
42

fSEAD: A Composable FPGA-based Streaming Ensemble

Anomaly Detection Library

BINGLEI LOU, DAVID BOLAND, and PHILIP LEONG, The University of Sydney, Australia

Machine learning ensembles combine multiple base models to produce a more accurate output. They can be

applied to a range of machine learning problems, including anomaly detection. In this article, we investigate

how to maximize the composability and scalability of an FPGA-based streaming ensemble anomaly detector

(fSEAD). To achieve this, we propose a flexible computing architecture consisting of multiple partially recon-

figurable regions, pblocks, which each implement anomaly detectors. Our proof-of-concept design supports

three state-of-the-art anomaly detection algorithms: Loda, RS-Hash, and xStream. Each algorithm is scalable,

meaning multiple instances can be placed within a pblock to improve performance. Moreover, fSEAD is im-

plemented using High-level synthesis (HLS), meaning further custom anomaly detectors can be supported.

Pblocks are interconnected via an AXI-switch, enabling them to be composed in an arbitrary fashion before

combining and merging results at runtime to create an ensemble that maximizes the use of FPGA resources

and accuracy. Through utilizing reconfigurable Dynamic Function eXchange (DFX), the detector can be mod-

ified at runtime to adapt to changing environmental conditions. We compare fSEAD to an equivalent central

processing unit (CPU) implementation using four standard datasets, with speedups ranging from 3× to 8×.

CCS Concepts: • Hardware → Reconfigurable logic applications; Hardware accelerators; • Computing

methodologies→ Ensemble methods;

Additional Key Words and Phrases: FPGA, anomaly detection, partial reconfiguration, composability

ACM Reference format:

Binglei Lou, David Boland, and Philip Leong. 2023. fSEAD: A Composable FPGA-based Streaming Ensemble

Anomaly Detection Library. ACM Trans. Reconfig. Technol. Syst. 16, 3, Article 42 (June 2023), 27 pages.

https://doi.org/10.1145/3568992

1 INTRODUCTION

Anomaly detection is a key machine learning (ML) task and refers to the automatic identi-
fication of unforeseen or abnormal samples embedded in normal data [7, 39]. Applications of
anomaly detection include fault detection surveillance systems [60], fraud detection in financial
transactions [3], intrusion detection for network security [15], monitoring of sensor readings in
aircraft [4], and discovery of potential risks or medical problems in health data with predictive
maintenance [50].

Ensembles are a class of methods that pool weak detectors to form a more accurate combina-
tion [13]. Over a number of decades, they have proven to be an excellent methodology that utilizes

Binglei Lou gratefully acknowledges financial support from the China Scholarship Council.

Authors’ address: B. Lou, D. Boland, and P. Leong, The University of Sydney, Camperdown NSW 2006, Sydney, Australia;

emails: {binglei.lou, david.boland, philip.leong}@sydney.edu.au.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Association for Computing Machinery.

1936-7406/2023/06-ART42 $15.00

https://doi.org/10.1145/3568992

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

https://orcid.org/0000-0003-4662-1892
https://orcid.org/0000-0001-5370-4464
https://orcid.org/0000-0002-3923-3499
https://doi.org/10.1145/3568992
mailto:permissions@acm.org
https://doi.org/10.1145/3568992
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3568992&domain=pdf&date_stamp=2023-06-21

42:2 B. Lou et al.

diversity of weak detectors to reach a better overall decision than the individual ones [14]. Each
sub-detector in an ensemble is data-independent with identical structure. This makes it naturally
amendable for parallel processing to obtain high throughput. The ensemble-size, i.e., the number
of sub-detectors, is determined according to the computational resources and constraints of sys-
tem performance. Generally, executing a large ensemble on central processing units (CPUs)
as the sequential nature of program execution is mismatched to the available parallelism. Field-
Programmable Gate Array (FPGA) is an attractive solution, since spatial parallelism can be
employed.

When data is susceptible to concept drift [66], anomaly detectors can be utilized in a stream-
ing fashion, with the detector being updated in an online manner. Streaming techniques store
and process a window of recent instances. Streaming ensemble anomaly detectors (SEADs)
achieve high accuracy under limited memory, processing and time constraints because ensem-
bles contribute high accuracy and robustness, and real-time processing is enabled via streaming
algorithms.

Existing anomaly detection libraries have been developed for CPUs. These include unsupervised,
supervised, heterogeneous approaches such as SUOD [61] and PyOD [63]. These libraries provide a
single, well-documented application programming interface (API), making it easy to compare
and compose different algorithms. In particular, PySAD introduces a framework of streaming ADs
in Python [59] with a common interface. Using the aforementioned AD libraries, a software-based
model combination toolkit, combo, was presented in Reference [64], allowing anomaly detectors
to be combined in Python. CPU-based SEAD libraries allow programmers to switch detector types
or to combine multiple detectors to boost performance for specific scenarios.

Implementing customized anomaly detection algorithms in hardware is desirable to achieve
higher performance, lower power, and lower latency [10, 18, 41]. However, most designs do not
have comparable flexibility or customizability as software-based approaches. This is one of the
main challenges for reconfigurable computing, and while we do not solve the problem, we propose
an approach with considerably more flexibility than conventional FPGA designs. To the best of our
knowledge, no composable FPGA implementations of ADs have been published to date.

In this article, to enable AD on FPGA with higher flexibility and scalability, we propose fSEAD, a
composable and low latency FPGA-based SEAD library. fSEAD has two components. The first is a
high-level synthesis (HLS)-based module generator that converts three state-of-the-art SEAD al-
gorithms (Loda [45], RS-Hash [51], and xStream [40]) into optimized sub-detector-level paralleled
FPGA entities that store all parameters in on-chip memory. The second component is a compos-
able hardware framework that enables online switching and dynamic routing of data between
IP cores at runtime through reconfigurable Dynamic Function eXchange (DFX) and the arbi-
trary routable AXI4-Stream Switches. This allows new functionality to be introduced to the design
at runtime. Composability is gained through the combination of coarse-grained reconfigurability
of sub-detectors and switchability, which facilitates their flexible interconnection. While runtime
reconfiguration of the FPGA introduces tens or hundreds of milliseconds in overhead for large
FPGAs [6, 34], this is not a concern for fSEAD, as this is only done when fSEAD is idle. The main
contributions of this article are:

• The first FPGA-based ML system that allows complex and more powerful ADs to be created
from simple blocks without recompilation.
• The creation of hardware implementations for three streaming ensemble anomaly detec-

tors (Loda, RS-Hash, and xStream) and demonstration of how they can be integrated
within our framework. These implementations are created from an HLS-based generator for
FPGA instances, with a GCC-based alternative that creates multi-threaded CPU versions for

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:3

comparison. New detectors can be written in C and Python and are easily integrated in this
library.
• A composable framework that utilizes multiple reconfigurable regions connected via two

AXI switches. In the implementation, high frequency is achieved through floorplanning of
pblocks that surround the fSEAD infrastructure, minimizing routing delay.
• We use PYNQ partial overlays invoked in Python for executing AD functions [30], allowing

an easy-to-use interface for composing and comparing different ADs.
• This research uses publicly available datasets, and our design has been made open source to

facilitate reproducible research.1

The remainder of the article is organized as follows: We start in Section 2 with an introduction
of the SEAD background and a formal definition of the framework that we deployed in the FPGA.
In Section 3, we describe the design of the proposed fSEAD from four aspects: Module Generator,
DFX Tool Flow, Composable Infrastructure, and its FPGA Implementation. Then, the results of
experiment and performance are shown in Section 4. Section 5 concludes the article and discusses
future work.

