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ABSTRACT

This paper examines the interface between fine-grained and
coarse-grained programmable logic in FPGAs. Specifically,
it presents an empirical study that covers the location, pin
arrangement, and interconnect between embedded floating
point units (FPUs) and the fine-grained logic fabric in FP-
GAs. The results show that (1) FPUs should be square,
(2) FPUs should be positioned tightly near the center of the
FPGA and (3) that the FPU pins should be arranged on four
sides of the FPU.

1. INTRODUCTION

Significant improvements in the performance, logic density,
and power efficiency of Field-Programmable Gate Arrays
(FPGAs) have made them useful for implementing nearly
any type of digital application. In early FPGAs, significant
improvements were made by optimizing the fine-grained pro-
grammable logic and routing architecture of the FPGA. To-
day, further improvements are being made by embedding
coarse-grained elements such as memories, multipliers, and
processors within the fine-grained programmable fabric of
the FPGA.

Coarse-grained elements can implement a specific func-
tion more efficiently than fine-grained programmable logic.
However, since they are not as flexible, they only benefit
applications which utilize them. This limits the types of em-
bedded blocks which are commercially viable in general-
purpose FPGAs to very common circuit elements such as
memories, adders, and multipliers. For domain-specific FP-
GAs, however, additional embedded blocks may make sense.
For example, an FPGA that is built specifically to imple-
ment applications containing a significant amount of float-
ing point computation would benefit from embedded float-
ing point units. This was explored in [1], in which a domain-
specific FPGA that incorporates coarse-grained floating point
units (FPUs) was described. The results in [1] show that the

embedded floating point units lead to an 18 times density
improvement for a set of floating point datapath circuits.

An important consideration when adding coarse-grained
embedded elements to an FPGA is the interface between the
coarse-grained and fine-grained resources. If this interface
is not flexible enough, the usefulness of the embedded block
will be reduced, since connections to and from the block will
be expensive. On the other hand, if the interface is too flexi-
ble, it will require too much area and delay, possibly negat-
ing the density and performance advantages of including the
embedded block, and resulting in unnecessary overhead for
applications that do not use the embedded component.

In this paper, we examine this interface. We focus on ar-
chitectural issues, such as the location of the embedded ele-
ments, and the interconnect between the embedded elements
and the fine-grained fabric. Our approach is presented in
the context of the embedded floating point blocks described
in [1].

Specifically, the key contributions of this paper are:
• a set of parameters that describes the interface be-

tween coarse-grained and fine-grained programmable
logic in FPGAs.

• an empirical framework to model the impact of coarse-
grained architectural parameters in terms of perfor-
mance, density, and power consumption.

• an empirical study that examines:

1. where the coarse-grained FPUs should be em-
bedded within FPGAs,

2. where the pins of the FPUs should be on the pe-
riphery,

3. how flexible the interconnect between the FPUs
and the fine-grained logic should be,

4. what shape the FPU should have.

Although the empirical study focuses on FPGAs with
embedded FPUs, the conclusions of the study may be appli-
cable to other types of embedded computational blocks.



This paper is organized as follows. Section 2 describes
related work. Section 3 illustrates the interface between
coarse and fine-grained logic and presents corresponding pa-
rameters to describe this interface. Section 4 then presents
the empirical framework used to evaluate different interface
schemes. Finally, Section 5 presents our results and analy-
sis, and Section 6 summarizes our conclusions.

2. BACKGROUND

Conventional island-style FPGAs consist mainly of a fine-
grained programmable fabric that is made up of configurable
logic blocks (CLBs), programmable routing resources, and
programmable I/Os. The CLBs consist of one or morek-
input lookup tables (k-LUT) and fast local interconnect. Each
k-LUT can implement any single output function withk in-
puts or less. The routing resources implement the intercon-
nect between the CLBs and the I/Os.

