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Abstract—Low-precision training for Deep Neural Networks
(DNN) has recently become a viable alternative to standard
full-precision algorithms. Crucially, low-precision computation
reduces both memory usage and computational cost, providing
more scalability for Field Programmable Gate Arrays (FPGAs)
with limited on-chip memory. In this paper, we describe and test
a prototype training accelerator for Zynq All Programmable
System on Chip (APSoC) devices using predominantly 8-bit
integer numbers. Block floating-point quantisation and stochastic
weight averaging techniques are applied during training to
avoid any degradation in accuracy. Results of an implementa-
tion reveal memory savings and 17× speed-ups over processor
only systems on several training tasks including the MNIST
and CIFAR10 benchmarks, and online radio-frequency anomaly
detection. Moreover, we propose modifications to the stochastic
weight averaging low-precision (SWALP) algorithm to achieve a
0.5% accuracy improvement for the abovementioned benchmarks
with results within 0.1% of floating-point. We suggest that both
inference and training can be deployed in the same package for
stand-alone embedded applications.

I. INTRODUCTION

Training deep neural networks (DNNs) requires large
amounts of memory and computation, and until now, has
almost exclusively been performed with full-precision floating-
point (FP32) numbers and many Graphics Processing Units
(GPUs). As a result, it is typically difficult to move training
into edge devices where there are stricter memory, power and
computational constraints (eg. mobile phones, radios, video
cameras).

The primary workload in DNN training is general matrix
multiplication (GEMM), which depending on the underlying
hardware, could be either memory or compute bound. To
overcome compute bound problems we want hardware with
more logic and higher compute density, and for memory bound
problems it’s desirable to fit at least one of the matrices in
fast on-chip memory. Given that DNN model sizes are steadily
increasing, and larger models produce larger matrices, more
efficient accelerators are required to satisfy these demands.
Low-precision computation offers arguably the best solution,
since fewer bits increases the compute density and reduces
memory consumption.

The majority of work on low-precision DNNs has focused
on the inference part only, to speed-up the run-time. These low-
precision network representations are obtained by quantising
the weights and activations during training, and can normally
achieve FP32 accuracy [1] [2]. In contrast, training with low-

precision generally produces worse accuracy than training
with FP32. The problem arises in computing gradients and
accumulating the weight updates specifically [3] [4]. This is
because the representable range of low-precision fixed-point
numbers is unsuitably small in most cases. A number of
techniques have been developed to address this issue, such as
wider accumulators [4], alternate number representations [5],
overflow prediction [6], variance reduction and bit centering
[7], and weight averaging [8]. In fact in SWALP [8], the
authors combine block floating-point quantisation with weight
averaging, establishing the first training algorithm capable of
achieving floating-point accuracy with only 8-bit arithmetic.
Our work is most similar to SWALP, except we compute the
weight updates in full-precision.

Although low-precision training techniques like block
floating-point quantisation and weight averaging have been
described previously, to the best of our knowledge, this is the
first paper that demonstrates training with these techniques on
Field Programmable Gate Arrays (FPGAs). Specifically, the
contributions of this work are:

• The first FPGA implementation of a CNN training
technique, which achieves accuracy of floating-point using
mostly 8-bit arithmetic.

• A modified version of SWALP which achieves improved
accuracy, and a flexible hardware/software partitioning
scheme.

• Quantitative analysis of the performance of the resulting
system using the CIFAR10 and MNIST benchmarks.

• The first demonstration of a real-time, radio frequency
anomaly detector with FPGA-accelerated training.

Our implementation targets the full range of Xilinx Zynq
All Programmable System on Chip (APSoC) devices. Zynq
comprises many different processing elements in the same
package, offering real-time processing and massive integration
capabilities for embedded applications. For instance, the
ZCU111 board features an ARM processor and FPGA together
with special multi-gigabit components for RF signal analysis.
Our training accelerator is designed especially for such systems,
where we want to combine real-time integration with on-chip
training. We refer to these applications as stand-alone because
they can necessarily be deployed in the field without host
communication. In Section V, we demonstrate this use case
by training a DNN-based auto-encoder for anomaly detection



in RF networks.

II. BACKGROUND

In this section, we present the required background and
theory on DNN training, Low-Precision Stochastic Gradient
Descent (LP-SGD), and Stochastic Weight Averaging.