2 BACKGROUND AND RELATED WORK

In this section, we first introduce anomaly detectors for streaming data. We then discuss how
they can be combined using ensemble-centric methods to achieve greater accuracy. We highlight
how this has led to the development of several comprehensive software-based AD libraries; this
illustrates the desire for our flexible hardware accelerated library that can achieve better perfor-
mance and similar accuracy to these software implementations. Finally, we discuss the Dynamic
Function eXchange (DFX) technique and partial overlays, which we have used to provide the
flexibility to choose different ensembles at runtime in our accelerator.

2.1 Streaming Anomaly Detection

Anomaly detection is a key machine learning (ML) task, which refers to the automatic identifica-
tion of unforeseen or abnormal samples embedded in a large amount of normal data [7, 39]. From
the perspective of processing data, we distinguish between two anomaly detection types: static
and streaming.

Static detectors usually operate on a relatively large batch of data before performing information
extraction and feature analysis to identify rare items, events, or observations from the general
distribution of a population. Representative methods include k-Nearest Neighbors (kNN) [47],
Local Outlier Factor (LOF) [5], and Principal Component Analysis (PCA) [53]; for a more
comprehensive collection of static methods, we refer the reader to the SUOD [61]. While batch
processing can lead to high throughput and accuracy, it is not suitable for systems that require real-
time performance, since the computing resource requirements and latency increase with batch size.

In contrast, streaming methods only store and process a window of recent instances [39, 59].
This is more amenable to achieving accurate anomaly scores under limited memory, processing
and time constraints. Moreover, the algorithms are designed to facilitate more light-weight and
potentially real-time implementations. A group of algorithms that support streaming anomaly
detection processing includes, but is not limited to, ensemble-centric methods [40, 45, 51], tree-
based methods [38, 54, 58], kernel-methods [39], as well as Neural Network-based solutions such
auto-encoders [49] and adversarial models [52].

In this article, we select a set of three states-of-the-art and representative anomaly detectors
for our HLS module generator: Loda (Light-weight Online Detector of Anomalies) [45],

1fSEAD: https://github.com/bingleilou/fSEAD.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

https://github.com/bingleilou/fSEAD

42:4 B. Lou et al.

Table 1. Block Diagram of SEAD Methods

Anomaly Blocks
Detectors Projection Core Sliding-Window Score

Loda prj-loda histogram 1 ×W −log2 (c/W)
RS-Hash prj-rshash CMS w ×W −log2 (1 +min {c1, . . . , cW })
xStream prj-xstream CMS w ×W −log2 (1 +min

{
21c1, . . . , 2

W cW

}
)

1
W : the length of the sliding-window.

2
w : the number of hash functions in the count-min sketch (CMS).

3
c : the count of histogram or hash code of CMS.

RS-Hash [51], and xStream (Outlier Detection in Feature-Evolving Data Streams) [40]. These are
briefly explained below. We denote X = {�xi } as the input dataset and dimension d of each sample,
then �xi ∈ Rd is the ith input sample of the data stream, and R is the ensemble size.

Loda is a projection-based histogram detector, RS-Hash uses a randomized subspace hashing
algorithm, while xStream is a density-based detector. Although the three techniques are based on
different principles, the algorithms can be expressed as a composition of the following standardized
blocks: Projection, Core, Sliding-window, and Score. Table 1 summarizes the main functional blocks
of these three SEAD methods.

The purpose of projection is to reduce the dimensionality of a set of points while retaining the
essence of the original data. Randomness between sub-detectors to improve diversity in an en-
semble is also introduced at this step. It is also the most computationally expensive step. The core

block is the cornerstone of each method: Loda is based on the histogram; RS-Hash and xStream ap-
proaches make use of the count-min sketch (CMS) [9], in which w pair-wise independent hash
tables are used. These three methods all operate over a sliding-window of the input data, which is
received in a streaming fashion. The difference is that the histogram-based Loda only uses a 1-row
table as a sliding-window, where the CMS-based methods allow the sliding-window with aw-row
table (w ≥ 1). The score block calculates the negative log-likelihood so the less likely a sample, the
higher the anomaly value.

Algorithms 1 to 3 present the pseudo-code for Loda, RS-Hash, and xStream, respectively. Algo-
rithm 4 introduces the hash function that is applied in RS-Hash and xStream. Clearly, each function
has the streaming input x and the streaming output Score .

The ensemble can be divided into seven parts: The ❶Windower block uses a shift register to
assemble samples x ∈ R1 into an entire vector �xi = {x1,x2, . . . ,xd } ∈ Rd , ❷Ensemble is a big for

loop with R independent iterations. Each iteration can be regarded as a sub-detector with a unit of
1, and each sub-detector executes the functional modules of ❸Projection, ❹Core (Histogram for
Loda, and Hash Function for RS-Hash and xStream) ❺Sliding-window and ❻Score sequentially.
The execution of these modules is time-dependent, that is, the start of the latter one must wait for
the execution of the former to complete. Finally, ❼Score Averaging is used for producing the
final ensemble anomaly score by averaging the outputs of all sub-detectors.

The serial combination of these four blocks (❸❹❺❻) constitutes a base sub-detector. We use R
parallel executions of the base sub-detector with a different starting seed or hash and average their
scores to form an ensemble. For a CPU implementation, R sub-detectors are processed sequentially.
Details of HLS directives used in the pseudo-code are described in Section 3.1.

2.2 Ensembles of Multiple Anomaly Detectors

Ensembles are a class of methods that combine weak detectors to collectively form a more accu-
rate decision by utilizing diversity in the detectors [13, 14]. Each sub-detector in an ensemble is

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:5

Fig. 1. Sample architecture for SEAD methods.

ALGORITHM 1: Loda

Input: Streaming input signal X = �xi ∈ Rd ; ensemble size R; data dimension d ; sliding-window length

W .

Output: Streaming anomaly value Score .

1 #pragma HLS DATAFLOW

2 // ❶Windower:

3 for dim = 1, 2, . . . ,d do

4 A shift register to produce an entire sample: X with d features.

5 end

6 // ❷Ensemble:

7 for r = 1, 2, . . . ,R do

8 // ❸Projection:

9 for dim = 1, 2, . . . ,d do

10 #pragma HLS PIPELINE

11 pr j_X ← pr j_X + X ∗ loda_pr j (random projection)

12 end

13 // ❹Histogram:

14 idx ← (pr j_X − loda_ min)/(loda_ max−loda_ min)

15 v ← slidinд-window[idx]

16 // ❺Sliding-window:

17 Update slidinд-window .

18 // ❻Score:

19 score (r) ← log2 (v)

20 end

21 // ❼Score Averaging:

22 Score ← 1
R

∑
R

r=1 score (r)

23 return Score

data-independent and structure-identical. The first feature makes it naturally amendable for paral-
lel processing, while the latter gives it the flexibility to assemble arbitrary numbers of sub-detectors
into an ensemble according to the computational resources and desired accuracy.

An example architecture for streaming ensemble anomaly detectors (SEADs) is illustrated
in Figure 1, where each sub-detector inside SEAD takes a stream of input data and produces a
stream of transformed outputs that indicate the anomaly scores. Averaging is used to compute the
final score from all sub-detectors, or a threshold can be applied to translate this averaged score
to a Labels (anomaly or no anomaly). While a simple ensemble could be multiple instances of the
same detector, as described in the previous section, a more powerful ensemble will utilize different
detectors.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:6 B. Lou et al.

