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Abstract— We propose a novel online algorithm for com-
puting least-square based periodograms, otherwise known as
the Lomb-Scargle Periodogram. Our spectral analysis technique
has been shown to be superior to traditional discrete Fourier
transform (DFT) based methods, and we introduce an algorithm
which has O(N) time complexity per input sample. The
technique is suitable for real-time embedded implementations
and its utility is demonstrated through an application to the
high resolution time-frequency domain analysis of heart rate
variability (HRV).

I. INTRODUCTION

Heart rate variability (HRV), a measure of the variation
in the period of the cardiac cycle, has been shown to
reliably indicate physiological factors regulating the heart
rate and in turm reflect a number of associated medical con-
ditions [1], [2], [3]. The Task Force of the European Society
of Cardiology and the North American Society of Pacing
and Electrophysiology has published an article [1] where
standard measurements and interpretations of HRV were
specified in detail. According to this literature, frequency-
domain measurements of the HRV mainly involves spectral
power analysis of the instantaneous heart rate (HR) signal,
or equivalently its reciprocal: the beat-to-beat (RR) interval
series.

Because samples of the HR or RR time series are gen-
erated at the peak of each R wave, they are inherently
irregularly spaced in time. Traditional spectral analysis based
on the Discrete Fourier Transform (DFT) requires resampling
of the original time series to regular time intervals and such
interpolation-based resampling has been shown to introduce
systematic errors, leading to inaccuracies [4], [5]. In addition,
reference [5] showed such errors significantly increase with
the number of nonsinus heart beats due to ectopic depolar-
ization, as these outlying samples must be removed [1].

To circumvent these problems, Moody [4] suggested using
the Lomb-Scargle Periodogram (LSP) to estimate power
spectra in the frequency analysis of HRV. This was found
to be more reliable than autoregressive and DFT-based
techniques. Clifford [5] showed that the LSP produces more
robust spectral estimates even with a large of number of
samples removed due to ectopy. Though shown to be supe-
rior, few have studied online algorithms for the LSP even
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though such an approach has clear advantages in real-time
implementations. Most HRV literature has applied the LS
method by using the fast Lomb-Scargle algorithm of Press
and Rybicki [6]. This algorithm computes an approximation
with adjustable accuracy with O(N logN) time complexity
for an input size of N samples. This algorithm significantly
reduces computation compared to the O(N2) direct calcula-
tion, but the benefits are mostly relevant to batch computation
from a large number of inputs to an output of comparable
size (in terms of frequency limits and resolution).

In a typical online, real-time HRV application, input sam-
ples are acquired incrementally and irregularly as the QRS
waveform is detected and located from the electrocardiogram
(ECG). If an updated power estimate has to be computed
from beat to beat, the fast Lomb-Scargle algorithm would
require O(N logN) operations per update.

In this paper, a novel online algorithm for the LSP is
described. It combines similar reductions as the fast Lomb-
Scargle algorithm with a recursive update equation derived
from trigonometric identities. The main advantage of this
algorithm is its capability to compute the LSP power spectra
incrementally where the inclusion of each new sample or
the exclusion of an expired sample requires only O(N)
computations per update. In addition, the algorithm is an
exact computation derived from definitions as opposed to
the fast Lomb-Scargle algorithm which is an approximation.

II. BACKGROUND

In this section, we introduce notation and review the
commonly on computing different estimates of power spectra
for nonuniform sampling.

The signal to be analysed is a sequence of samples in
the time or spatial domain, denoted as {yn}Nn=1 or equiv-
alently {y(tn)}Nn=1 where {tn}Nn=1 are the sampling times.
In general, {tn}Nn=1 have non-uniform intervals, and it is
assumed that tn is strictly increasing with n. We denote the
zero-mean version of this time series as ŷn = yn − ȳ where
ȳ = 1

N

∑N
n=1 yn is the sample mean.

A. The Classical Fourier Periodogram

A simple form of spectral analysis is the Classical Fourier
Periodogram (CFP) [7] which is defined as

PCF (ω) =
1

N

∣∣∣∣ N∑
n=1

ŷne
−jωtn

∣∣∣∣2. (1)

where ω is the frequency at which the periodogram is
evaluated.
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The CFP is theoretically inappropriate for real-valued
nonuniformly sampled data [8], [7]. However, we will show
later in this paper that it still provides a useful definition.