A. DNN Training

In simple terms, DNNs are powerful multi-layered feature
extractors. They transform raw inputs via a sequence of layers
into simpler yet more abstract features with linear mappings
at the output. In general, computation layers take the form:

f(x) = g(WT x + b) (1)

where x ∈ Rd is the input to the layer, f(x) ∈ Rk is the
output of the layer, Wd×k and bk are the trainable weights
and bias parameters, and g is a non-linear activation function
applied elementwise (eg. the relu function, g(x) = max(0, x)).
Importantly, this simple formulation describes the fundamental
computation at the heart of all layers, convolution layers
included. For example, a kw × kh convolution operator can be
reformulated as standard matrix multiplication by rearranging
kw × kh blocks in the input into columns of a matrix. This
transform is known as im2col, while the reverse transform
is called col2im. Both transforms are used to implement the
fastest known convolution layers on GPUs and CPUs [9].

Training is performed by first establishing and then minimis-
ing an objective of the form:

H(W) =
1

m

m∑
i=1

hi(W) (2)

Here, h(W) is a loss function (eg. mean squared error, cross-
entropy etc.) and m is the number of training batches. For
ease of notation, we have defined the loss as a function of the
weights only.

Stochastic gradient descent (SGD) is commonly used to
minimise the objective. On each iteration, SGD will select
a random batch from the training set, corresponding to a
function h̃ from {h1, h2, ..., h(m}, and update the weights
in the direction of steepest descent, according to the following
equation and learning rate α.

Wt+1 = Wt − α∇h̃(Wt) (3)

Here, ∇h̃(Wt) refers to the weight gradient or alternatively
the derivative of the loss with respect to the weight ∂h̃

∂W . This
needs to be computed for every weight at every layer in
the network, and requires application of the chain rule to
propagate the loss back through the network. This is called
backpropagation and the back propagated loss at each layer is
the activation gradient (or deltas) denoted δl. If z(x) = WT x,
then at each computation layer we must compute the forward
path by Equation (1) and the backward path by Equations (4)
and (5), for the deltas and weight updates respectively.

δl−1 =
∂z

∂x
∂g

∂z

∂δl
∂g

(4)

∇h̃(W) =
∂z

∂W
∂g

∂z

∂δl
∂g

(5)

Since ∂z
∂x = W and ∂z

∂W = x, then both equations reduce to
matrix multiplication by δ̃l = ∂g

∂z
∂δl
∂g .

In summary: DNN training introduces two matrix multi-
plications at each computation layer, and furthermore, the
input batch at each layer of the forward path must be saved to
calculate ∇h̃(W) in the backward path. Low-precision numbers
can be used to reduce these computation and memory costs.

B. Quantisation

To train networks in low-precision a quantisation function
Q(.) is required to convert real-valued weights, activations, and
gradients into their rounded versions. A number of quantisation
methods have been suggested in the literature [10], [11], [3],
[12]. This paper will focus on block floating-point quantisation
with stochastic rounding, as implemented in [8].

In block floating-point (BFP), all numbers within a block
share the same exponent, which is allowed to vary during
training. The exponents are calculated at regular intervals during
training and should be set to the largest exponent in a block to
avoid overflow [13][5]. For training convolution layers where
the inputs are multi-dimensional arrays, a block could represent
a batch, an image, or even just one channel. The finer the
granularity, the more exponents that must be saved [8].

In stochastic rounding, numbers are rounded up or down
at random such that the expected rounding error is zero, i.e.
E[Q(x)] = x. If I bits are allocated to represent a quantised
number and the exponent for that block is E, then the number
of fractional bits is F = −E + (I − 2) and the smallest
representable number is ε = 2−F [10]. Let bxc be the largest
integer multiple of ε which is less than or equal to the real
number x, then the quantisation function for x is:

Q(x,
〈
I, E

〉
) =


bxc with prob. 1− (x− bxc)

ε

bxc+ ε with prob.
x− bxc

ε

,

(6)

C. Low-precision SGD

It was shown in [4] that low-precision SGD converges to
a solution without losing any full-precision accuracy. The
authors determined that weights, activations and deltas can
be quantised to 8 bits only, while 16 bits are needed for
the gradient accumulators in the weight update, i.e. ∇h̃(Wt).
Basically, if the bit width of the accumulated gradients is too
small, and the learning rate is also small, then the weight
update will be eliminated by quantisation causing training to
stagnate well before the full-precision version. This is the root
cause of accuracy degradation in low-precision models. In our
work, the gradient accumulation for the weights is computed
in full-precision on an ARM processor.