ALGORITHM 2: RS-Hash

Input: Streaming input signal X = �xi ∈ Rd ; ensemble size R; data dimension d ; sliding-window length

W ; hash functions number in CMS: w .

Output: Streaming anomaly value Score .

1 #pragma HLS DATAFLOW

2 // ❶Windower:

3 for dim = 1, 2, . . . ,d do

4 A shift register to produce an entire sample: X with d features.

5 end

6 // ❷Ensemble:

7 for r = 1, 2, . . . ,R do

8 // ❸Projection:

9 for dim = 1, 2, . . . ,d do

10 #pragma HLS PIPELINE

11 norm_X ← normalize X [dim] to the range of [0,1]

12 pr j_X ← (norm_X + rshash_alpha[r][dim])/rshash_f [r]

13 end

14 // ❹Hash-Function:

15 for row = 1, 2, . . . ,w do

16 #pragma HLS UNROLL

17 pr j_hash[row][dim]← pr j_X

18 hash_value[row]← Jenkins (key = pr j_hash[row], len = d, seed = row)

19 (see Algorithm 4 for details of Jenkins)

20 vrow ← slidinд-window[hash_value[row]]

21 // ❺Sliding-window:

22 Update slidinд-window .

23 end

24 min_v ← min{v1,v2, . . . ,vw }
// ❻Score:

25 score (r) ← log2 (min_v)

26 end

27 // ❼Score Averaging:

28 Score ← 1
R

∑
R

r=1 score (r)

29 return Score

An easy-to-use scalable library provides the opportunity to explore the performance of ensem-
bles, many of which have been developed. Examples of anomaly detection packages include: ELKI
Data Mining [1] and RapidMiner [20] in Java; Outliers [33] in R; SUOD [61], PyOD [63], and
PySAD [59] in Python. Aside from their differences in programming languages, different libraries
are also tailored to different kinds of anomaly detection, e.g., PySAD focuses in particular on a
framework of streaming ADs in Python, whereas only static approaches can be accessed by SUOD
and PyOD.

In addition to supporting comprehensive detectors, the libraries provide the ability to combine
the output of these models in different ways beyond simply taking the average or maximum across
all the base models. A software toolkit, combo [64], contains more than 15 model combination
methods in Python, including basic generic and global methods (such as Averaging, Maximization,
Weighted Averaging, Feature Bagging, etc. [2, 35, 65]) and dynamic selection/combination models

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:7

ALGORITHM 3: xStream

Input: Streaming input signal X = �xi ∈ Rd ; ensemble size R; data dimension d ; sliding-window length

W ; hash functions number in CMS: w ; projection size: K .

Output: Streaming anomaly value Score .

1 #pragma HLS DATAFLOW

2 // ❶Windower:

3 for dim = 1, 2, . . . ,d do

4 A shift register to produce an entire sample: X with d features.

5 end

6 // ❷Ensemble:

7 for r = 1, 2, . . . ,R do

8 // ❸Projection:

9 for dim = 1, 2, . . . ,d do

10 #pragma HLS PIPELINE

11 for k = 1, 2, . . . ,K do

12 #pragma HLS UNROLL

13 pr j_X [k]← pr j_X [k] + X [dim] ∗ xstream_pr j[dim][k]

14 end

15 end

16 // ❹Hash-Function:

17 for row = 1, 2, . . . ,w do

18 #pragma HLS UNROLL

19 pr j_hash[row]← perbins (pr j_X)

20 hash_value[row]← Jenkins (key = pr j_hash[row], len = K , seed = row)

21 (see Reference [40] and Algorithm 4 for details of perbins and Jenkins)

22 vrow ← slidinд-window[hash_value[row]]

23 // ❺Sliding-window:

24 Update slidinд-window .

25 scorerow ← log2 (vrow) + row

26 end

27 // ❻Score:

28 score (r) ← min{score1, score2, . . . , scorew }
29 end

30 // ❼Score Averaging:

31 Score ← 1
R

∑
R

r=1 score (r)

32 return Score

(such as DCS [19] and LSCP [62], etc.). While our library currently only performs averaging inside
an ensemble, other combination techniques are easily implemented.

2.3 Dynamic Partial Reconfiguration and Partial Overlays

FPGA technology provides the flexibility to modify a hardware implementation without re-
fabrication. Partial reconfiguration (PR) takes this flexibility a step further, allowing dynamic
changes to an active design. This requires implementing static logic, multiple Reconfigurable
Partitions (RPs) with various Reconfigurable Modules (RMs). The RP is the level of hierarchy
within which different RMs can be implemented and an RM is the netlist or HDL description that
is implemented within an RP. Generally, Multiple RMs with the same interface exists for a specific

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:8 B. Lou et al.

Fig. 2. Basic premise of partial reconfiguration.

ALGORITHM 4: Jenkins Hash Function

Input: The string: key, string length: len and random seed: seed
Output: The hash code of input string.

1 hash← seed;

2 for i = 1, 2, . . . , len do

3 #pragma HLS PIPELINE

4 hash ← hash + key[i]

5 hash ← hash + (hash << 10)

6 hash ← hash ⊕ (hash >> 6)

7 end

8 hash ← hash + (hash << 3)

9 hash ← hash ⊕ (hash >> 11)

10 hash ← hash + (hash << 15)

11 hash_code ← hash%MOD

12 return hash_code

RP. Dynamic Function eXchange refers to a Xilinx tool flow that achieves the partial reconfigura-
tion [26, 27].

Figure 2 illustrates the basic premise of partial reconfiguration. The grey area of the FPGA block
represents static logic, and the blocks marked as Reconfig Block “A” and Reconfig Block “B” repre-
sent the RPs. The functionality implemented in Reconfig Block “A” can be modified by download-
ing one of several partial BIT files: A1.bit, A2.bit, or A3.bit; similarly, the functions implemented
in Reconfig Block “B” can be modified by one of B1.bit to B4.bit.

Using DFX allows the fSEAD library to be able to support improvements or new ADs devel-
oped in the future. Moreover, supporting multiple customized partial regions enables fSEAD to
support ADs that have different resource requirements. This flexibility is also important, because
different applications will have different hardware capabilities and accuracy requirements, while
the optimal performance may change, depending on external conditions, such as environmental
changes.

2.4 Literature Review

This section reviews other anomaly detection techniques, literature on FPGA-based anomaly de-
tection, and briefly highlights related research in dynamic reconfigurable FPGA implementations
for other applications. A powerful class of anomaly detectors utilize tree-based structures, with
examples including iForest [38], HS-Tree [54], and RS-Forest [58]. The Isolation Forest (iForest)
approach builds an ensemble of “Isolation Trees” (iTrees) for the dataset, and anomalies are
the points that have shorter average path lengths on the iTrees. HS-trees are similar to Isolation

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:9

Forest, but decision rules within tree-nodes are generated randomly. RS-Forest takes a further step
by using multiple fully randomized space trees to tackle the streaming detection problem from the
density estimation aspect, which is more efficient, as it leverages the common operations shared
by the prediction and model update processes.

Kernel methods and data-centered models have also been proposed as online anomaly detec-
tors. Support Vector Regression (SVR) with Gaussian kernel-based online novelty detection on
temporal sequences is presented by Ma et al. [39]. High-performance FPGA implementations of
online kernel methods was demonstrated in references [36, 43]. Based on static data-centered LOF
methods [5], an incremental LOF algorithm, appropriate for detecting outliers in data streams, is
proposed in Reference [46] that provides equivalent detection performance as the iterated static
LOF algorithm, while requiring significantly less computational time. Das et al. proposed a system
based on feature extraction and Principal Component Analysis (PCA) [10]. Their FPGA imple-
mentation could support data at over 20 Gbps. Pang et al. [43] present a high-performance FPGA
implementation that achieves improvements in execution time, latency, and energy consumption
by factors of 5, 5, and 12, respectively, over CPU and digital signal processor (DSP) implemen-
tations for the online kernel method [39]. Hayashi and Matsutani [18] offload the Local Outlier
Factor (LOF) calculation to a FPGA-based Network Interface Card for online anomaly filtering.
This leads to throughput improvements of up to 10× on the anomaly filtering over a software-based
execution.