B. Least-Squares Periodogram

With the following vector notations (dependencies on ω
omitted):

c =

 cosωt1
...

cosωtN

 , s =

 sinωt1
...

sinωtN

 , ŷ =

 ŷ1

...
ŷN


The least-square periodogram [9] [8] is defined as:

PLS =
(ŷ · c)2(s · s)− 2(ŷ · c)(c · s)(ŷ · s) + (ŷ · s)2(c · c)

N((c · c)(s · s)− (c · s)2)
(2)

where ŷ · c = c · ŷ denotes the dot product of ŷ and c. This
definition is commonly seen with additional normalizations
but for the HRV application, this is not needed because the
final measurement is a ratio of power in two frequency bands.

C. The Lomb-Scargle Periodogram

The Lomb-Scargle Periodogram [9], [7] is a modified
version of (2) and the most widely known and used variant.
Additionally define:

cτ =

 cosω(t1 − τ)
...

cosω(tN − τ)

 , sτ =

 sinω(t1 − τ)
...

sinω(tN − τ)


where τ is an ω dependent time reference explicitly chosen
to satisfy cτ · sτ = 0. The Lomb-Scargle Periodogram is
computed as:

PLomb =
1

N

(
(ŷ · cτ )2

cτ · cτ
+

(ŷ · sτ )2

sτ · sτ

)
. (3)

Eqn. (3) (with normalization) is commonly cited in the
HRV literature [4], [5], [10]. However, (2) and (3) are
numerically identical [9], [8]. Lomb [9] explained that the
time-shift modification of Eqn. (3) was solely intended to
assist statistical work in analytical forms and for numerical
evaluations (2) should be used over (3).

III. AN ONLINE ALGORITHM FOR THE PERIODOGRAMS

A. The Recursive Update of Trigonometric Sums

First we focus on recursive evaluation of trigonometric
series in the form of

YG(N,ω) =

N∑
n=1

yne
−jωtn . (4)

1) Simple Growing Window: If new samples are itera-
tively added to the summation, a recursive update for (4) is
simply:

YG(N,ω) = YG(N − 1, ω) + yN e
−jωtN .

2) Growing Window with Moving Time Reference: With
(4) the absolute time reference t = 0 was used. If we change
the time reference to be the latest sample acquired, i.e., tN ,
(4) becomes

YMT (N,ω) = ejωtN
N∑
n=1

yne
−jωtn . (5)

With a similar expansion of the summation, the recursive
relation is now

YMT (N,ω) = YMT (N − 1, ω) ejω(tN−tN−1) + yN . (6)

Remarkably, the only reference to time is the time interval
between the two most recent samples ∆t = tN − tN−1.

3) Sliding Window: For a sliding window with fixed
width, (6) is only half a solution. This ingress update is
performed whenever a sample becomes available and the
window slides forward in time to include the sample. On the
other end, older samples will eventually reach the trailing
edge of the window and this requires egress updates.

We consider a sliding rectangular window which only
serves the purpose of localizing a small section of the full or
infinite time series in our formalization. Spectral smoothing
window functions, e.g. Hamming and Hann are rarely used
with irregular sampling due their interaction with the spectral
window [7], [5].

Let the rectangular window function with width T be zero
outside −T < t ≤ 0. An egress update is required for each
sample, T unit-time after its ingress event, i.e., at tn + T .
Buffering of the windowed samples and scheduling of the
egress updates must be handled by the implementation.

Having established the leading window edge as the moving
time reference, a ingress sample denoted as yin, always has
relative time tin = 0 and similarly an egress sample yeg will
have teg = −T . In addition, let Y (ω) be similarly defined
as YMT (ω) from (5) but with windowed samples only. Let
Y ′(ω) be the previous value of Y (ω) and ∆t be the time
lapsed from the previous update, whether it was ingress or
egress. With the new notation, (6) is re-written as the ingress
sample update

Y (ω) = Y ′(ω)ejω∆t + yin. (7)

An egress sample update can be similarly derived as

Y (ω) = Y ′(ω)ejω∆t − yeg ejωT . (8)

The rotation coefficient ejωT reduces to one for ω = k 2π
T ,

i.e., harmonics of the fundamental frequency.
When ingress and egress events occur simultaneously, both

updates are required but with the later computed one having
∆t = 0.

