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ABSTRACT 

Due to their increasing resource densities, field 
programmable gate arrays (FPGAs) have become capable 
of efficiently implementing large scale scientific 
applications involving floating point computations. In this 
paper FPGAs are compared to a high end microprocessor 
with respect to sustained performance for a popular 
floating point CPU performance benchmark, namely 
LINPACK 1000. A set of translation and optimization 
steps have been applied to transform a sequential C 
description of the LINPACK benchmark, based on a 
monolithic memory model, into a parallel Handel-C 
description that utilizes the plurality of memory resources 
available on a realistic reconfigurable computing platform. 
The experimental results show that the latest generation of 
FPGAs, programmed using Handel-C, can achieve a 
sustained floating point performance up to 6 times greater 
than the microprocessor while operating at a clock 
frequency that is 60 times lower. The transformations are 
applied in a way that could be generalized, allowing 
efficient compilation approaches for the mapping of high 
level descriptions onto FPGAs. 

1. INTRODUCTION 

The vast majority of engineering and scientific applications 
running on conventional computers employ floating point 
arithmetic for accurate modeling and to reduce 
experimentation requirements [1]. Recently, technology 
scaling has made possible the fabrication of FPGA devices 
with resource densities that allow efficient 
implementations of floating point algorithms. Significant 
research effort has been spent on studying floating point 
arithmetic for FPGAs. The use of custom floating point 
formats in FPGAs is discussed in [2, 3]. Other works focus 
on the development of optimized floating point operators 
for FPGAs [4] and features that can improve floating point 
performance are described in [5].  The work presented in 
[6] studies single precision floating point matrix 
multiplication on FPGAs, compares it to a microprocessor 

and proves that FPGAs can achieve competitive sustained 
floating point performance. Performance comparisons 
between FPGAs and microprocessors for double precision 
floating point linear algebra functions are discussed in [7].  

 Although FPGAs and microprocessors are quite 
competitive in terms of performance, a large gap still exists 
in terms of design flows. FPGA programming is still 
performed to a large extent using conventional HDL based 
design flows. This approach is quite inefficient for 
exploiting the large resource densities of modern FPGAs 
within strict development time constraints. Higher level 
hardware compilation approaches are required to create an 
efficient, software-like design flow and allow the efficient 
implementation of complex applications on modern 
FPGAs. A number of commercial and academic 
approaches have been proposed in this direction [8, 9].  
 The main contribution of this work involves a design 
methodology of applying a sequence of optimizations 
before hardware compilation for coarse grained data level 
parallelization (not limited to the innermost loops of loop 
nests) and data transfer and storage optimization. These 
optimizations involve identifying opportunities for: data 
reuse, loop pipelining, loop level parallelism, parallel 
memory assignment, fine grained (instruction level) 
parallelism and pipelining. Such optimizations are not 
automatically applied in existing hardware compilation 
environments, especially in combination. Most existing 
hardware compilation approaches focus on performance 
optimization by applying loop unrolling and pipelining 
optimizations in the inner loops of loop nests while data 
transfers and storage issues are not aggressively optimized. 
 Applying this methodology to the popular LINPACK 
benchmark [10] we were able to achieve very high 
performance on a complex benchmark, outperforming a 
standard commodity processor. To the best of our 
knowledge, this is the first reported FPGA-based 
implementation of the LINPACK benchmark, and presents 
an indication of the performance achievable using current 
devices on real-world scientific benchmarks. The same 
methodology could be applied to other applications, 
though how successful the optimizations are will depend 
on the regularity of the application’s data access patterns. 



                    begin 
 -- generate linear system Ax = b -- 
 matgen (&A[ ][ ],&b[ ]); 
 -- start timer -- 
 t1 = second(); 
 -- Solve system using LU decompositon -- 
 dgefa (&A[ ][ ], &ipvt[ ], 1000); 
 dgesl (&A[ ][ ], &b[ ], ipvt[ ], 1000); 
 -- store time taken -- 
 t1 = second( ); 
 -- calc average FLOPs -- 
 ops = 2/3*(1000)^3 + (1000)^2; 
 flops = ops / t1; 
 x[ ] = b[ ]; 
 -- regenerate original A[ ] & b[ ] -- 
 matgen(&A[ ], &b[ ]); 
 -- calculate b = Ax - b -- 
 b[ ] = -b[ ]; 
 dmxpy(A[ ][ ], &b[ ], x[ ], 1000); 
 -- find residual and normalise -- 
 resid = max (b[ ]); 
 residn = norm(resid); 
 print(t1, flops, resid, residn); 
end; 