Neural Network models have also been proposed for streaming anomaly detection. Moss et al.
[41] introduce an FPGA-accelerated Neural Network-based anomaly detector based on an auto-
encoder for processing of physical-layer radio-frequency (RF) signals. This design processes
continuous 200 MS/s complex inputs, producing anomaly classifications at the same rate, with a
latency of 105 ns, an improvement of at least 4 orders of magnitude over a conventional approach
using a software defined radio.

While there are published FPGA implementations of random forests [31, 37, 56], kernel, and
neural network-based FPGA-based accelerators, these are all fully customized hardware designs
for a specific algorithm. Moreover, they typically utilize most of the available FPGA resources,
meaning it is difficult to implement such detectors in a partial region of an FPGA. The focus of
this article is on the development of a flexible library. Unlike the many comprehensive and easy-
to-use anomaly detection libraries released on different software platforms [1, 20, 33, 59, 61, 63],
we believe this is the first flexible FPGA library for anomaly detection in the literature.

Although we are not aware of any publications describing runtime reconfigurable anomaly de-
tection libraries, dynamic reconfiguration on FPGAs has been used for other FPGA applications.
The most similar to this work is Wilson, who proposed a real-time video processing pipeline that
utilizes the dynamic reconfigurable aspects of FPGA [57]. Their work used 11 reconfigurable re-
gions, allowing for multiple custom runtime configurations, and it adopts the partial bitstreams
with PYNQ overlays to ease the software development. Our work is different in that it uses AXI
switches to dynamically switch anomaly detectors and model combinations between reconfig-
urable regions and employ a flexible module generator to create the regions themselves.

3 DESIGN

In this section, we first provide a high-level description of the fSEAD system, followed by the
module generator for creating integrated anomaly detection IPs. Next, we introduce the DFX work-
flow we abstracted for creating partial reconfiguration project in Xilinx Vivado environment. We
then describe the interconnection scheme that provides a high degree of flexibility and enables
IP modules to be composed at runtime, allowing applications to be efficiently accelerated without
regeneration of bitstreams. Finally, the FPGA implementation is discussed.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:10 B. Lou et al.

Fig. 3. Overview of the fSEAD framework.

The system framework is illustrated in Figure 3. It consists of four software and hardware compo-
nents. fSEAD_gen in the upper-left corner of Figure 3 is a Python-based module generator. It takes
parameterized function entities and produces Vivado HLS modules under. The lower-left corner
of Figure 3 shows the interface for pblocks, which take streaming inputs and produce streaming
outputs. These then are encapsulated as multiple unique IPs and wrapped within AXI streaming
interfaces and an AXI-Lite controller. All parameters required by the IP modules are stored in
on-chip memory (OCM) for performance. The lower-right sub-figure shows multiple pblock re-
gions. Multiple sub-detector IPs are arranged in a spatially parallel fashion within each pblock.
Each pblock is implemented by many reconfigurable modules (RMs) and can be customized at
runtime.

3.1 Module Generator

The module generator allows customization of the underlying sub-detectors for latency optimiza-
tion and resource utilization exploration.

The fSEAD_gen module generator, written in Python, takes as inputs: the anomaly detector pa-
rameters, data-type, precision, function description, target dataset, and a testing set. It produces
a standalone C program suitable for synthesis via HLS as output. The parameters, interface, and
optimization directives are all embedded in the C program. A compact sub-detector C instance
is formed by combining the ❸Projection, ❹Core, ❺Sliding-window, and ❻Score parts of Al-
gorithms 1–3. Arbitrary numbers of sub-detectors, specified by the user to the module generator,
are integrated in parallel manner to form an ensemble. A self-verifying test-bench compares the
program with golden results from the original Python description. Thus, programming errors in-
troduced by the generated ensemble program can be quickly identified in the simulation step. For
synthesis, compiler directives such as DATAFLOW, ARRAY PARTITION, UNROLL, and PIPELINE
are used to aid translation of the C description to a spatially parallel RTL circuit.

In Algorithms 1 to 3, we use the DATAFLOW pragma only in the top layer (line 1 of each
algorithm) to enable task-level pipelining. This allows functions and loops to execute concurrently
and achieve sub-detector parallelism. UNROLL is used to create multiple instances of the loop
body in the RS-Hash and xStream algorithms to exploit spatial parallelism. This enables all hash

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:11

Fig. 4. An example of a hash-based AD hardware structure in fSEAD.

functions inside the CMS table (line 16 in Algorithm 2 and line 18 in Algorithm 3) to execute
concurrently, and similarly accelerates the projection of sizeK for xStream (line 12 in Algorithm 3).
PIPELINE reduces the initiation interval (I I , the number of clock cycles before the function can
accept new input data) by allowing overlapped execution of operations within a loop or function.
It is used in the projection loop body of all detectors (line 10 of Algorithms 1 to 3) and the f or loop
in the Jenkins hash function (line 3 of Algorithm 4). I I = 1 is achieved in all the loop bodies with
PIPELINE for our implementation. The result of all these optimizations is a highly parallel design
that balances resource utilization and latency.

fSEAD_gen currently supports three types of detectors with arbitrary ensemble size and coeffi-
cients (Loda, RS-Hash, and xStream). All HLS directives are first manually designed for the target
FPGA and then embedded in fSEAD_gen. fSEAD_gen can automatically generate optimizations for
different ensemble sizes, such as hyper-parameters and other configurations, without modifying
the existing HLS directives. However, developers maintain the flexibility to adapt the current HLS
directive to find more optimized solutions for a specific area-latency tradeoff requirement. New
detectors can be written in C/Python and easily integrated using existing detectors as examples.
In this case, specific optimized HLS directives have to be manually re-designed for new members
to the fSEAD library.

Figure 4 shows an ensemble of hash-based detectors that have a more complex hardware im-
plementation than Loda. For simplicity, this figure highlights the parallel sub-detectors generated
by the DATAFLOW pragma, instead of the detailed circuits from the lower level by PIPELINE
and UNROLL pragmas. This represents the main acceleration of fSEAD: task-level parallelism for
sub-detectors operating concurrently.

Input data is streamed into the IP on the left interface and outputs the real-time anomaly score
on the right side. Input samples are windowed to assemble a batch with target dimension: d (refer
to ❶Windower in Algorithms 2 and 3). Computation of all the streams occur concurrently, be-
fore a final reduction step (refer to ❷Ensemble, in Figure 4 this is averaging). Sub-detector level

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:12 B. Lou et al.

Fig. 5. An example of Xilinx partial reconfiguration tool flow.

parallelism is achieved by applying the HLS DATAFLOW directive on the top function. In this way,
the maximum ensemble size is only limited by resources available in the target FPGA. Inside each
sub-detector, small area and low latency are the goals. We compute each row of a CMS table us-
ing independent hash functions in parallel (refer to ❹Hash-Function). PARTITION directives are
used to divide a large RAM into smaller storage units, increasing available parallelism of accesses.
This is advantageous, because even with dual-port RAM, only one read and one write operation
can be completed in one clock period. Notably, since the usage of PARTITION significantly affects
the resource consumption of LUTs or FFs on FPGA, it is only used for a specific dimension of the
target array. This guarantees the functions of DATAFLOW, PIPELINE, and UNROLL directives.
All HLS directives above enable a balanced optimization inside an ensemble AD instance, which
is independent of the partial-block-level model combination scheme introduced in the following
Section 3.3.