Fig. 1. Empirical results of stochastic weight averaging (SWA) with full-
precision (FP) and low-precision (LP) SGD

D. Stochastic Weight Averaging for LP-SGD (SWALP)

In SWALP [8], the authors showed that simply averaging
SGD iterates of the weights with a higher learning rate can
recover quantisation errors and produce better low-precision
training models, even when all numbers are 8 bits (including
gradient accumulators). This technique is known as stochastic
weight averaging (SWA) [14]. Figure 1 illustrates an example
on the CIFAR10 image classification dataset. For the first
80k iterations standard SGD and a decaying learning rate
is applied, and in the last 40k iterations the learning rate
is modified, held constant, and the weights are averaged
every epoch (approximately 400 iterations). The averaged
weights are not used directly in training but rather represent
the final trained model. This technique is observed to work
relatively better for low-precision models. This could be
because averaging cancels out errors in weights rounded up with
those rounded down during quantisation. The main limitation
from an implementation perspective is that a copy of the low-
precision weights must be stored in high precision for the
moving average. For PCIe-based accelerator cards, the high
precision copy could be stored in slower host memory and
the moving average calculated on the host every few hundred
iterations by transferring the low-precision weights over the
PCIe bus. This way, the high precision copy doesn’t consume
any of the fast DDR memory close to the accelerator. In
embedded devices like Zynq, there is no host and the fast DDR
memory is shared between the FPGA and ARM processor. So
even though the high precision copy is not used regularly, it
will ordinarily be saved with memory that could otherwise
be used for more low-precision weights and supporting larger
models.

E. Related Work

The vast majority of work on low-precision has targeted
hardware acceleration for DNN inference only [15]. Examples
include FINN [16], Eyeriss [17], ESE [18], RebNet [19]. In
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contrast, there are relatively few examples for training DNNs
on FPGAs.

Early work considered the case of backpropagation through
just one neuron [20], and then one multi-layer perceptron
(MLP) layer [21]. Small MLP networks are also considered
in [22], except training is performed with 16-bits via weight
perturbations. Such a technique can reduce area by 10× over
backpropagation when the network can be fully pipelined.
FPDeep [23] is a design framework for mapping DNN training
across multiple FPGAs in a cluster. They show 3.4× better
energy efficiency is possible training 16-bit AlexNet, when
the computation is distributed across 15 FPGAs in a pipelined
manner. The authors in [5] describe an FPGA prototype which
is similar in the sense that all weights and activations are
stored on-chip. In general, the above mentioned works are
only relevant to single FPGA implementations if the networks
are very small. F-CNN [24] is more scalable and uses run-
time reconfiguration to implement the different kernels used
during training. The computation is based on 32-bit floating-
point arithmetic, although 8-bits is now sufficient. DarkFPGA
[25] is a new accelerator for 8-bit training, and is particularly
optimised for convolution layers. The authors introduce several
optimisations, including a new data pattern and tiling strategy,
and demonstrate comparable performance with a GPU and
better energy efficiency for training CIFAR10. Our work is
similar in that we have also designed an accelerator for 8-bit
matrix multiplication, but is sufficiently different in that we’ve
focused on techniques for high accuracy training and reported
a real application of this technology.

III. LOW-PRECISION TRAINING ACCELERATOR

In this section, we introduce our Low-Precision DNN training
accelerator for Zynq SoC and MPSoC devices. Figure 2
provides a simple illustration of the three main components
of the Zynq-based system, namely the programmable logic
(PL), processing system (PS), and high bandwidth DRAM
interface. We offload all GEMM instructions (which are 8-bit
only) to the PL, and use the ARM processor to compute the
rest of the network in floating-point. Since the majority of
computation in any DNN involve GEMMs, we can achieve
significant speed ups in training times over a processor-only
system, while not losing any generality in terms of the type of
networks we support. Our only limitation is memory, both in
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Fig. 3. Array shapes and sizes for convolution layers: A*B=C. Forward (top),
backward weight gradient (middle) and backward activation gradient (bottom)

the PL and DRAM. Our designs were implemented using Xilinx
SDSoC 2018.3, a predominantly software-based development
flow which abstracts away much of the low level complexities
associated with moving data between the PL and PS.

