous W samples, to make a
prediction N timesteps into the future. A training set of exemplars,
E, is formed from a subset of D, {{xj , xj+W }, {xj+N , xj+W+N}},
where the first vector is the input and the second the target.

Tensorflow was used to train the LSTM and the fully-connected
output layer, and the mean-squared error (MSE) is used as the cost
function. A batch size of 1, no dropout and randomized selection of
batches from the data set were used.

Since the FPGA implementation uses fixed-point numbers, quanti-
zation must be modeled during training. We generalised the scheme
developed by Courbariaux et. al. [6] for binarized weights to low-
precision fixed point numbers. Training proceeds using the standard
double-precision floating-point Adam optimiser, a stochastic gradient-
descent based technique. A training iteration for a neural network
normally consists of three stages: forward propagation (or inference),
backward propagation and parameter update. Weights and biases
(hereafter referred to as weights) are first clipped to the [�1, 1]
range and then quantized by a function that rounds to the nearest
representable fixed-point value, as shown in the equation below

r(x) = bx ⇤ 2F + 0.5c)/2F (7)

This is done only during the forward and backward propagation steps
so that small weight changes can be accumulated and applied during
parameter update.

The output of the training process are the weights for the T

transformation of Equ. 1, and the weights of the fully-connected layer.

E. Prediction Accuracy with Fixed-point Weight Values
A comparison of prediction performance of the LSTM model

(trained with full precision weights) against classical autoregressive
and averaging time series prediction models was undertaken. The
techniques used for comparison were: (1) Naïve, where the pre-
dicted vector is the RF spectrum observed in the last timestep, (2)
Moving average, where the predicted vector is the average of RF
spectrum (respective FFT bins) within the window length, and (3)
Autoregressive integrated moving average: an ARIMA(5, 1, 1) model,
where the parameters were selected based on trials using different
configurations.

We note that the above-mentioned classical techniques can be
implemented with a single cycle of latency, unlike the LSTM, which
requires L cycles. Thus for an LSTM prediction to be produced at
time t, only data up to xt�L can be used. We assume for the other
techniques, data up to xt�1 are available. Our study reflects this
important detail, ensuring a fair comparison.

Fig. 2 compares a floating-point implementation of the LSTM
(single and double precision results are similar) to the other tech-
niques. It shows that LSTM outperforms the baseline models in most
cases, especially for predictions further into the future i.e. large N.
It is important to note that the key feature of a robust RF spectral
predictor is to achieve high accuracy prediction far into the future
as it provides adequate response time for required actions. Hence,
the proposed LSTM approach for RF spectral prediction gives an
important improvement in accuracy, this being especially important
for resilient communication applications.

To facilitate efficient FPGA implementation, the minimal precision
weight and bias values are desirable. Figure 3 compares MSE of our
implementation at different fixed-point weight and bias wordlengths
(Q1.F) with range [-1,1). It can be seen that wordlengths of 8-bits
and above show similar accuracy to floating-point.

IV. IMPLEMENTATION

Our system implementation is illustrated in Fig. 4 and consists of
custom software and hardware blocks designed to deliver an end-to-

0 5 10 15 20 25 30 35
Predicting N Timestep into Future

0

1

2

3

4

5

6

7

M
SE

 (P
re

di
ct

io
n

vs
. A

ct
ua

l)

#10 -3 WIFI Spectral Prediction (LSTM vs. Different Baseline Models)

LSTM
Naive
ARIMA
Moving Average

Figure 2. Comparison of mean-squared error (MSE) between floating-point
LSTM and different baseline models for WIFI spectral prediction.

Figure 3. Comparison of LSTM mean-squared error (MSE) with different
fixed-point bias and weight wordlengths.

end software defined radio solution for spectral prediction. Design
details are abstracted away from the user through a Python-based
software framework. This allows for rapid prototyping and easy
modification of the underlying hardware core and resource utilisation
exploration.

The system implementation is built on top of the GNU Radio [2]
and RFNoC [3] environments, allowing arbitrary components to be
incorporated and easy reuse of our design. Additionally, the software
framework provides realtime displays and monitoring features, such
as prediction error histograms and spectral output.