To avoid high resource cost with little throughput benefit, we constrain the ❸Projection
module using PIPELINE instead of UNROLL inside each sub-detector. To compute the logarithm
required for the negative log-likelihood score of Table 1, a W -deep lookup table with 32-bit
representation is used for window-size ofW .

3.2 DFX Tool Flow

DFX is an important tool to endow fSEAD with partial reconfigurability. Its customized workflow
for fSEAD is introduced in this section. Continuing on the basis of the example in Figure 2. Figure 5
shows an example of how two reconfigurable areas are mapped to Reconfigurable Partitions
(RPs) using our tool flow. It should be noted that in addition to the dynamic RMs for each Partial
block (e.g., the RM-A1 to RM-A3 for RP-A, and RM-B1 to RM-B4 for RP-B), a default RM can also
be assigned for each pblock. The logic of the RM-Default will be first active when the static.bit is
downloaded, which brings with a recommended way of setting the default RM to an empty logic
to save power before this pblock is configured by the dedicated RM of users.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:13

Fig. 6. Composable topology.

In the last step (the lower left sub-figure) in Figure 5, we show that standalone FPGA or Xilinx
PYNQ platforms are able to support the fSEAD execution. We select the PYNQ as the final exe-
cution platform in this example. The bitstreams and a hardware hand-off (HWH) file are used
as overlays by PYNQ to automatically identify the Zynq system configuration, IP including static
regions and partial blocks.

3.3 Composable Infrastructure

The Xilinx DFX tool [27] supports partial reconfiguration of RMs in an FPGA while the rest of
the device remains operational. There is no limitation in the number of RMs supported. In fSEAD,
each pblock is a unique RM configuration with its own BIT file. By downloading the appropriate
one, the hardware functionality can be customized at runtime. In summary, pblocks are either:
(1) Ensembles of homogeneous sub-detectors implemented in a pblock; and (2) Combination mod-
ules that aggregate heterogeneous pblock output streams.

An AXI4 switch acts as a router and orchestrates data movements between pblocks. Inputs can
be routed from multiple input streams to any pblock, with outputs routed to remaining pblocks
and back to a host processor.

Figure 6 shows the composable topology proposed in fSEAD. The grey regions are pblocks.
Blue blocks symbolize Direct Memory Access (DMA) controllers for data transfer. Two AXI4-
Stream switches [24] enable dynamic routing from a Slave port to a Master port, e.g., for switch-1,
S1 in the lower left is the first Slave interface, and M14 in the lower right symbolizes the 14th
Master interface. Master and Slave interfaces are symmetric and point-to-point, so Master output
signals can connect directly to Slave input signals. Any number of external modules can be daisy-
chained together. The modules can be used for a multitude of different tasks such as buffering, data
transform, or routing. Multiple switches are used, since each Xilinx AXI4-Stream Switch IP switch
only supports a maximum of 16 Slave ports and 16 Master ports. Cascades of two or more switches
allow an arbitrary number of pblocks to be interconnected. The black lines depict AXI4-Stream
connections, and the red lines are AXI-Lite bus connections. These are connected and controlled
by the AXI4 Interconnect at the bottom.

In our prototype implementation, seven independent pblocks are available for implementing
anomaly detectors (shown as RP-1 to RP-7 in Figure 6). Each pblock has one AXI4-Stream input

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:14 B. Lou et al.

Fig. 7. Examples of combination scheme.

connected to a fixed DMA and one output interface connected to a Slave port of AXI4-Stream
Switch-1. Multiple sub-detectors can be placed in a single pblock, each with different parameter
settings. For example, 35 Loda sub-detectors fit in a single pblock. The combo pblocks at the top
of Figure 6 are responsible for aggregation. Each is equipped with four input ports and one output
port, all connected to Switch-2.

Table 2 shows the currently supported combination methods implemented in fSEAD for con-
tinuous (score) and discrete (label) targets. The label targets are “0” meaning not an anomaly and
“1” for anomaly. General and global (GG) methods [2, 35, 62, 65] are used by popular machine
learning libraries such as scikit-learn [44], XGBoost [8], and LightGBM [32] for aggregation of sub-
detector class results. In fSEAD, for sub-detectors with continuous outputs, we implemented three
representative GG methods, namely, Averaging (GG_A), Maximum (GG_M), and Weighted
Average (GG_WA). To combine label outputs, two commonly used approaches, or (a class is true
if any sub-detector outputs true for that label) and voting (the class with most votes is chosen as
the output), are applied. In this work, we always use averaging for combining anomaly scores and
the or-gate technique to combine labels. Of course, this can be customized by the user.

Routing through the AXI switches is configured via the AXI-Lite interface. A register is used for
each master to slave connection. After the registers have been configured, the interconnection is
determined. Unused master or slave interfaces are disabled. When a slave interface is connected
to multiple masters, only the lowest numbered one is used, e.g., if both Master-1 and Master-3
are configured to connect to Slave-2, then Master-1 wins the arbitration and Master-3 is disabled.
Thus, effectively only one connection between each master and slave is made.

Figure 7 shows four example configurations of our composable topology. Figure 7(a) shows the
simplest case where seven parallel Loda pblocks (each containing multiple sub-detectors) are used
to analyze seven different datasets. Each streaming channel implements a unique and independent
anomaly detection application. Switch-1 is configured to directly route RP-1 to RP-7 to seven out-
put DMA channels. This configuration only requires Switch-1 so connections to Switch-2 and the
combo pblocks are disabled. The case in Figure 7(b) implements three independent anomaly detec-
tion applications. It exploits all pblocks and two of the Switches. RP-1, RP-2, and RP-3 implement
a Loda ensemble, and their outputs are routed to the inputs of COMBO1. The output is the final

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:15

Table 2. Combination Methods for Scores and Labels

Output Combination Methods Equation

score Averaging combo = (score1 + score2 + · · · + scoreN)/N
score Maximization combo =max (score1, score2, . . . , scoreN)
score Weighted Average combo = (w1 ∗ score1 +w2 ∗ score2 + · · · +wN ∗ scoreN)/N , (

∑
N

i=1wi = 1)
label Or combo = (label1 |label2 | · · · |labelN)
label Voting combo = votinд(label1, label2, . . . , labelN)

Fig. 8. FPGA layout. Fig. 9. Placement on FPGA.

score that is sent to the host via DMA. The pblocks (RP-4, RP-5) and (RP-6, RP-7) generate RS-Hash
and xStream ensembles for two different datasets. Figure 7(c) is an example that only operates on
a single dataset and a single type of anomaly detector, namely, Loda. It uses all the pblocks to im-
plement a maximally parallel, homogeneous ensemble. Finally, Figure 7(d) is similar to Figure 7(c)
but incorporates three different types of detectors: Loda, RS-Hash, and xStream.

The configurations are not limited to the four cases just described. By providing different pblocks
and switch configurations, a multitude of customized anomaly detection functionalities can be
implemented in a runtime-configurable manner.

3.4 FPGA Implementation

This section continues the example of Figure 7(c) as concrete example to describe physical imple-
mentation on a Zynq UltraScale+ ZCU111 Evaluation Board with XCZU28DR-2FFVG1517E RFSoC
FPGA.