A. Software Overview

Our project is forked from Darknet [26] with added
support for stochastic weight averaging (SWA), low-precision
convolution and fully-connected layers, contiguous memory
allocation on Zynq, and compilation directives for SDSoC-
based FPGA acceleration. Darknet is an open source
framework for DNNs written in C. It provides the backend
for TinyYolo [27] and contains fast implementations for
many different layers, activation functions, and DNN utility
functions. We use a PYNQ v2.4 image to boot our boards
[28]. Although we prefer C/C++ binaries over Python, PYNQ
runs desktop Ubuntu offering a highly productive development
environment for all users, not just Python ones. All our
software (including bitstreams) can be installed from our
repository and compiled on the board. Our repository is
available online at www.github.com/sfox14/darknet-zynq.

1) Convolution: In this paper we have focused on training for
convolution layers specifically. The inputs are typically images
with three dimensions (w, h, ic), corresponding to the width,
height and number of channels. The outputs are computed by
applying a convolution kernel to the image with typically four
dimensions (kw, kh, ic, oc), which refer to the kernel width
and height, and number of input and output channels. The
convolution kernel computes dot products over local regions of
the input, moving over the input with an associated stride, and
forming outputs with shape (w′, h′, oc). As mentioned previ-
ously, convolution layers can be reformulated with GEMMs
by the im2col and col2im transforms. Figure 3 shows the
mapping in detail for forward and backward paths. Please
note that our accelerator computes convolution in channel last
order, meaning the input image x is streamed from contiguous
memory along the channel axis. For computing the weight
update in the backward path, ∇xl+1 and xl must therefore be
transposed in software, as shown in Figure 3.

Algorithm 1 describes the computation and hard-
ware/software partitioning for the quantised convolution layer.

Algorithm 1: Convolution Layer
Define: layer l; time t; 8-bit weights W̄

t
l ; input activations xt

l ;
deltas ∇xt

l ; weight updates ∇W t
l ; quantisation

functions Qw, Qa, Qe; quantisation scaling coefficients
qw, qa, qe; gemm inputs A, B; gemm output C;
batch size K;

1. Forward:
Software:

1 x̄t
l , qa = Qa(x

t
l); B = im2col(x̄t

l);
Hardware:

2 A = (W̄
t
l)

T ;
3 C = tofloat(gemm(A,B), qw, qa);

Software:
4 xt

l+1 = C;
2. Backward:

Software:
5 ∇x̄t

l+1, qe = Qe(∇xt
l); tmp = im2col(x̄t

l
T
);

6 for i = 1, 2, . . . ,K do
Hardware:

7 A = ∇x̄t
l(i)

T ; B = tmp(i);
8 C = tofloat(gemm(A,B), qe, qa);

Software:
9 ∇W t

l += C;
10 end

Hardware:
11 A = W̄

t
l ; B = ∇x̄t

l+1;
12 C = tofloat(gemm(A,B), qw, qe);

Software:
13 ∇xt

l = col2im(C);

The quantisation, im2col and col2im functions are computed
in software on the ARM processor, while the GEMM (8-bit
fixed-point) and fixed to float recasting function are offloaded
to the FPGA. Each layer must store it’s own set of 8-bit
weights W̄ l, 8-bit input activations x̄l, and FP32 quantisation
scaling coefficients (qw, qa, qe). Given that SGD operates
over batches of inputs, the batch size scales the size of x̄l and
subsequently the memory required for the entire network.

Fully-connected layers are implemented similarly to
convolution layers except im2col and col2im are not required.

2) Block floating-point Quantisation: The inputs to the
GEMM are quantised to 8 bits block floating-point. We
save one exponent for the weights and b exponents for the
activations and deltas, where b is the batch size. This is similar
to the big-block and small-block designs in SWALP [8]. The
exponents are updated every iteration by setting the exponent
to the maximum exponent within the block. This is the safest
way of avoiding overflow but also the most inefficient. It would
be worth exploring less regular exponent update algorithms as
well as more fine-grained block designs, but we have deferred
this for future work. The exponents are saved as floating-point
scaling factors (i.e. a = 2E), and are used to convert the fixed-
point output from the GEMM back into a floating-point number.