Although our software is capable of generating designs of arbitrary
size and precision, we focus on an implementation with one LSTM
and one Fully-Connected (FC) layer, which was found to produce
good results. The LSTM has 32 inputs, 32 memory cells and 32-
outputs. The LSTM context length, discussed in Sec. IV-C is also
32. The FC layer has 32 inputs and 32 outputs. This choice was
made due to hardware resource constraints as a significantly larger
implementation was not possible using the chosen hardware platform.

A. GNU Radio
The host is responsible for programming the Ettus board and

orchestrating all data movements to and from the platform at runtime.
This is achieved through a high-level interface in GNU Radio.
We design custom GNU Radio blocks that communicate with the
prediction core on the FPGA, while computing and displaying live
prediction errors at runtime. The GNU Radio flowgraph is fully

4

Radio Core Prediction Core
(Shim + HLS)

Crossbar

Hardware Driver

Software Framework

FFT Training / Visualisation

FP
G

A
H

os
t P

C
Figure 4. System overview, the shim forms the interface between the HLS
code and the AXI bus.

parametric, and we can change parameters such as sampling rate,
input/output vector length, prediction offset, etc at runtime.

A separate GNU Radio flowgraph is also designed to load new
trained weights at runtime. Currently, these are streamed to the FPGA
at low frequency to avoid data corruption. The time to reprogram the
FPGA with new weights is in the order of a few minutes, which is
still significantly faster than a fresh RTL-to-bitstream synthesis spin
which, depending on precision, can take about 5 hours. Nevertheless,
future iterations of the design would improve upon this limitation
to deliver fast, real-time reprogrammability of the LSTM cell in the
order of milliseconds.

B. Module Generator
A Python class, lstmgen, is used to generate the Prediction

Core (see Fig. 5). Object creation requires the desired LSTM and
FC parameters, precision, quantization function, a tensor of trained
weights from Tensorflow and a testing set. A method is then called to
produce a standalone C program, within which the weights, testing
and expected output data are embedded. The C program can be
compiled and executed directly under the Linux operating system,
and/or synthesised to an FPGA implementation. The C program is
self-verifying so that programming errors can be quickly identified.
This is possible because the test set inputs and expected outputs are
compiled with the program.

In the case of the FPGA implementation, the same C program
is synthesised to an FPGA design via a high-level synthesis (HLS)
tool. The resulting LSTM Cell and FC layer are then integrated with
first-in-first-out (FIFO) buffers and wrapped within an AXI streaming
interface as illustrated in Fig. 5. The host PC can execute the verifi-
cation C code to check the correctness of the FPGA implementation
through this interface. As depicted in Fig. 5, our implementation
includes an application programmer interface (API) for real-time
updating of the LSTM and FC weights without recompilation.

C. Prediction Core
The prediction core and the crossbar are connected by an AXI-

Stream Interface, as shown in Fig. 5. The data is sent sequentially to
the prediction core.

Before the data from the host is transferred to the FPGA prediction
core, the QI.F values are padded in the least-significant bits and
represented as a 16-bit short. This abstracts away the QI.F repre-
sentation from the Crossbar-Prediction Core interface allowing for

a single implementation to handle all configurations of QI.F for
I + F  16. Conversion between QI.F and the 16-bit short format
is handled by the prediction core shim and software framework.

At the heart of the LSTM and FC is a matrix-vector multiply
and a vector-vector addition, which are required to implement the
Tm,n transformation in Equ. 1. This is a parallel implementation
using independent multipliers and 2F precision accumulators to
avoid loss of accuracy. The sigm and tanh activation functions are
implemented using a complete lookup table of precomputed values.
The size of these lookup tables grow exponentially with the number
of bits used for precision.

An input vector of length 32 is consumed by the LSTM Cell in 32
cycles after which the local context vector is updated, and a resulting
32-element vector is produced at the output of the LSTM cell. The
context length is used so the LSTM can consider a time-series of
input vectors and is set to 32 i.e. prediction based on past 32 input
vectors. Only the 32nd output result vector is buffered and sent to the
FC layer. A context counter module orchestrates this data movement
and feeds the context back into the LSTM Cell. At timestep 1024 (=
input length ⇥ context length) the output of the LSTM is sent to the
FC layer where the final prediction is computed. After this prediction
has been produced, the context vector for the LSTM is reset to zero
and the process is repeated.

Our implementation allows the LSTM and FC weights to be up-
dated during operation through a memory mapped register interface.
This means the FPGA can continuously perform full-speed inference,
with simultaneous training occurring on the host processor at a lower
speed. Periodic updates of the weights are streamed to the FPGA.