Figures 8 and 9 show the FPGA layout and placement, respectively. The floorplan is based on two
considerations: (1) Seven AD-pblocks occupy the main FPGA resources to ensure that the fSEAD
has sufficient resources to implement parallel ensembles and complex detectors. In comparison,
the combo modules, switches, and DMA units are not resource-intensive and are reflected in the
layout; (2) Although long interconnections are needed because of the distributed pblocks, this
is alleviated through AXI bus-level pipelining [25]. This technique isolates the path between the
master and slave with registers, while maintaining an AXI4 protocol-compliant pipeline stage. The
register slice is implemented as a two-deep FIFO buffer that supports bus communication without
generating unnecessary idle cycles. It serves to achieve timing closure by reducing the critical
path.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:16 B. Lou et al.

We place Switch-1 (yellow) in the center of the FPGA with Switch-2 (orange) adjacent, since the
two communicate directly with each other. Switch-1 is assigned a larger area than the Switch-2,
as it connects to seven pblocks (in blue), while Switch-2 is smaller to prevent blocking routes
from RP-1 and RP-4 to Switch-1. As shown in Figure 8, the nearest routing channel from RP-1
to Switch-1 is only a very narrow programmable slot (white line). The three combo-pblocks (red)
only connect to Switch-2. The floorplan for the above-mentioned blocks is compact and sits in the
middle layout of FPGA.

The seven AD-pblocks (in blue) occupy the remaining resources. It is important to note that
we did not issue placement area constraints for DMAs, AXI4-Interconnect, and the other static
components. Instead, we allow these components to be placed by the Vivado tool to minimize
routing delay. The spaces between the colored regions are available for any remaining static logic.
Furthermore, during the Partial Reconfiguration process, the DFX Decoupler [27] is used to allow
users to isolate the logic being configured until it is done and the new logic reset.

4 RESULTS

The aforementioned techniques were implemented and results presented in this section. In Sec-
tion 4.1, we introduce the development environment and test platform. In Section 4.2, we demon-
strate why larger ensembles with more sub-detectors is desirable and how performance is boosted
in terms of accuracy from model combination. We then discuss the resource use of the static re-
gions and available resources in each of the FPGA partial regions in Section 4.3. Furthermore, we
show the performance gains of our architecture over a CPU in Section 4.4. Finally, in Section 4.5,
we analyze the performance characteristics of partial reconfiguration and more general features
of the fSEAD architecture.

4.1 Test Platform

We utilize the Xilinx Zynq UltraScale+ ZCU111 (xczu28dr-2ffvg1517e) board for evaluating the
fSEAD library. fSEAD_gen is used to generate three anomaly detectors (Loda, RS-Hash, and
xStream) with HLS and GCC targets used for FPGA and multi-threaded CPU implementation, re-
spectively. The HLS module is synthesized to RTL using the Xilinx Vivado HLS tool (v2020.1) and
then passed through Xilinx Vivado Design Suite (v2020.1). We then deploy the architecture on the
FPGA using the PYNQ framework. The GCC compiled versions of Loda, RS-Hash, and xStream as
CPU benchmarks are tested on desktop with Intel(R) Core(TM) i7-10700F @2.9 GHz and 64 GB
memory for performance comparisons. The g++ compiler is used with flags “-Wall –std=c++14 -g
-O3,” with “-lpthread” applied for multi-threaded optimization. The flag “-ftree-vectorize” is turned
on by default under “-O3” to enable automatic vectorization for further optimization.

The anomaly detection performance evaluation was conducted on four publicly available
datasets: Cardio, Shuttle, HTTP-3, and SMTP-3, with their main attributes summarized in Table 3.
Cardio and Shuttle are also used in SUOD [61]. HTTP-3 and SMTP-3 were derived from the KDD-
cup 99 [55] dataset and are 3 feature variants of the 41 feature full datasets, first used in Reference
[54]. The sample number n varies from 1,831 (Cardio) to 567,498 (HTTP-3), and the dimensionally
ranges from 3 to 21. Cardio proportionally has the largest number of anomalies (9.61%), and only
0.03% of samples in SMTP-3 were in the anomaly category. In addition to the four datasets above,
others are available including those in the ODDS Library [48], UCI repository [11], and DAMI
Datasets [16] for future research.

Accordingly to the SEAD structure in Figure 1, the output scores of each detector are first normal-
ized to [0,1). A sample with a higher score indicates a higher probability that this sample belongs
to the anomaly category. Furthermore, with the anomaly percentage, or named contamination
rate that the users know in advance, a threshold can be determined to translate anomaly scores to

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:17

Table 3. Datasets

Datasets Sample Length Dimension Outliers %Outliers

Cardio 1,831 21 176 9.61
Shuttle 49,097 9 3,511 7.15
SMTP-3 95,156 3 30 0.03
HTTP-3 567,498 3 2,211 0.40

Table 4. Hyper-parameter Set for the Three Detectors

Detector window size Bins CMS-w CMS-MOD K

Loda 128 20 1 - -
RS-Hash 128 - 2 128 -
xStream 128 - 2 128 20

Fig. 10. Ensemble performance measured on dataset: Cardio.

binarized anomaly labels. For example, if the threshold is 0.8, then inputs with anomaly scores of
0.9 and 0.5 would be assigned to labels “1” (anomaly) and “0” (normal), respectively. The standard
metric used for evaluating anomaly detectors is Area Under the Curve (AUC) of the Receiver
Operating Characteristics (ROC) curve. It can be used for scores or labels and is described in
detail in Reference [12]. We adopt this metric to analyze the accuracy of our implementations.

4.2 Sub-detectors and Ensemble Accuracy

We conducted an experiment to show the effectiveness of increasing the number of sub-detectors
for each of the three supported methods in fSEAD.

For different ensemble sizes, the AUC of detectors in fSEAD and the variance of AUC are evalu-
ated over 10 executions with different random seeds. The hyper-parameters were set to the values
in Table 4, these being chosen to give an accurate and efficient hardware implementation. We refer
the reader to the relevant papers regarding selecting these hyper-parameters [40, 45, 51].

Figure 10 shows ensemble sizes in the range [3, 200] for Loda, RS-Hash, and xStream, respec-
tively. For simplicity, only the Cardio dataset is used to exhibit AUC performance. Figure 10(a)
represents the mean AUC, and sub-figure (b) shows the variance.

For all detectors, AUC increases with increasing ensemble size before converging to a maximum;
the AUC variance shows a decreasing trend before converging to a minimum. This translates to
increasing the number of sub-detectors generally leading to a more reliable result, which follows
the underlying principle of ensembles [13, 14].

Furthermore, Table 5 shows results for different heterogeneous combinations of detectors over
our four benchmarks. The rows in this table are divided into two main parts, mean and variance of
the AUC, with the columns divided into AUC of Score and Label results. A, B, and C in the second
row indicate three detectors (Loda, RS-Hash, and xStream, respectively), and the numbers indicate

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:18 B. Lou et al.