A significant number of studies have focused on opti-
mizing this type of FPGA architecture to minimize area,
critical-path delay, and power consumption. As an exam-
ple, the study described in [2] compares different aspects of
segmented routing architectures, such as wirelength distri-
bution, switch block implementation, and connection block
flexibility, with the goal of creating a fast and area-efficient
general-purpose FPGA architecture.

More recent work has focused on adding coarse-grained
blocks within the fine-grained fabric. Examples of this in-
clude embedded arithmetic multipliers [3, 4] and embedded
processors [4]. Coarse-grained blocks improve area and de-
lay since they can implement specific functions more effi-
ciently than the fine-grained logic [5]. On the other hand,
coarse-grained blocks waste area when they are not used by
an application. FPGAs vendors must consider this tradeoff
to determine the type and number of coarse-grained blocks
that should be embedded within their devices.

In order to take further advantage of coarse-grained blocks,
domain-specific hybrid FPGAs target a specific application
domain. In doing so, greater area and delay savings can be
achieved for certain types of applications since the amount
of coarse-grained logic can be tailored for those applica-
tions. A number of recent approaches have been proposed
in the literature. In [6], a coarse-grained architecture with
bus-based interconnect has been shown to reduce area for
datapath circuits. In [7], a tool that generates a domain-
specific reconfigurable fabric that is tailored to a specified
set of application has been proposed. In [8], the QUKU ar-
chitecture which merges coarse-grained reconfigurable pro-
cessing element array and FPGA architectures has been de-
scribed. This two-level reconfigurable architecture provides
active support for fast and efficient dynamic reconfigura-
tion. Enzler et. al. [9] has proposed a framework for the
cycle-accurate performance evaluation of hybrid reconfig-

urable processors on the system level, which is based on
data-streaming applications. In [1], a domain-specific hy-
brid FPGA architecture that targets floating point arithmetic
applications by incorporating floating point units within a
fine-grained programmable fabric has been presented; this
architecture is shown to be 18 times more area-efficient than
a purely fine-grained architecture for floating point arith-
metic applications. One of the key parts of an FPGA with
embedded coarse-grained blocks is the routing structure be-
tween the embedded blocks and the fine-grained logic re-
sources. If the coarse-grained/fine-grained interface is not
flexible enough, many applications will be unroutable. On
the other hand, if the interface is overly flexible, the rout-
ing resources will be slower and consume more area than
is necessary. Although a number of studies have proposed
new coarse-grained blocks and hybrid FPGA architectures,
few have examined the interface between the coarse-grained
blocks and fine-grained fabric in significant detail. In [10],
the local routing resources that connect CLBs to the FPGA
routing resource are shared with the embedded blocks to
minimize the overall area penalty when adding the embed-
ded blocks. This technique, calledshadow clustering, is
useful for embedded blocks with similar I/O pin densities as
the existing CLBs; however, for embedded blocks which has
higher I/O pin densities than the existing routing resources
are not sufficient. In [11], the interface between embed-
ded memory blocks and fine-grained programmable logic is
examined. Memories are quite different from computation
blocks, and so we expect that the interface presented in [11]
would not be suitable for our problem.

3. COARSE/FINE-GRAINED INTERFACE

In this section, we describe the architecture of the blocks
used in this work. We first present our assumptions regard-
ing the fine and coarse-grained logic and then give a descrip-
tion of a generic interface architecture with parameters that
cover the space of architectures considered.

3.1. Fine-Grained FPGA Assumptions

We assume that the fine-grained resources in the FPGA con-
sist of a grid of identical configurable logic blocks (CLBs),
each containingN Basic Logic Elements (BLEs). Each
BLE contains ak-LUT and flip flop. We assume that each
CLB also contains support for carry chains, shift registers,
internal multiplexers and XOR gates.