D. FFT
The FFT block takes the raw input from the radio core and

pre-processes the data in preparation for the LSTM prediction
core. The FFT uses the standard Cooley-Tukey [5] decimation-in-
(time/frequency) FFT algorithm with a window size of 16, producing
16 complex values. These complex values are split into their respec-
tive real and imaginary components in floating-point precision and
subsequently transformed into their QI.F fixed-point representation.
This process creates two 16-element fixed-point vectors that contain
the real and imaginary parts of the FFT output window, which are
concatenated to form the 32-element fixed-point input vector.

V. RESULTS

We target the Ettus USRP X310 software defined radio (SDR)
platform with an RF front end that supports DC to 6 GHz bandwidth.
The radio has bandwidth of 160 MSa/s per channel and uses a
Xilinx XC7K410T Kintex-7 FPGA (specifically the xc7k410tffg900-
2 device). The spectral prediction system is synthesised to Verilog
register transfer language (RTL) using the Xilinx Vivado HLS tool
(v2015.4) and then passed through Xilinx Vivado Design Suite
(v2015.4) to produce a configuration bitstream for the FPGA. A Dell
Latitude Core i5 laptop, connected to the Ettus board via 100BASE-
TX fast Ethernet, is used as the host PC. In a practical low-latency
systems implementation, the Prediction Core in Fig. 4 would be
directly connected to the Radio Core to minimise latency.

A. Prediction Core Performance
We implement the matrix-vector multiply in the LSTM cell using

the matrix-matrix multiplication IP core provided in the Vivado HLS
linear algebra library [17]. This core offers different modes to invoke
different tradeoffs on the latency and resource utilization design
space. Since our goal is a low-latency prediction core, we use the
matrix multiplication IP core in ARCH = 4 mode.

5

LSTM
Cell

Context
Counter

FC

Bu
ffe

r

Prediction Core

Weight Update

AXI-Stream Interface
(16bit Short)

Bu
ffe

r

32
 x

 Q
I.F

32
 x

 Q
I.F

32
 x

 Q
I.F

32
 x

 Q
I.F

AXI-Stream Interface
(16bit Short)

QI.F QI.F

da
ta

ad
dr

MMIO

Figure 5. Block diagram of the FPGA Prediction Core

nl Clk Latency BRAM DSP LUTs
ns cycles (%) (%) (%)

8 7.67 195 27 (1) 83 (5) 6698 (2)
16 6.43 353 27 (1) 291 (18) 20035 (7)
32 6.43 664 91 (5) 1091 (70) 68924 (27)
64 6.43 1528 154 (9) 195 (12) 18266 (7)

Table I
SYNTHESIS RESULTS FOR THE PREDICTION CORE WHICH INCLUDES A

SINGLE LSTM LAYER PLUS FC LAYER. THE LSTM/LC INPUT AND
OUTPUT VECTORS ARE OF LENGTH n1 . FPGA UTILIZATION IS GIVEN IN

PARENTHESES.

Number Clk Latency BRAM DSP LUTs
System ns cycles (%) (%) (%)
Q2.8 8.19 636 68 (4) 1091 (70) 67285 (26)
Q2.10 6.43 663 72 (4) 1091 (70) 60710 (23)
Q2.12 6.43 664 91 (5) 1091 (70) 68924 (27)
Q2.14 6.43 664 182 (11) 1091 (70) 77143 (30)
float 8.18 1635 132 (8) 413 (26) 82568 (32)
double 7.77 1921 264 (16) 1070 (69) 156534 (61)

Table II
SYNTHESIS RESULTS FOR USING Q2.F PRECISION WHERE F IS VARIED.

FPGA UTILIZATION IS GIVEN IN PARENTHESES.

Tab. I summarizes the Vivado HLS synthesis results for the Predic-
tion Core, obtained by varying the LSTM and FC layer input/output
size n1. The target clock period was 5 ns, and a Q2.12 representation
used. Since matrix multiplication scales as O(n3

1), we would expect
our design to be linear in latency and quadratic in DSPs. For 32
inputs, almost all DSPs are used, and LUTs are used for multipliers.
For n1 = 64 and above, latency is further sacrificed to control
resource utilization.