 
Fig. 1.  Pseudo code for LINPACK 1000 

 
The rest of the paper is organized as follows. Section 2 
gives a brief description of the LINPACK 1000 
benchmark. Section 3 describes the general platform this 
work seeks to target and Section 4 describes how the 
critical sections of the LINPACK benchmark are 
implemented on an FPGA. In Section 5 the results for this 
implementation are presented and Section 6 contains the 
conclusions drawn from this work. 

2. LINPACK 1000 

The LINPACK family of benchmarks solves a system of 
linear equations using LU decomposition and is typical of 
many matrix-based scientific computations. It is widely 
used to gauge the floating point performance of computer 
systems. This work will focus on the LINPACK 1000 
benchmark which is most commonly used to evaluate 
general purpose microprocessors. LINPACK 1000 solves a 
random linear system of order 1000, measures the average 
floating point performance achieved and reports the 
residual error produced.  
 The pseudo-code for the operation of the LINPACK 
1000 benchmark is given in Fig. 1. It first generates a 
random 1000x1000 element matrix, A, and 1000 element 
vector, b. The elements in A and b are all floating point 
numbers. The dgefa and dgesl subroutines are then used to 
find a 1000 element vector, x, such that Ax = b. 
 The dgefa subroutine performs LU decomposition by 
Gaussian elimination with partial pivoting on A. A brief 
description of this method can be found in [11]. dgefa 
modifies A and returns a vector, ipvt, containing the pivot 
indices. The dgesl subroutine then solves the simplified LU 
version of the original system. The time taken to complete 
the dgefa and dgesl subroutines is measured, and the 
average FLOPs calculated. The remainder of the algorithm 
serves to estimate the normalized residual error in the 
result vector x.  

 
  Fig. 2.  Target Platform 

 
The true LINPACK 1000 benchmark uses double precision   
floating   point   numbers.  However, Celoxica’s floating 
point library offers only single precision format. To enable 
a fair comparison between the microprocessor and Handel-
C implementations, the benchmark must be modified to 
use single precision. 
 The single precision benchmark was profiled for an 
Intel Pentium 4 processor (3GHz, 1Mbyte L2 cache) 
running Windows XP using GCC 4.0.2 (running through 
Cygwin). The entire single precision benchmark takes 1.70 
seconds to complete, with an average floating point 
performance of 427 MFLOPs across the dgefa and dgesl 
subroutines. 93% of the execution time is spent in the 
dgefa subroutine. dgefa calls a smaller function, named 
daxpy, 499500 times with the result that the latter alone 
accounts for 90% of the total execution time for the 
benchmark. 

3. TARGET PLATFORM 

This work targets the general platform shown in Fig. 2. It 
consists of a host microprocessor system linked to an 
FPGA based coprocessor via a PCI interface. The 
coprocessor features a high density FPGA, a PCI 
interface/controller and on-board memory resources. In 
this work the on-board memory is assumed to be SRAM 
with between 4 and 6 banks giving a total of up to 
32Mbytes of storage. The data width of the memories is 
assumed to be 32 bits. Although this does not match any 
existing development boards the features specified are 
realistic and similar to those found on a number of boards 
including the Celoxica RC300 [12] and RC2000 [13]. 
 This target platform has a key characteristic that affects 
the implementation of the LINPACK 1000 benchmark, 
namely that the benchmark must be partitioned between 
the FPGA and the microprocessor to achieve good 
performance. However, communication between the 
microprocessor and the FPGA will be slow compared to 
accessing the local SRAM. Hence a partition must be 
chosen that limits the total communication required. 
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 For simplicity the benchmark is partitioned so that the 
entire dgefa subroutine is implemented on the FPGA co-
processor. This partition limits the communication across 
the PCI bus to two large block transfers of data (totaling 
2001000 32-bit transfers), one at the start of the subroutine 
and the other at the end. It also provides potential 
opportunities for data reuse and parallelism on the FPGA 
since dgefa contains a nested loop with three levels. 
Finally, since dgefa accounts for 93% of the execution 
time of the benchmark, there is good potential for overall 
acceleration of the algorithm. 