Table 5. Model Combination Comparison

AUC Model
Score Label

A7 B7 C7 C223 C232 C322 C331 C313 C133 A7 B7 C7 C223 C232 C322 C331 C313 C133

Mean

cardio 0.933 0.850 0.907 0.897 0.898 0.891 0.899 0.889 0.900 0.659 0.618 0.646 0.711 0.721 0.705 0.708 0.706 0.715
shuttle 0.991 0.990 0.986 0.990 0.991 0.990 0.992 0.990 0.991 0.927 0.950 0.933 0.974 0.970 0.970 0.972 0.974 0.976
smtp3 0.847 0.856 0.834 0.848 0.849 0.848 0.851 0.851 0.850 0.743 0.717 0.500 0.757 0.755 0.770 0.767 0.765 0.737
http3 0.993 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.995 0.595 0.510 0.512 0.595 0.620 0.604 0.584 0.600 0.594

Variance
(×10−3)

cardio 0.04 0.2 0.05 0.07 0.06 0.09 0.06 0.23 0.05 0.13 0.14 0.09 0.05 0.15 0.14 0.15 0.31 0.21
shuttle 0.005 0.000 0.092 0.001 0.002 0.001 0.000 0.002 0.001 0.41 0.06 3.04 0.03 0.07 0.06 0.01 0.03 0.02
smtp3 0.01 0.05 1.75 0.08 0.03 0.06 0.04 0.04 0.02 0.62 0.000 0.000 1.96 1.95 0.93 0.89 1.03 0.71
http3 0.0011 0.0001 0.0003 0.0003 0.0001 0.0001 0.0001 0.0001 0.0002 5.01 0.13 0.12 8.32 7.76 5.46 3.0 2.46 4.82

the number of pblocks used. The numbers of sub-detectors we use for each A, B, and C pblock are
35, 25, 20, respectively; details of this value will be described in Section 4.3. For example, A7, B7,
and C7 indicate all seven pblocks are utilized for a single type of detector. The fourth one, C223,
represents a combination of two pblocks assigned to Loda, two pblocks for RS-Hash, and the last
three pblocks being occupied by xStream. We note that this experiment did not cover all possible
combinations. However, the goal of this article is to provide a hardware framework that supports
arbitrary model combinations; how to get the best combination scheme for a given benchmark is
dataset-dependent and beyond the scope of this work. The best result for each dataset is in bold.

For the Cardio dataset, Table 5 shows that Loda always achieves the best Score AUC mean (0.933)
and lower variance (0.00004) than RS-Hash, xStream or any listed combination strategy. However,
in the label test, all combined labels can get a higher AUC than any single detector, albeit with
higher variance.

In general, it can be seen that Loda, RS-Hash, and xStream perform differently for different
datasets and there is no single “best” detector or “ideal” combination. Combined strategies are
not always superior to a single detector. However, a combined detector typically yields more re-
liable performance. For labels, the combined detector always returns a higher AUC. We believe
this is because if any detector indicates an anomaly, then the combined result is also an anomaly.
This reduces the possibility of missing an anomaly and introducing a higher variance. We believe
the strong dataset dependence coupled with the difficulty of finding the best combination of sub-
detectors justifies the need to create a runtime reconfigurable framework that can support multiple
detectors and multiple instances of each detector.

4.3 Pblock Assignment and FPGA Implementation

Table 6 shows a breakdown of resource utilization for the blocks in Figure 8. RP-1 to RP-7 ac-
count for the majority of the FPGA resources and are used for sub-detector implementation. The
resource distribution of these blocks is not uniform, since the floorplan was manually created to
pass the Design Rule Check (DRC) due to the nonuniform resources located on the target FPGA
(ZCU111). The resources for blocks to combine the results, noted as combo-pblocks, are minimal,
this being LUT (0.63%), DSP (0.75%), BRAM (0.80%), and FF (0.63%). Overall, the partial reconfig-
urable blocks and two static switch blocks utilize 57.73% LUT, 52.69% DSP, 55.37% BRAM, and
57.74% FF resources. The remaining area is used to implement the remaining interface, including
DMAs, AXI-Interconnect, DFX-decoupler, and so on.

An important issue affecting achievable parallelism is how many sub-detectors can be assigned
to a pblock. We determine this number by using the smallest pblock (RP-3) as the target and cal-
culate the maximum ensemble size for Loda, RS-Hash, and xStream. This exercise led to ensemble
size of R = 35 for Loda, R = 25 for RS-Hash, and R = 20 for xStream in each AD-pblock. The
resources required are shown in Table 7. Thus, if we utilize all seven AD-pblocks to implement a
homogeneous type of detector, then the current configuration supports a maximum of 245 Loda,
175 RS-Hash, or 140 xStream sub-detectors.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:19

Table 6. Resource Partition of FPGA Blocks

Blocks LUT DSP BRAM FF

RP-1 6.73% 4.49% 6.67% 6.73%
RP-2 8.57% 7.54% 8.52% 8.57%
RP-3 6.24% 6.46% 6.39% 6.24%
RP-4 6.72% 4.49% 6.67% 6.72%
RP-5 6.24% 6.46% 6.39% 6.24%
RP-6 8.74% 8.24% 8.15% 8.74%
RP-7 7.32% 7.30% 7.22% 7.32%
RP-combo1 0.72% 0.56% 0.74% 0.72%
RP-combo2 0.59% 0.84% 0.83% 0.59%
RP-combo3 0.59% 0.84% 0.83% 0.59%
Switch-1 3.46% 4.49% 2.96% 3.46%
Switch-2 1.81% 0.98% 0% 1.82%
DMAs 2.25% 0% 1.30% 0.48%
DFX-Decouplers 0.04% 0% 0% 0.008%
AXI-InterConnect 0.67% 0% 0% 0.58%
AXI-SmartConnect 2.41% 0% 0% 1.61%
ALL 62.5% 52.69% 56.67% 60.42%

Table 7. Resource of 35 Loda, 25 RS-Hash, and 20 xStream for Cardio

Detector LUT DSP BRAM FF

Loda-35 16,783 (63.4%) 122 (44.2%) 54.5 (79.0%) 11,478 (21.7%)
RS-Hash-25 23,732 (89.6%) 68 (24.6%) 50 (72.5%) 14,012 (26.5%)
xStream-20 23,908 (90.3%) 80 (29.0%) 60 (87.0%) 12,617 (23.8%)
RP-3 26,480 276 69 52,960

4.4 Speed, Accuracy, and Power Comparison

We achieve 80%–90% logic use of all seven partial blocks in fSEAD on the ZCU111 board for ho-
mogeneous detect implementations of Loda (245 sub-detectors), RS-Hash (175 sub-detectors), and
xStream (140 sub-detectors). This configuration was configured using the PYNQ environment for
testing of fSEAD performance. The FPGA was operated at a clock rate of 188 MHz. We also im-
plemented a multi-threaded GCC version of the detectors with the same parameters and scale as
fSEAD for comparison.

The detector system in fSEAD is configured with the topology shown in Figure 7(c). An
averaging-based combination and an OR-Gate-based label combination techniques were used. The
ap_fixed<32,16,AP_TRN,AP_WRAP> type available in Xilinx Vivado HLS [28] was used for all in-
ner non-integer operations. This has a word-length of 32-bit with 16 bits representing the integer
part and 16 bits representing the fraction. Convergent rounding (AP_TRN) and saturating arith-
metic (AP_WRAP) were used. To facilitate the use of the float32 type in the NUMPY library [17]
for streaming data transfer with each module on the FPGA, all fSEAD IP interfaces are converted
to float32. This does not cause a significant increase in resource consumption.

Tables 8 through 10 show the performance comparison of Loda, RS-Hash, and xStream detectors
in terms of AUC and execution time on the ZCU111 board and CPU, respectively. The execution
time test uses the time() function in Python to measure the time from the start of the input DMA
transfer to when all data is obtained from the output DMA. The GCC implementation was exe-
cuted on a multi-threaded CPU on the target PC, and the time command in bash used to measure
execution time. The pthread library is used to support the multi-threaded C implementation. Con-
sidering that each sub-detector in the ensemble is data-independent, we equally distribute the same

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:20 B. Lou et al.