Tab. II shows resource utilization of the Prediction Core with
varying fixed-point fraction length F for fixed-point types, and
also includes floating-point types. In this table, the Prediction Core
input/output vector lengths are fixed to 32. For fixed-point numbers,
the integer part of the QI.F representation is always 2 as we found
experimentally that this was sufficient to give good results. In our
design, the BRAM and lookup table (LUT) requirements scale
exponentially with F . This is due to the brute-force lookup table used
to implement the tanh and sigm activation functions and could be
improved using more scalable techniques, e.g. the NnCore function
generator [12]. The floating point implementations have substantially
increased latency and resource utilization compared with the fixed-
point implementations, but achieve better accuracy.

Fig. 6 shows the MSE using the 802.11p data using different

Figure 6. Comparison of LSTM accuracy when all weights and inference
calculations are quantized to different precision

number systems. It shows that even at low precision, the LSTM can
deliver more accurate predictions than the naïve predictor, and that
beyond Q2.12, no further improvement occurs. We believe the reason
the fixed-point results do not achieve the same accuracy as floating-
point is due to a mismatch between the floating-point Tensorflow
training forward pass and the fixed-point FPGA inference, which
can be resolved by training with a fixed-point forward pass to allow
weight values to compensate for this difference. We are in the process
of investigating this issue further.

B. System Performance
A design integrating the Prediction Core with the Ettus RFNoC

interface was made, with target clock rate of 166 MHz. Fig. 7
and Tab. III show the resource breakdown of the resulting physical
implementation, in which we maximize the use of on-chip DSP
blocks to deliver a fast, low-latency design that is suitable for
proactive military systems.

We also implement the naïve predictor in our GNU Radio flow-
graph as a baseline to compare the performance of our prediction
core. Figure Fig. 8 is a density plot of errors of the naïve vs. the
LSTM approach. In this experiment, the prediction offset is set to
four, i.e. the prediction goal is to predict four timesteps into the
future. It can be seen that the quality of LSTM predictions in terms
of MSE is superior to the naïve predictor.

Trong et. al [16] measured latency values on an older Ettus USRP-
2 platform, reporting times well in excess of 1 ms. Our system

6

0

20

40

60

80

LUTs FFs BRAM36K DSP48E
Resource

Pe
rc

en
ta

ge
 o

f t
ot

al
av

ai
la

bl
e

re
so

ur
ce

Matrix Multiply LSTM FC Shim Ettus RfNoC

Figure 7. Post place-and-route resource utilization breakdown in percentage
of total available resources using Q2.12 number representation

BRAMs DSPs LUTs
(%) (%) (%)

Prediction Core 46 (6) 1107 (72) 13889 (5)
Ettus RFNoC 341 (43) 71 (5) 112855 (44)
System Implementation 387 (49) 1178 (77) 126744 (50)
XC7K410T FPGA 795 (100) 1540 (100) 254200 (100)

Table III
RESOURCE UTILIZATION BREAKDOWN OF THE PREDICTION CORE, THE

ETTUS RFNOC, AND TOTAL FPGA AVAILABLE RESOURCES

architecture allows predictions to occur with several microseconds
of latency, this being at least 2 orders of magnitude lower.

VI. CONCLUSION

We have demonstrated, using captured IEEE 802.11p data, that
low-precision LSTM-based machine learning can achieve superior
spectral prediction accuracy over classical time series prediction tech-
niques such as ARIMA. This is the case even considering that a real-
time implementation of the former necessitates making predictions
from less recent windows of the time series, due to computational
latency. Next, we described an LSTM module generator which can
generate self-validating C programs of arbitrary size, topology and
precision, which can be executed on conventional processors and
synthesised to FPGA designs. Finally, we described a system level
implementation of a spectral prediction engine using the LSTM
modules.

0

5

10

15

20

0.00 0.05 0.10
Mean Squared Error (MSE)

D
en

si
ty

 C
ou

nt

LSTM Prediction Error Naive Prediction Error

Figure 8. Density plot showing differences in prediction error between naïve
predictor and the LSTM Cell using Q2.12 number representation

This work has demonstrated the feasibility of real-time prediction
of spectral behaviour, which is enabling technology for proactive
systems that are more resilient to interference or jamming. Our ML
operations can be executed with a latency of 4.3 µs, offering the
potential for actions to be taken with sub-10 µs response times.
Future research will focus on further reducing latency, improving
scalability, and incorporating on-chip, high-speed parameter updates
to allow fast model adaption to changing conditions.