4.  FPGA ACCELERATION OF THE DGEFA 
ROUTINE 

The design of LINPACK on FPGAs was done in Handel-C 
and compiled in hardware using the DK Design Suite [14]. 
Compared with other HDLs, Handel-C allows 
optimizations to be made at a high level, improving 
programmer productivity.  

With the benchmark partitioned, the next step is to 
translate the dgefa subroutine to Handel-C and optimize it 
with respect to data storage and parallelization. This work 
uses an ANSI C version of the LINPACK benchmark as its 
starting point. Before any optimizations are considered 
some simple translation steps are performed such as 
removing side effects and replacing ‘for’ loops with 
‘while’ loops (which are implemented more efficiently in 
Handel-C). Pointer-based array access is converted into 
direct array addressing, and any floating point arithmetic is 
replaced with Handel-C floating point macro procedures.  
 To complete the translation to Handel-C, the problem 
of assigning widths to all of the variables in the code must 
be considered. Fortunately, since the main arithmetic in the 
LINPACK benchmark is floating point, only the widths of 
the control signals and array indices need to be considered. 
These can be inferred relatively easily from loop bounds 
and array sizes. 
 The code can now be compiled as Handel-C and 
synthesized to hardware. However, the hardware generated 
will not be very efficient as no parallelism has been 
exploited and no embedded memories specified. These 
issues are tackled in the five optimization stages that 
follow. 
 Before any optimizations are considered, the arrays in 
the algorithm are provisionally assigned to a layer of the 
available memory hierarchy (registers, on chip memory or 
off chip memory) depending on their sizes. This 
provisional assignment establishes the maximum 
bandwidth available for accessing each array. Data reuse 
can then be focused on the most frequently accessed arrays 
with the lowest available bandwidth.  
 The dgefa subroutine uses two arrays. The first is used 
to store the A matrix and the second stores the ipvt vector. 
The A matrix has  1000 x 1000 floating point elements and  

dgefa(*A[ ][ ], *ipvt[ ]) 
begin 
     for (k = 0 : 998)                       -- loop 1 --- 
          -- find the pivot index of column k -- 
          -- loop 4 in idamax -- 
          piv = idamax(A[ ][k], k) + k; 
          ipvt[k] = piv; 
          if (A[piv][k] != 0) 
                -- swap matrix elements if k != piv-- 
                swap(&A[piv][k], &A[k][k]); 
               -- floating point divide -- 
                t = -1/(A[k][k]); 
               -- scale column k by t -- 
               --loop 5 in dscal -- 
               dscal(&A[ ][k], t, k ); 
               for (j = (k+1) : 999)       -- loop 2 -- 
                    -- swap matrix elements if k != piv -- 
                    swap(&A[piv][j], &A[k][j]); 
                    t = A[piv][j]; 
                    -- loop 3 in daxpy – 
     --A[ ][j] = t*A[ ][k] + A[ ][j] -- 
                    daxpy(&A[ ][j], A[ ][k], t, k ); 
               end for;                       -- end loop 2 -- 
          end if; 
     end for;                                -- end loop 1 -- 
     ipvt[999] =999; 
end; 

 
 Fig. 3.  Pseudo code for dgefa subroutine 

 
therefore requires 32Mbits of storage. This is four times 
greater than the total storage available on even the largest 
FPGAs, so A must be assigned to off-chip memory. The 
ipvt vector has only 1000 floating point elements and so 
can be stored on the FPGA. 
 