The CLBs are connected using horizontal and vertical
channels, as described in [2]. Each channel containsW par-
allel routing tracks of length 1 and is connected to neigh-
bouring CLBs using a connection block, and intersecting
channels using a switch block. We use the subset switch
block (also known as disjoint) withFcswitch = W , Fs = 3,
Fcoutput = 1, Fcinput = 1 andFcpad = 1 [2].



3.2. Coarse-Grained Block Assumptions

We adopt the coarse-grained floating point blocks described
in [1]. Each coarse-grained block contains two double pre-
cision floating point adders, two double precision floating
point multipliers, and five wordblocks (each bit comprising
a 4-LUT and register) which can efficiently implement op-
erations such as addition and multiplexing as shown in Fig-
ure 1.
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Fig. 1. coarse-grained unit modelled in this paper

3.3. Coarse-Grained Interface

Based on our detailed area model, we estimate that our em-
bedded block (EB) consumes roughly the same amount of
area as 182 tiles. Each tile represents a CLB and its asso-
ciated interconnect, buffer and configuration bit. To embed
an EB, we remove a 13x14 grid of CLBs, and replace them
with a single EB. Figure 2 shows an example of replacing
3x3 grid of CLBs by a single EB. We assume that the EB
pins connect to the routing architecture through connection
blocks, similar to those used for CLBs. Although other con-
nection patterns are possible (see [11], for example), this
pattern allows us to minimize the number of changes to the
existing FPGA routing architecture, so that we can leverage
the significant amount of previous work on FPGA routing
structures. We also assume that the gridded routing fabric
extends over the embedded block, as shown in Figure 2.
Given the large number of metal layers available in mod-
ern CMOS processes, it is reasonable that tracks can easily
be placed on top of the embedded blocks. In Figure 2, the
four switch blocks required at the interface of the horizon-
tal and vertical channels must co-exist with the embedded
block; the embedded block, which takes the same area as
nine CLBs, includes the area of these four switch blocks.
Although it would be possible to consider architectures in
which the grid is ”broken” [12], it would require changes to
the detailed routing architecture.

3.4. Interface Parameters

In this paper, we consider a range of interface architectures.
To describe the space of architectures that we consider, we
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Fig. 2. connection between coarse and fine-grained units
through switch box (sb)

define the following parameters:

1. EB position: The embedded blocks can be placed in
various places within the FPGA. In this paper, we consider
the positions as shown in Figure 3.
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Fig. 3. various positions of the EBs relative to the fine-
grained CLBs

2. Pin Location: Figure 4 shows several strategies for posi-
tioning the pins of each EB. Strategy (a) has the highest I/O
density, but may be suitable if signals from the I/O block are
to be combined using a small set of CLBs. Strategies (b),
(c), (d) have lower I/O density, but may result in longer con-
nections if signals from more than one side of the EB are to
be connected to the same CLB(s).

3. Channel Width: The width of the channels surrounding
the EB has a significant impact on the routability of the de-
vice. Since our EB has a large number of pins, congestion
around the EB may happen so it is desirable to relieve this
congestion by using wider channels.

4. Shape:Several layouts of each embedded block are pos-
sible. We consider various aspect ratios.
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4. METHODOLOGY

We employ an empirical methodology to examine the im-
pact of the interface parameters described in the previous
section. This section describes the benchmark circuits, the
CAD tools, and the model that are used.

4.1. Domain-specific Benchmark Circuits

We use six double precision floating point benchmark cir-
cuits [13]. They are: (1)bfly, the basic component of Fast
Fourier Transform:z = y + x ∗ w using complex numbers,
(2) dscg, a digital sine-cosine generator, (3)fir4, a 4-tap fi-
nite impulse response filter, (4)mm3, a 3x3 matrix multi-
plication circuit, (5)ode, an ordinary differential equation
solver, (6)bgm, a datapath to compute Monte Carlo sim-
ulations of interest rate model derivatives priced under the
Brace, Ga̧tarek and Musiela (BGM) framework.