ACKNOWLEDGMENT

The authors gratefully acknowledge support from the Defence
Science and Technology (DST) Group’s Next Generation Technology
Fund under the High Speed Machine Learning using FPGAs project.

REFERENCES

[1] Bastian Bloessl, Michele Segata, Christoph Sommer, and Falko Dressler.
Towards an Open Source IEEE 802.11p Stack: A Full SDR-based
Transceiver in GNURadio. In 5th IEEE Vehicular Networking Confer-
ence (VNC 2013), pages 143–149, Boston, MA, December 2013. IEEE.

[2] Eric Blossom. GNU Radio: tools for exploring the radio frequency
spectrum. Linux journal, 2004(122):4, 2004.

[3] Braun, Martin and Pendlum, Jonathan and Ettus, Matt. RFNoC:
RF network-on-chip. In Proceedings of the GNU Radio Conference,
volume 1, 2016.

[4] Andre Xian Ming Chang, Berin Martini, and Eugenio Culurciello.
Recurrent neural networks hardware implementation on FPGA. CoRR,
abs/1511.05552, 2015.

[5] J.W. Cooley and J.W. Tukey. An Algorithm for the Machine Calculation
of Complex Fourier Series. 19:297–301, 01 1965.

[6] Matthieu Courbariaux and Yoshua Bengio. BinaryNet: Training Deep
Neural Networks with Weights and Activations Constrained to +1 or -1.
CoRR, abs/1602.02830, 2016.

[7] Guoru Ding, Yutao Jiao, Jinlong Wang, Yulong Zou, Qihui Wu, Yu-
Dong Yao, and Lajos Hanzo. Spectrum Inference in Cognitive Radio
Networks: Algorithms and applications. IEEE Communications Surveys
& Tutorials, 2017.

[8] Google. Tensorflow source code. https://github.com/tensorflow/
tensorflow/blob/master/tensorflow/python/ops/rnn.py.

[9] A. Graves, A. r. Mohamed, and G. Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pages 6645–6649, May 2013.

[10] Yijin Guan, Zhihang Yuan, Guangyu Sun, and Jason Cong. FPGA-based
accelerator for long short-term memory recurrent neural networks. In
22nd Asia and South Pacific Design Automation Conference, ASP-DAC
2017, Chiba, Japan, January 16-19, 2017, pages 629–634. IEEE, 2017.

[11] Song Han, Junlong Kang, Huizi Mao, Yiming Hu, Xin Li, Yubin Li,
Dongliang Xie, Hong Luo, Song Yao, Yu Wang, Huazhong Yang, and
William (Bill) J. Dally. ESE: Efficient Speech Recognition Engine with
Sparse LSTM on FPGA. In Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays, FPGA
’17, pages 75–84, New York, NY, USA, 2017. ACM.

[12] S. M. H. Ho and H. K. H. So. NnCore: A parameterized non-linear
function generator for machine learning applications in FPGAs. In 2017
International Conference on Field Programmable Technology (ICFPT),
pages 160–167, Dec 2017.

[13] Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory.
Neural Computation, 9(8):1735–1780, 1997.

[14] Duncan Moss, David Boland, Peyam Pourbeik, and Philip H.W. Leong.
Real-time FPGA-based anomaly detection for radio frequency signals.
In IEEE Int. Symp. on Circuit and Systems (ISCAS), pages 1–5, May
2018.

[15] Timothy J. O’Shea, T. Charles Clancy, and Robert W. McGwier. Recur-
rent neural radio anomaly detection. CoRR, abs/1611.00301, 2016.

[16] N. B. Truong, Y. J. Suh, and C. Yu. Latency Analysis in GNU
Radio/USRP-Based Software Radio Platforms. In IEEE Military Com-
munications Conference, pages 305–310, 2013.

[17] Xilinx. UG902 Vivado Design Suite Tutorial. https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2014_
1/ug902-vivado-high-level-synthesis.pdf.

[18] Xuexin Yu, L. Xu, L. Ma, Z. Chen, and Y. Yan. Solar radio spectrum
classification with LSTM. In 2017 IEEE International Conference on
Multimedia Expo Workshops (ICMEW), pages 519–524, July 2017.

[19] Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent Neural
Network Regularization. CoRR, abs/1409.2329, 2014.