4.1. Data Reuse Exploitation 
 
 In the first optimization stage the potential for data 
reuse is investigated. The goal is to search for any reuse 
pattern that could be exploited to reduce external memory 
accesses or reduce array accesses within loop nests. This 
could also allow greater parallelism to be exploited in later 
stages of the implementation.  
 The pseudo code for the dgefa subroutine is shown in 
Fig. 3. It is possible to reuse (up to) a column of A matrix 
data between iterations of both loop 1 and loop 2. The 
daxpy function takes two matrix columns as inputs, 
denoted as A[ ][j] and A[ ][k]. The same A[ ][k] data is 
used for each iteration of loop 2 meaning that, if the 
correct A[ ][k] data is buffered on the FPGA at the start of 
loop 1, it can be reused for every iteration of loop 2. More 
importantly, the A[ ][k] data for iteration k+1 of loop 1 is 
calculated as a result column in iteration k. If this row of 
data is stored on the FPGA as it is generated then only the 
first A[ ][k] column will need to be read from the external 
memory. As a result, inside the loop nest in Fig. 3, only the 
A[ ][j] data must read from the external memory instead of 
the A[ ][k] and A[ ][j] data. This effectively halves the 
number of reads from the external memory and halves the 
bandwidth required. 
 This data reuse can be implemented using two new 
arrays (provisionally assigned to on-chip RAM), each 
capable of storing one column (32000 bits) of matrix data. 
One array, called k_col, stores the A[ ][k] data for the 
current iteration of loop 1. The second array, called k_next, 



stores the A[ ][k] data needed for the next iteration as it is 
generated. During the idamax and dscal functions the new 
A[ ][k] data stored in k_next is modified and transferred 
across to k_col. 
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4.2. Loop Pipelining 
 
 Stage 2 of the optimization process explores the 
possibility of single dimension software pipelining, using 
the method presented in [15]. The potential for pipelining 
at each level in the loop nest is considered, starting at the 
outermost loop and working inwards. At each level data 
the dependence constraints, the possible initiation rate of 
the pipeline and the possibilities for data reuse are used to 
determine the suitability of that level for pipelining. 
 It is not possible to pipeline iterations of the outer loop 
(loop 1 in Fig. 3) since there are loop carried dependencies 
on all of the input data. For the idamax and dscal functions 
this leaves only their internal loops as candidates for 
pipelining. There are no loop carried dependencies within 
idamax and dscal so their internal loops can be pipelined 
into the single floating point resource present in each 
function. idamax contains a floating point comparator with 
a pipeline depth of 2 and dscal contains a floating point 
multiplier with a pipeline depth of 7. 
 The daxpy function contains a floating point multiplier 
whose output feeds a floating point adder. This gives a 
total pipeline depth of 17. Iterations of either loop 2 or 
loop 3 (Fig. 3) can be pipelined into these resources, but 
loop 2 is not perfectly nested. Since both have the same 
bounds it makes sense to pipeline loop 3 since it is 
perfectly nested and therefore more easily implemented.  

  
4.3. Coarse Grained Parallelization 
 
The goal of this optimization step is to exploit coarse 
grained parallelism by scheduling blocks of code to 
execute together, specifically entire loops and/or loop 
iterations. In the LINPACK 1000 case the main focus is on 
loops involving the daxpy function since it accounts for 
99% of the time spent in the dgefa subroutine. 
 The first step is to analyze the input data patterns and 
data dependencies at each loop level in the dgefa 
subroutine. There is a loop carried dependency in loop 1 
(Fig. 3) such that all of the input data used by iteration n+1 
is generated in iteration n. This means that, if multiple loop 
1 iterations are run in parallel with their start times offset 
correctly, then data could effectively flow from the output 
of one iteration to the input of the next without going 
through the external memory. This allows arbitrary daxpy 
parallelism with only two ports to the external memory. 
 Fig.4. shows how the loop 1 iterations can be scheduled 
across multiple parallel loop processing units. The number 
of processors can be varied using a ‘# define’ in the 
Handel-C  source code. In  Fig. 4  idamax[k] and  dscal[k]  

 
 