3) Memory Usage: Table II shows a comparison of memory
usage for different batch sizes. This example considers training
for CIFAR10 on the VGG16 network. The malloc columns
refer to non-contiguous memory while cma columns denote



TABLE I
VGG16 NETWORK ARCHITECTURE (CONVOLUTION LAYERS ONLY).

*NOTE, 2× REFERS TO THE NUMBER OF TIMES A LAYER IS REPEATED.
EACH CONVOLUTION LAYER HAS STRIDE=1, AND THE INPUT IS

DOWNSAMPLED USING 2× 2 MAXPOOL LAYERS.

#L. Filter size
(k × k × IC ×OC)

Input size
(W ×H × IC)

1 3× 3× 3× 64 32× 32× 3
2 3× 3× 64× 64 32× 32× 64
3 3× 3× 64× 128 16× 16× 64
4 3× 3× 128× 128 16× 16× 128
5 3× 3× 128× 256 8× 8× 128
6 (2×) 3× 3× 256× 256 8× 8× 256
7 3× 3× 256× 512 4× 4× 256
8 (2×) 3× 3× 512× 512 4× 4× 512
9 (3×) 3× 3× 512× 512 2× 2× 512
10 (2×) 1× 1× 512× 512 1× 1× 512

TABLE II
MEMORY USAGE IN MEGABYTES (MB) FOR VARYING BATCH SIZE ON

VGG16

Batch
Darknet 8-bit 8-bit + SWA
(float) malloc cma total malloc cma total

1 141 4 34 38 65 34 99

32 276 110 38 148 171 38 209

128 722 438 51 489 499 51 550

the contiguous memory allocations. We allocate contiguous
buffers for the inputs and outputs of the GEMM and size them
for the largest layers of the network. The weights are saved in
contiguous memory which avoids the overhead of copying data.
The input activations are stored in non-contiguous memory
and im2col writes them into contiguous buffers each iteration.
Stochastic weight averaging (SWA) requires additional 61 MB
for a floating-point copy of the low-precision weights. This
table assumes a batch is processed one example at a time.
If the batch is tiled by a larger factor, then the size of each
direct memory access (DMA) transfer will be larger and more
contiguous memory must be allocated. A larger tile size could
lead to improved performance as shown in Figure 5, but this
has not been implemented.

B. Hardware Design

Figure 4 shows the high level design of our accelerator
architecture. The core computes matrix multiplication AB = C
or ATB = C. The option is configurable at runtime.

1) Dataflow: Matrix A is pre-loaded into on-chip block
rams (BRAMs) and mapped spatially to an N × N array
of processing elements (PEs). B is streamed from DRAM
in row major order (see Figure 3) forming 8-bit N -length
vectors which are broadcast to each column of the PE array.
Each column is responsible for computing one N -length dot
product, forming N× 32-bit partial sums each cycle. The
partial sums are accumulated, and the result C ′ is produced
after an entire row of B has been processed. If A are weights
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then this describes a weight-stationary dataflow [17].

2) Fixed to Float: The integer result C ′ is cast back
to floating-point and re-scaled by successively multiplying
the BFP scaling factors for matrix A and B. As described
previously, we apply one scaling factor for the weights, and
b scaling factors for the input activations and deltas, where
b equals the batch size. The casting and scaling is fully
pipelined, consuming moderate FPGA resources. Any other
conditioning or reshaping for matrix B or C is performed by
the PS.

3) Memory and Array Partitioning: Our accelerator
assumes the entire matrix A can be pre-loaded into on-chip
memory. Therefore, the maximum DNN size we can train
is limited by the availability of on-chip memory resources,
i.e. the number of BRAMs and LUT RAMs on the FPGA.
Figure 3 shows the array shapes our accelerator expects
for A, B and C, for forward (top) and backward paths
(middle and bottom). Since we process a batch one input
(image) at a time, the on-chip memory needed for A
is Afpga ≥ max(oc× ic× k2, oc× w × h). For VGG16
(see Table I), this means our FPGA must have at least
512 × 512 × 9 × 1 = 2.35MB of available memory. This
is mapped to BRAMs in our PEs. The PE memory is
statically partitioned at compile time along both row and
column axes, but the memory access pattern is run time
configurable allowing data to be fetched in either row major
or column major order. This is critically important for DNN
training workloads specifically, where the weights W and the
transposed weights WT are both mapped to A and calculate
the output activation and activation gradients in the forward
and backward path respectively (as shown in Figure 3). If
we don’t have run time configurability then our static array
partitions would have to be equal sized. This would be
highly inefficient and require approximately 9× more memory
resources.