These benchmarks are chosen since they each involve a
significant amount of floating point computation. Sincebfly,
dscg, fir4, ode and mm3contain a small number of fine-
grained units, each core is replicated four times and are con-
nected together. For example, adscgbenchmark contains
four dscgcores connected together. All circuits use a single
global clock. The number of FPUs and CLBs used for each
benchmark circuit is shown in Table 1.

4.2. VPH: Versatile Place and Route for Hybrid FPGAs

We use the evaluation tool VPH to explore our architectures.
VPH is a modified version of the VPR tool, with support
for embedded blocks, complex logic blocks, carry chains,

Benchmarks bgm dscg bfly ode mm3 fir4
No. of CLB 6433 647 790 336 773 180
No. of FPU 7 8 8 8 8 8

Table 1. Number of FPU and CLB used in each benchmark
circuit

and constraint files [14]. In the VPH design flow, shown in
Figure 5, applications and coarse-grained elements are writ-
ten in a high level hardware description language (VHDL)
and synthesized to a mapped library netlist in VHDL format
using Synplicity’s Synplify Premier 8.5 tool. The library
netlist contains the usage and connection of simple units
such as registers, LUTs, internal multiplexors and internal
inverters. The basic logic block packing tool, VPHpack,
packs these units into basic logic elements (BLEs). VPH-
pack clusters BLEs into CLBs.

A user constraint file (.ucf) is used to specify the FPGA
area and the absolute position of each embedded block. A
separate constraint file for each embedded block is used to
specify the area, the pin position and the timing information
for the EB; the area and delay information for each block is
obtained using Synopsys Design Compiler V-2004.06. As in
VPR, an architecture file specifies the fine-grained FPGA’s
architectural parameters, such as timing delay of the LUT.
Using these files, the VPH tool performs placement, routing,
and timing analysis to produce area and delay estimates for
each benchmark circuit.
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Fig. 5. Design flow of exploration using VPH

5. RESULTS AND DISCUSSION

In this section, the impact of the interface parameters in
Section 3 on hybrid FPGAs is studied. In the experiments
conducted, the default architecture parameters are: (1) CLB
with 2× 4-LUTs, (2) type 3 EB position (Figure 3) as this
gives best performance for the first experiment, (3) channel
width 80; since the maximum I/O density of the EBs is 42
pins per slice width, we choose 80 to be the channel width
to facilitate routing, (4) EB size of13× 14 CLBs.



5.1. EB Position Results

We first examine how the position of the EBs affects the
overall performance of the device. As shown in Figure 3,
we consider positioning the EBs both around the periphery
of the device, as well as in the centre. Intuitively, positioning
the EBs in the centre will lead to shorter wirelengths for
wires that connect multiple EBs. However, positioning the
EBs around the periphery may cause less congestion since
the EBs will be more spread out.

Delay against EB position 
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Fig. 6. Delay against various EBs positions, as defined in
Figure 3

Figure 6 shows the results for each of the positioning
strategies described in Figure 3. The best strategy is type 3,
in which the EBs are in the centre of the device, surrounded
by a sea of CLBs. The critical path of our circuits tend to
include nets that connect multiple EBs; thus placing the EBs
close to each other is beneficial.

5.2. Pin Location Results

We next consider the effect of I/O pin position on the pe-
riphery of each EB. As shown earlier, pins can be distributed
evenly around the EB, or can be concentrated on one or more
sides of the block. Intuitively, distributing the pins evenly
will lead to a lower I/O density, possibly reducing conges-
tion but may lead to longer wirelengths if pins from more
than one side of the EB are connected.