Fig. 4. Schedule for 3 parallel processing units 
 
represent the execution of the idamax and dscal functions 
respectively in iteration k of loop 1. daxpy[k][j] represents 
the execution of the daxpy function in iteration j of loop 2 
and iteration k of loop 1. All of the rest of code in the dgefa 
subroutine has been moved into one of these three 
functions to simplify the system. idamax, dscal and daxpy 
all contain loops iterating over the same bounds so they 
take the same number of clock cycles to run (+/- 2%). This 
allows instances of the three functions to be scheduled as if 
they were individual instructions.  
 idamax[k+1] operates on the data generated in 
daxpy[k][k+1]. As the output data from daxpy[k][k+1] is 
generated it is sent to idamax[k+1] through global 
variables, allowing the two functions to run in parallel. 
daxpy[k+1][k+2] runs in parallel with daxpy[k][k+3] but 
uses the data generated by daxpy[k][k+2] during the 
previous iteration of loop 2. Hence, each processor must 
include a circular buffer (capable of storing a column of 
matrix data) to store the data generated by the previous 
processor in the chain until it can be used in the next 
iteration of loop 2. 
 As can be seen in Fig. 4, idamax and dscal are never 
required by more than one processor at once, allowing 
them to be shared across all of the processors. This means 
that the k_next buffer (generated in Section 4.1) can also be 
shared since only idamax and dscal access it. Each 
processor must have its own k_col buffer however, since 
each processor uses a different A[ ][k] column as its input. 
 Only the last loop processor in the chain must write its 
A[ ][j]  output data to  the external memory.  However, the 
A[ ][k] data  stored  in the k_col  buffer  in  each  processor 
must be written to the external memory at some point since  



 Table 1.  Performance results for Altera Stratix II devices

 
 

 
these columns form part of the final result matrix. 
Fortunately the final processor in the chain has sufficient 
‘wait’ slots to output all the necessary data so only a single 
write port to the external memory is required. Since there 
are now multiple write sources an additional function must 
be included to arbitrate over the memory bus. The 
processors communicate with this function via global 
variables, allowing it to run in parallel with the normal 
operation of the system. 
 
4.4 Memory Assignment 
 
Memory assignment for the parallelized dgefa subroutine 
is quite simple as there are no opportunities to share 
memory resources between arrays since all of the arrays 
are active all of the time. All of the local buffers generated 
in the previous sections must be assigned to simple dual 
port memory (M4K blocks for Altera devices and Block 
RAM for Xilinx devices) as each is often accessed by two 
processing units in parallel.  
 The ipvt vector is assigned to a single port on chip 
memory. The A matrix is assigned to two blocks of off 
chip SRAM. The arbitration function which controls the 
external write port can be written so that, when an element 
from a row with an even number is being read, the element 
being written belongs to an odd numbered row. There is 
sufficient slack in the schedule to allow a write to be 
delayed by a cycle when necessary to avoid conflict. This 
scheme allows all even numbered rows to be assigned to 
one block of SRAM while the odd rows are assigned to the 
other. This allows the two blocks of SRAM to behave as a 
simple dual port RAM. 
  

 
 

 
4.5 Fine Grained Parallelism & Pipelining 
 
A number of steps are executed to increase the maximum 
clock frequency. These include breaking up complex 
calculations into several smaller calculations, inserting 
pipeline registers into the data paths and simplifying 
control statements. The read ports of all the embedded 
memory blocks are also pipelined to prevent Celoxica’s 
Handel-C compiler from creating an inverted clock signal 
and halving the maximum operating frequency. Once these 
modifications have been made the final step is to go 
through the code and find any instructions that can be 
implemented in parallel and to enclose them in ‘par’ tags. 

5. RESULTS 

Table 1 shows the performance results achieved when 
between 2 and 36 parallel processing units are targeted to 
Altera Stratix II devices. 36 processors utilize 94% of the 
largest device available. Table 2 shows comparable results 
for Xilinx Virtex 4 LX devices. 28 processors occupy 99% 
of the slices on the largest Virtex 4 LX device, but this is 
without unrelated logic packing. Each test case is targeted 
to the smallest device (fastest speed grade) that will 
accommodate it, without filling the device to such an 
extent that timing suffers adversely.  
 The Handel-C source code was complied to EDIF 
through Celoxica DK Suite 4.0. The Altera syntheses were 
performed using Altera Quartus II 4.2 and the Xilinx 
syntheses used Xilinx ISE 7.1i. All of the test syntheses 
used single pass place and route and standard effort 
settings. The functionality of dgefa coprocessor was 

No. loop 
processors 

Device ALUTs Memory 
(kbits) 