4) Performance Roofline: A roofline model [29] is used
in Figure 5 to visually relate peak performance and off-chip
memory bandwidth with the operational intensity of the largest
GEMM in VGG16. The largest GEMM exists in computing



Fig. 5. Roofline model: 32x32 PE array at 200 MHz

the backward path for layers with oc = 512 and ic = 512,
where 512× 9 multiply accumulates (MACs) are required per
input (or per byte). Figure 5 equates one operation with one
MAC. We have assumed a conservative estimate of 10 GB/s for
the memory bandwidth of the ZCU111 board. Therefore peak
memory bound performance equals to 10× 512× 9 = 46, 080
giga-operations per second (GOPs/s), or 46 TOPs/s. The peak
DSP performance is based on 4272 DSPs doing two 8-bit MAC
at 550 MHz, therefore 4272× 2× 550 = 4.70 TOPs/s.

The red line is our implementation and is based on a 32×
32 PE array doing 1 MAC per cycle at 200 MHz, therefore
32 × 32 × 200 = 205 GOPs/s. Clearly, large VGG layers
are compute bound because the dotted line intersects the red
line under the peak memory bound performance. However,
even small VGG layers are compute bound. For example, the
smallest GEMM in VGG has an operational intensity of 64 and
peak memory bound performance of 640 GOPs/s. This is still
higher than our peak compute performance. Furthermore we are
also architecture bound since our peak compute performance is
significantly below the peak DSP performance, indicating our
chosen architecture is not utilising available compute resources
efficiently.

To utilise more of the available memory bandwidth and
DSP resources, we can consider interleaving multiple rows
of input B and compute them in parallel. We can think of
this as blocking or tiling, and the green and blue lines show
performance points of different tile factors. As mentioned
previously, tiling requires changes in the software backend, and
requires a larger contiguous memory allocation. The authors
in [25] describe tiling strategies for optimising the GEMM for
training, and there are many other highly optimised GEMMs
which could replace our core.

5) Implementation details: We designed our accelerator
using Vivado HLS 2018.3. We encountered several limitations
of using HLS which are worth mentioning here. First, arrays
in HLS must ordinarily be partitioned by power of two factors

TABLE III
RESOURCE UTILISATION FOR ZCU111 BOARD

Config.
Amax BRAM 36k LUTs/DSPs/FFs Freq.

(row/col) (1080) (4.2M)/(4.2k)/(850k) (Mhz)

16x16 240/2198 149 32.3k/269/20.7k 262

16x16 336/3040 277 32.5k/269/20.8k 253

32x32 480/4160 533 69.3k/1037/25.8k 246

32x32 672/6080 1045 73.1k/1037/25.6k 181

TABLE IV
RESOURCE UTILISATION FOR PYNQ-Z1 BOARD

Config.
Amax BRAM 36k LUTs/DSPs/FFs Freq.

(row/col) (140) (53k)/(220)/(106k) (Mhz)

8x8 120/1064 45 13.9k/81/17.4k 114

8x8 168/1520 77 14.1k/81/17.4k 112

otherwise large amounts of additional logic is inferred leading
to problems with synthesis. Second, to implement both row
major and column major reads on A, A must have the same
partition factor in each dimension. Together, these issues
meant our PE array can only be scaled by a minimum factor
of 4×.

IV. ANALYSIS AND IMPLEMENTATION

We tested our architecture and training algorithms on two
generations of Zynq SoC and MPSoC devices from Xilinx
Inc. The Pynq-Z1 board, which integrates an ARM Cortex-
A9 processor and small 7-series FPGA, and the ZCU111
development board (also known as RFSoC) which couples
four ARM Cortex-A53 processors and a large Ultrascale+
FPGA. For comparative purposes, we have chosen to validate
the training accuracy and run times on standard well known
networks and datasets, such as VGG16 [30] and CIFAR10
[31]. These problems are perhaps ill-suited to the low power
embedded application domain we’re focused on, but they are
familiar to the research community in general. In the next
section, we evaluate our training accelerator on a targeted
problem with real world constraints.