The results are shown in Table 2 and Table 3. The criti-
cal path of the circuit is slightly smaller if all pins are placed
on a single side of the embedded block. In several of our
benchmarks, the critical path includes a path from one EB,
through a register in a CLB, into another EB. These connec-
tions are shorter if the pins are close together. On the other
hand, Table 3 shows that the routing demand in each channel
can be reduced by distributing the pins evenly around each
EB. Compared to the configuration in which all pins are on
one side of the block, evenly distributing the pins reduces

I/O pos. 1 side 2 sides 3 sides 4 sides
Density

(per clb) 42 21 14 11

Circuits delay in ns (Deviation from 1 side)
bgm 11.94(0%) 11.99(0.3%) 12.01(0.6%) 11.99(0.4%)
dscg 12.42(0%) 12.51(0.7%) 12.26(-1.3%) 12.53(0.9%)
bfly 12.09(0%) 12.13(0.3%) 12.06(-0.3%) 12.09(0%)
ode 14.83(0%) 14.93(0.7%) 15.04(1.4%) 15.11(1.9%)

mm3 11.70(0%) 11.83(1.1%) 11.67(-0.3%) 11.86(1.4%)
fir4 12.32(0%) 12.42(0.8%) 12.53(1.6%) 12.71(3.1%)

Table 2. Critical path delay for different EB’s I/O positions

I/O pos. 1 side 2 sides 3 sides 4 sides

Circuits Min. channel width (Deviation from 1 side)
bgm 46(0%) 35(-22%) 32(-29%) 25(-44%)
dscg 43(0%) 33 (-23%) 32 (-26%) 32 (-26%)
bfly 44 (0%) 35 (-20%) 33 (-25%) 32 (-27%)
ode 46 (0%) 38 (-17%) 37 (-20%) 38 (-17%)

mm3 42 (0%) 40 (-5%) 26 (-38%) 24 (-43%)
fir4 43 (0%) 33 (-23%) 32 (-26%) 30 (-30%)

Table 3. Minimum channel width for different I/O configu-
rations

the channel width by 44%. We conclude that this is the best
choice.

5.3. Interconnect Flexibility

We next consider the width of the channels surrounding the
EBs. Intuitively, there is a high pin density on each side of
each EB; this may place additional demands on the routing
fabric near the EBs. If the fabric cannot provide the required
flexibility, circuitous routes may be required, leading to in-
creased delay.
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The results in Figure 7 show the effect of EB to CLB
channel width on delay. For routable circuits, rather surpris-
ingly, the variation is less than 3%. We believe this is due to



critical paths being routed efficiently so once the circuit is
routable, channel width does not affect delay.

5.4. EB Aspect Ratio

Finally, we consider how the aspect ratio of each EB affects
the overall performance of the FPGA. In this experiment,
the area of EB is fixed, but the aspect ratio is changed. In-
tuitively, changing aspect ratio will change the distance be-
tween pins on different EBs; this leads to change in the delay
of the nets connecting these pins.
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We modify the shape of the EBs from rectangular (2x91)
to square (13x14); the width and height are counted in the
number of CLBs. The results in Figure 8 show that square
EBs are the most efficient for all applications and result
in a 23% speed improvement compared to the 2x91 shape.
Square EBs lead to a better worst-case delay between the
EBs, shortening the critical path in our benchmark circuits.

6. CONCLUSION

This paper investigates the architecture of the programmable
interconnect between coarse-grained blocks and the fine-
grained fabric in domain-specific FPGA with embedded float-
ing point blocks. Specifically, we examine the position of
the embedded blocks (EBs) within the FPGA, the place-
ment of the pins on the periphery of the EB, the width of the
routing channels surrounding the EB, and the aspect ratio of
the EB. We find that (a) the EBs should be positioned close
to each other in the middle of the chip, (b) the EB’s pins
should be distributed evenly around the EB, (c) the width
of the channels surrounding the EB have little impact on
circuit speed, and (d) a square EB leads to the most effi-
cient implementations. Although our results are specific to
the architecture studied, we believe they can be applied to
FPGAs containing other types of embedded blocks. Cur-
rent and future work includes extending our methodology to

cover other embedded blocks, and generalising our model to
support multiple types of embedded blocks.
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