B. Online Computation of the Periodograms

We now explain how to compute the CFP and the LSP
online using the recursive updates (7) and (8). To avoid
changing from the notation of Section II, it is assumed that
the index range n = 1, . . . , N corresponds to the windowed
samples. In addition, we implicitly apply a moving time
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reference tN and use {tn−tN}Nn=1 consistent with the sliding
window. This change of time reference has no effect on the
final values of the periodograms (1), (2) and (3) because of
their time-translation invariance [7].

1) Classical Fourier Periodogram: The CFP (1) can be
expressed as:

PCF (ω) =
1

N

∣∣∣∣Y (ω)− ȳS(ω)

∣∣∣∣2.
where S(ω) =

∑N
n=1 e

−jωtn is known as the spectral
window.
Y (ω) and S(ω) can be recursively computed as two indi-

vidual instances of (5). N and ȳ are updated correspondingly
for each ingress and egress event. Since recursive updates
of all four quantities N , ȳ, Y (ω), S(ω) require constant
numbers of operations, the time complexity for an update
remains O(1) per frequency ω.

2) Least-Squares Periodogram: To compute (2), use the
following trigonometric formulas from [6]:

c · c = (N + <(S(2ω)))/2, ŷ · c = <(Y (ω))−<(S(ω))ȳ

s · s = (N −<(S(2ω)))/2, ŷ · s = =(S(ω))ȳ −=(Y (ω))

c · s = −=(S(2ω))/2. (9)

Similar to the CFP, in addition to running updates of N
and ȳ, trigonometric sums Y (ω), S(ω) and S(2ω) can
be recursively computed as instances of (5). With these
quantities updated, ŷ ·c, ŷ ·s, c ·c, s ·s, c ·s can be evaluated
using (9) and subsequently used to compute (2). As before,
all computations here require constant numbers of operations
per update for a given ω.

3) Lomb-Scargle Periodogram: Evaluation based on (3)
for the Lomb-Scargle Periodogram is not recommended
because (3) and (2) are numerically identical while (3) re-
quires extra computations for τ and subsequent time-shifting
of the trigonometric sums [6]. The arctangent function is
also expensive to compute compared to multiplication and
addition. Thus in agreement with Lomb [9] and Stoica et
al. [8], (2) should be used over (3) for all computation work.

IV. DISCUSSION

A. Online LSP versus the Fast Lomb-Scargle in HRV

The HRV standard [1] defines the minimum period of time
over which short-term HRV can be meaningfully measured
and interpreted to be five minutes. This constrains the width
of the sliding window to be T = 300 s with a fundamental
frequency of f1 = 1/300 Hz. The primary HRV metrics
associated with frequency domain methods are LF, HF and
LF/HF ratio, where LF and HF are defined as the total spec-
tral power in the frequency band of 0.04 Hz to 0.15 Hz and
from 0.15 Hz to 0.4 Hz respectively. Therefore, computing
the LSP for all harmonics of the fundamental frequency
within the range of 0.04 Hz (12th harmonic) to 0.4 Hz
(120th harmonic), a total of 109 frequencies, is sufficient
to evaluate these metrics. Since this frequency resolution is
a function of T which is approximately proportional to the
number of samples (heart beats) N in the windowed input,

the computational complexity is also expressed in terms of
N .

In time-frequency analysis terms, increasing time-
resolution without sacrificing frequency-resolution requires
window instances with overlaps. Therefore whether the on-
line LSP or the fast Lomb-Scargle is more computationally
efficient is determined by the amount of overlap between the
windows for successive outputs. In theory, an overlapping
percentage of 1 − log2N

N or more would yield in favour of
the online LSP. For a typical real-world value of N = 400
or an average of 80 BPM over 5 minutes, this amount of
overlap yields a rate of output update every 6.4 seconds.