A. FPGA Resource Utilisation

Tables III and IV show FPGA resource utilisations for
different PE array configurations on the ZCU111 and Pynq Z1
boards. As mentioned previously, our accelerator is designed to
fit the entire A matrix in on-chip memory, and more specifically
in block rams (BRAMs) located in PEs. If this is not possible
then larger layers can be handled by breaking A into smaller
blocks and calling the accelerator multiple times. Arbitrarily
large layers can be solved as long as they fit in ARM memory.
For now we assume the accelerator must only be called once
and therefore Amax refers to the largest supported matrix for a
specific PE and BRAM configuration. Notably, A can be at most
672×6080 and 168×1520 on the ZCU111 and Pynq-Z1 boards
respectively. This refers to designs which consume 97% and



TABLE V
TEST ACCURACY (%) ON CIFAR10 AND MNIST FOR VGG16,

PRERESNET-20 AND LOGISTIC REGRESSION, TRAINED WITH DIFFERENT
QUANTISATION SCHEMES. THE NUMBER OF EPOCHS TAKEN TO REACH 92%

ACCURACY FOR BATCH SIZE 128 ARE ALSO RECORDED.

Dataset Model
Float SWALP [8] Ours (8-bit)

Acc. Ep. Acc. Ep. Acc. Ep.

CIFAR10
VGG16 93.02 205 92.47 195 92.93 177
PreResNet-20 93.29 223 93.29 225 93.72 218

MNIST Logistic
Regression

92.6 104 92.06 66 92.7 108

TABLE VI
TIME PER ITERATION (secs) ON CIFAR10 AND MNIST FOR VGG16 AND

LOGISTIC REGRESSION, TRAINED ON PYNQ-Z1 AND ZCU111 BOARDS

Dataset Model Batch
Pynq-Z1 ZCU111

A9 FPGA A53 FPGA

CIFAR10 VGG16
1 - - 5.6 1.58
32 - - 172 9.89
128 - - 680 38.6

MNIST LogReg
128 0.0401 0.0084 0.0121 0.0031
256 0.0824 0.0149 0.0247 0.0057

55% of available BRAM memory. Due to power of two scaling
we can not improve BRAM usage on the Pynq-Z1 board. Also,
Amax is observably non-square because we are optimising
the memory partitioning for GEMMs with 3× 3 convolution
kernels. This means, we can support convolution layers with
up to 672 and 168 channels on each board respectively.

B. 8-bit Training

The key results from SWALP [8] have been reproduced in
Table V for training VGG16, PreResNet-20 [32] and logistic
regression networks on CIFAR10 and MNIST datasets.

All networks were trained with batch size 128, and without
bias and batch normalisation. We trained for 250, 350, and
150 epochs, for VGG16, PreResNet-20 and logistic regression
respectively, using starting learning rates of 0.05, 0.1 and
0.1 which are decayed linearly. Stochastic weight averaging
is applied for the last 25% of epochs with a modified
constant learning rate of 0.01. Importantly, Table V shows our
quantisation scheme achieves virtually the same test accuracy
as full-precision floating-point networks and the prior work of
SWALP [8]. This is expected since our work uses a combination
of 8-bit fixed-point and full-precision floating-point (for the
weight gradients and updates), whereas SWALP is entirely
8-bit. Our choice for a mixed precision algorithm is predicated
on the fact that Zynq has fast DDR memory shared between
the PL and floating-point units in the PS. Basically, we can
compute the weight updates efficiently in low-precision on the
FPGA, and accumulate them in high precision on the ARM.