DSPs Fmax 
(MHz) 

Cycles for 
dgefa 

Time for 
dgefa (s) 

Speedup 
Total  (dgefa only) 

2 EP2S15 11704 160 24 67.7 172922066 2.58 0.63  (0.61) 
3 EP2S30 15584 224 32 63.7 115453199 1.84 0.87  (0.86) 
4 EP2S30 19195 288 40 63.4 86718956 1.40 1.12  (1.13) 
8 EP2S60 33635 352 72 61.8 43618207 0.74 1.99  (2.15) 

16 EP2S90 62095 1056 136 64.1 22069153 0.37 3.48  (4.27) 
36 EP2S180 135487 1920 296 44.4 10104098 0.26 4.51  (6.14) 

Table 2.  Performance results for Xilinx Virtex 4 devices
 No. loop 

processors 
Device Slices Memory 

(kbits) 
DSP 

Slices 
Fmax 
(MHz) 

Cycles for 
dgefa 

Time for 
dgefa (s) 

Speedup 
Total  (dgefa only) 

2 XV4LX25 9754 160 12 70.0 172922066 2.50 0.65  (0.63) 
3 XV4LX40 13230 224 16 69.0 115453199 1.70 0.93  (0.93) 
4 XV4LX40 16371 288 20 64.1 86718956 1.38 1.13  (1.15) 
8 XV4LX100 28850 352 36 56.2 43618207 0.81 1.83  (1.96) 

16 XV4LX200 52475 1056 68 53.8 22069153 0.44 3.04 (3.59) 
28 XV4LX200 89086 1824 96 42.1 12837274 0.33 3.75 (4.72) 



verified using the Handel-C simulator in DK suite. A four 
processor version of dgefa was downloaded to a Stratix 
EP1S40 device on a NIOS development board and verified 
for a 32x32 matrix.  
 The dgefa times listed in both tables are those taken to 
complete the processing for the dgefa subroutine plus an 
estimate of the time taken to transfer data between the 
FPGA and the host microprocessor across a 66MHz PCI 
bus. This has been estimated to take 0.03 seconds 
(2001000 32 bit transfers at 66MHz). The speedup time 
given inside the brackets is an estimate of the speedup over 
the 3GHz Pentium 4 for just the dgefa subroutine. The total 
speedup figure quoted is an estimate for the speedup factor 
for the whole benchmark, assuming that the remaining 
code is implemented on the Pentium 4 processor. 
 The optimized Handel-C implementation can execute 
the dgefa subroutine around 6 times faster than the 
Pentium 4 when targeted to the largest Altera device, with 
an average performance of 2570 MFLOPs. For the larger 
designs it should be possible to improve these figures by 
further pipelining the connections (global variables) used 
to send data between processing units. However, it should 
be noted that, up to 16 processors, the critical path for the 
Altera devices lay within the Celoxica floating point 
comparator. Hence these particular figures could not be 
improved by further pipelining the LINPACK code.  

6. CONCLUSIONS 

An optimized Handel-C implementation of a coprocessor 
for a single precision version of the LINPACK 1000 
benchmark was produced through a series of optimizations 
that identify opportunities to exploit data reuse, loop 
pipelining, coarse grained parallelism, parallel memory 
assignment, fine grained parallelism and pipelining. When 
targeted to the latest generation of FPGAs this coprocessor 
can execute parts of the benchmark up to 6 times faster 
than a 3GHz Pentium 4 processor and accelerate the 
execution of the complete benchmark by a factor of 4.5. 
This suggests that it is currently possible to accelerate 
scientific computing algorithms using FPGAs, even when 
using high level design methods and tools. 
 However, it has also been shown that significant effort 
is required to convert the standard ANSI C algorithms into 
efficient, parallel Handel-C. As a result the development 
times for hardware are still much longer than those for 
software, even when high level languages are used. 
Furthermore, an awareness of how specific high level code 
will be synthesized in hardware is still required to produce 
efficient designs. This prevents software designers from 
migrating seamlessly to hardware. It seems that further 
design tools, possibly automating optimizations similar to 
those presented here, are still required to make hardware 
design run as quickly and efficiently as software design. 
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