In practice, however, the online LSP may still be preferable
over the fast Lomb-Scargle at an overlapping percentage that
is much less than the above mentioned. This is because the
fast Lomb-Scargle algorithm involves a pre-processing step
which has complexity O(N) but the constant in front of this
order is so large that it is typically much slower to compute
than the O(N logN) FFT part of the algorithm [11].

From an implementation perspective, the fast Lomb-
Scargle algorithm [6] is substantially more complicated in
structure than the proposed online algorithm and may lead
to high area costs in custom hardware implementations.

B. Holland and Aboy’s RLSFT

Starting from the inverse DFT, Holland and Aboy [10]
derived a recursive solution for the case of adding a new
sample using the well-known recursive least-squares (RLS)
formulation to produce the “Recursive Least Squares Fourier
Transform” (RLSFT). The RLSFT has some similarities
to the CFP but is less general as some restrictive DFT
conventions were enforced e.g. standard frequency bins and
quantization of sampling times. Our efforts to reproduce their
work resulted in rather erratic spectra where significant side-
lobe leakage is observed (see Fig. 1). In addition, inaccurate
heights of spectral peaks compared to an FFT reference were
also apparent.

C. CFP versus LSP for HRV measureaments

We included the CFP in our discussion for two reasons.
Firstly, Holland and Aboy’s work [10] is very similar to
the CFP in formalization. More importantly, Scargle sug-
gested [7] that “the actual values are typically not changed
much” from the CFP to the LSP.

To compare CFP and LSP accuracy in a HRV application,
we duplicated the test bench set up used by Clifford and
Tarassenko [5]. A synthetic RR signal RR(t) with an LF and
an HF sinusoid components with a theoretical LF/HF power
ratio of 0.64 is generated at a high sampling rate (1000 Hz)
for a total period of T = 300 s or five minutes. The
time series is then searched and those samples occurring at
time intervals consistent with their values (RR intervals) are
collected, forming the synthetic RR tachogram {RRn}Nn=1.
Because the mean heart rate was chosen as 60 BPM or one
beat per second, the length of the generated RR tachogram
is N = 300 beats. The RR tachogram is then processed with
randomly occuring ectopic beats, where the occurrence of
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Fig. 1. The RLSFT power spectrum of a synthetic RR signal compared
to an FFT reference. The RLSFT seems to show severe local leakage from
the DC bin for this particular signal.

one ectopic beat leads to the removal of a pair of affected
RR interval samples being removed from the series. For each
number of ectopic beats simulated, starting from 1 upto a
maximum of 30 beats (or 60 samples being removed out
of 300), 1000 randomly seeded trials were tested. For each
trial the resulting RR series with beats removed are spectrally
analysed using the CFP and the LSP and the LF/HF ratio
computed.

Fig. 2 shows the mean and standard deviation of the
LF/HF ratio for 1000 simulations and how they scale with
the increasing number of samples removed due to ectopy.
For the LSP, our test results have accurately reproduced
those shown in Fig. 5. of [5], on which we modelled
this experiment. In addition, the CFP gave results which
were nearly indistinguishable from the LSP, consistent with
Scargle’s suggestion regarding the numerical differences [7].
Recalling from section III-B, the CFP is cheaper to compute
than the LSP, this leads us to the conclusion that the CFP
may be a viable approximation to the LSP when applied to
HRV analysis.

V. CONCLUSIONS

Online algorithms for the Classical Fourier Peri-
odogram (CFP) and Lomb-Scargle Periodogram (LSP) were
presented. For each new sample, this technique computes
an update based on previous values, avoiding redundant
computations and interpolation. The technique is eminently
suitable in embedded implementations of high resolution
time-frequency analysis of Heart Rate Variability. We further
evaluated the performance of the CFP compared with the
LSP in HRV analysis, our results showing that the two are
similar in accuracy and the CFP may offer computational
advantages due to its simpler form.
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Fig. 2. Distribution of LF/HF ratio estimates for the LSP and the CFP. The
dotted line indicates the theoretical standard of LF/HF = 0.64 and errorbars
indicating one standard deviation. The CFP’s series are ploted with a slight
offset for graphical clarity. The result of a baseline method (interpolation
followed by DFT) is also included.
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