C. Performance

Training times per iteration are given in Table VI for varying
batch sizes. As mentioned previously, our accelerator does not

Fig. 6. VGG16 per-layer forward and backward times on ZCU111

Fig. 7. Software overhead of convolution layers

exploit batch level parallelism, and therefore training times
increase linearly with batch size. We placed designs with 8×8
and 32× 32 array configurations on the Pynq-Z1 and ZCU111
boards running at 100Mhz and 180Mhz respectively. Using
low-precision and offloading all GEMMs to the FPGA, we
can achieve a 17× speed-up for CIFAR10 and VGG16 on the
ZCU111, and up to 5.5× and 4.3× speed-ups for MNIST on
the Pynq-Z1 and ZCU111 boards respectively. This is compared
to software running on an A53 (or A9) Arm processor and
all computation done in full-precision floating-point. For an
additional point of reference, a mid-range Tesla M40 GPU
performs at roughly 16 iterations per second for batch 128 on
CIFAR10 and VGG16. This corresponds to a massive 600×
speedup over our ZCU111 implementation. However, the work
by Luo et al. [25] has shown that this performance gap can be
significantly reduced, through GEMM optimisations and also
by implementing more of the training on-chip. We suggest that
in applications which must be deployed stand-alone (without
host communication), and which need the energy efficiency and
low latency of FPGA inference engines, then system designers
are likely to tolerate slower training times as long as that
training can be computed with high accuracy on-chip. The low-
precision techniques presented in this work do not compromise
the training accuracy. Figure 6 profiles the execution time and
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Fig. 9. Comparison of F1-scores and training times for anomaly detection

relative speed-up for forward and backward paths, and for each
convolution layer in the VGG16 network (details provided in
Table I). The backward path requires an extra GEMM and
takes observably longer than the forward path, and layer 8 and
layer 2 take the most time on the ARM and FPGA respectively.
The input and output activations are particularly large in layer
2 (i.e. 32× 32× 64), and therefore proportionately more time
is spent in software on the im2col and quantisation functions.

D. Software Overhead

Figure 7 profiles the runtime and software overhead on two
different convolution layers, for both the forward and backward
paths. Clearly, im2col and col2im are the main bottlenecks,
and this is especially damaging on layers with a large number
of input and output activations (like layer 2, 32 × 32 × 64
pixels). Future work should aim to accelerate both functions.
This will require channel first ordering on the array in software,
and more on-chip memory for implementing line buffers in
hardware.

V. CASE STUDY: ON-CHIP TRAINING OF AUTO-ENCODERS
FOR ANOMALY DETECTION IN RF NETWORKS

The application of neural networks to physical layer radio
signals is extremely challenging due to the high data rates
involved. In anomaly detection, one would like to perform

training and prediction in an online manner to obtain a model
of normal data, while simultaneously making normal/abnormal
classifications. In this section, we train a low-precision variant
of a small and simple network for detecting anomalies in
frequency modulated radio signals.

Figure 8 shows the network architecture for the RF anomaly
detector. The main component is the autoencoder multi-
layer perceptron (MLP) network. The first two layers encode
and compress the input signal by learning a dimensionality
reduction transform, and the final two layers reconstruct the
encoding back to the original input signal. The mean-squared
error loss is computed at the output layer using the original
input signal as the truth values. An anomaly is detected when
the loss is higher than a preset threshold value. This is a form
of unsupervised learning.

Training is still performed by offloading each GEMM to
the FPGA accelerator on the ZCU111 board. This experiment
uses a 16 × 16 PE array configuration running at 200Mhz.
Our training data consists of sliding windows of complex I/Q
samples. Each window has a length of 32 which represents
the dimensionality of the input vectors. We perform training
by collecting and then iterating low-precision SGD over a
batch of 1000 inputs. To validate the performance of the
anomaly detector during training, we created a test set with
three different types of noise (i.e. bandpass, chirp and complex
sine), and computed an F1-score for correctly detecting the
known anomalies. Figure 9 shows a plot of F1-score on the test
set for floating-point and 8-bit training algorithms. The anomaly
detector shows convergence to an F1-score of approximately
0.87 after around 200 iterations for both curves. The 8-bit
version is accelerated by the FPGA and is observably faster
to converge. This reflects a 1.75× speed-up over training with
software-only. Much larger speed-ups are expected for wider
networks that require more computation.

VI. CONCLUSION

In this paper, we have introduced new techniques for
efficiently training DNNs with high accuracy on Zynq devices.
The convolution and fully connected layers are computed on
the FPGA using only 8-bit block floating-point numbers for
weights, activations and activation gradients, while the rest of
the network is computed in full-precision on an ARM processor.
A prototype training accelerator was designed for portability
across multiple Zynq boards and integration with high-level
software frameworks. Results of an implementation on multiple
benchmarks show up to 17× speed-ups over processor only
systems without any degradation in training accuracy.
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