Table 8. Accuracy and Execution Time Comparison between fSEAD and CPU for Detector: Loda

Dataset AUC-S(CPU) AUC-S(FPGA) AUC-L(CPU) AUC-L(FPGA) Ex Time(CPU) Ex Time(FPGA) Speedup

Cardio 0.9310 0.9311 0.6447 0.6412 13 ms 4.63 ms 2.81×
Shuttle 0.9923 0.9914 0.9490 0.9432 147 ms 34.23 ms 4.29×
SMTP-3 0.8501 0.8506 0.7666 0.7499 222 ms 39.31 ms 5.65×
HTTP-3 0.9937 0.9936 0.6415 0.6336 1,396 ms 228.25 ms 6.12×

Table 9. Accuracy and Execution Time Comparison between fSEAD and CPU for Detector: RS-Hash

Dataset AUC-S(CPU) AUC-S(FPGA) AUC-L(CPU) AUC-L(FPGA) Ex Time(CPU) Ex Time(FPGA) Speedup

Cardio 0.8546 0.8524 0.6310 0.6274 15 ms 4.87 ms 3.08×
Shuttle 0.9915 0.9910 0.9543 0.9560 168 ms 35.80 ms 4.69×
SMTP-3 0.8525 0.8513 0.7166 0.7166 260 ms 39.63 ms 6.56×
HTTP-3 0.9944 0.9944 0.5065 0.5067 1,490 ms 228.29 ms 6.53×

Table 10. Accuracy and Execution Time Comparison between fSEAD and CPU for Detector: xStream

Dataset AUC-S(CPU) AUC-S(FPGA) AUC-L(CPU) AUC-L(FPGA) Ex Time(CPU) Ex Time(FPGA) Speedup

Cardio 0.9229 0.9222 0.6467 0.6435 18 ms 4.82 ms 3.73×
Shuttle 0.9914 0.9905 0.9688 0.9680 250 ms 40.62 ms 6.15×
SMTP-3 0.8077 0.8076 0.7167 0.7167 366 ms 50.99 ms 7.18×
HTTP-3 0.9947 0.9948 0.5067 0.5069 2,460 ms 297.85 ms 8.26×

Fig. 11. Multi-threaded CPU implementation for xStream for HTTP-3.

number of sub-detectors to each CPU thread. The sub-score computed by multiple threads requires
a synchronization operation at the end of each sample to compute the average score of the ensem-
ble. The pthread_mutex_lock and pthread_mutex_unlock functions are placed between different
threads to guarantee the streaming mode execution. The target CPU has 8 cores and 16 hardware
threads; we conduct a test of switching the thread number from 1 to 16. Figure 11 shows the
speedup results with different numbers of threads on the longest test-case: xStream for HTTP-3,
4-thread always gets the best speedup. We believe this is due to synchronization overheads intro-
duced by the mutex scheme limiting performance when the number of threads is greater than 4
(mutex is called in every streaming execution). Based on this result, all the following CPU experi-
ment results are measured from 4-thread configuration.

In terms of accuracy, very similar scores were obtained on CPU and FPGA platforms. This indi-
cates the ap_fixed<32,16> variable type used can provide sufficient accuracy as the float32 variable
type of CPU implementation. The minor differences are due to the accumulation of errors during
the cumulative calculation of the accuracy differences generated by each ap_fixed and float32 type
sub-detector. Future developers may wish to explore minimizing resource consumption further by
reducing precision.

On the smallest dataset, Cardio, it can be observed that the FPGA obtains a speedup of 2.81 for
Loda, 3.08 for RS-Hash, and 3.73 times for xStream. The speedup ratio increases as the size and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:21

Fig. 12. Execution time comparison of fSEAD and CPU for detector: Loda.

Fig. 13. Execution time comparison of fSEAD and CPU for detector: RS-Hash.

Fig. 14. Execution time comparison of fSEAD and CPU for detector: xStream.

dimension of the dataset increases. On the largest dataset, HTTP-3, the three detectors achieve
speedups of 6.12, 6.53, and 8.26, respectively. The highest speedup, 8.26, is achieved by xStream
for dataset HTTP-3. For smaller datasets, the transfer time from the Linux OS-based host ARM
processor to the FPGA becomes the bottleneck. As fSEAD is optimized for large datasets, this is
not a significant issue.

It is worth mentioning that, since the ensemble on fSEAD is based on sub-detector-level paral-
lelism, its latency is not significantly affected by the ensemble size in the case that FPGA resources
are sufficient to implement the required ensemble in parallel. In contrast, the ensemble implemen-
tation on GCC uses a for loop to iterate the computation of each sub-detector, so its execution
time increases proportionally with the increase of the ensemble size. Figures 12 to 14 show the
execution times of the three detectors on the CPU and FPGA for multiple sets of experiments and
different ensemble sizes. The red dots indicating CPU execution time show a linear increase with
ensemble size. The green crosses indicate the execution time on FPGA, while the black crosses are
the results of two FPGA executions. In all cases, significant speedups are achieved over the CPU
and limited only by FPGA resources.

We also use the roofline model to estimate the degree to which our target anomaly detector meth-
ods have been optimized. This describes an application’s achieved performance and arithmetic in-
tensity against the machine’s maximum achievable performance in terms of memory bandwidth
and peak computational performance. The CPU roofline model is measured on the Intel Advisor
2022 [22]. Billions of operations per second (GOPS) is used as the metric for Performance
(y axis in Figure 15) and operations (OPs) per byte is used for Arithmetic intensity (x axis in
Figure 15). The L1/DRAM bandwidth roofline represents the maximum amount of bytes that can
get read or written for a given arithmetic intensity. For FPGA roofline models, we use the method
in Reference [42] to calculate the roofline chart in Figure 16. The arithmetic intensity (x axis) is
the number of arithmetic operations performed for each byte read or written to off-chip memory
(we assume 13.4 GB/s off-chip memory bandwidth [23]). The performance (y axis) is calculated in
GOPS.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:22 B. Lou et al.

Fig. 15. Roofline model on CPU. Fig. 16. Roofline model on FPGA.

Table 11. Operation Number of fSEAD

Detectors Operation Number

Loda OP = N ∗ (2Rd + 7R + 2)
RS-Hash OP = N ∗ (5Rdw + 4Rd + 11Rw + R + 2)
xStream OP = N ∗ (2Rdk + 5Rdw + 15Rw + 2R + 2)

1
N : the length of the input dataset.

2
d : the dimension of input dataset.

3
R: the ensemble size.

4
w : the hash functions number in CMS.

5
k : the projection size of xStream.

Table 12. GOPS Comparison of CPU and fSEAD

GOPS
CPU fSEAD

Cardio Shuttle SMTP-3 HTTP-3 Cardio Shuttle SMTP-3 HTTP-3

Loda 1.690 2.049 1.402 0.776 4.748 8.789 7.924 4.748

RS-Hash 6.772 6.353 4.197 4.331 20.858 29.797 27.533 28.282

xStream 15.427 11.050 6.623 5.878 57.544 67.959 47.554 48.551

For the three detectors, Table 11 shows the expressions we used to estimate the total number of
operations for the execution of a target dataset. Using this and the execution time from Table 8 to
Table 10, we compute the GOPS in Table 12. We use the highest GOPS (67.959 GOPS of xStream for
Shuttle) to estimate the compute-bound performance for the target FPGA (ZCU111) and fSEAD
structure, respectively. The xStream for Shuttle occupies 132,391 LUTs, 476 DSPs, and 79,485 FFs,
which takes up 31.13% of the total FPGA resources and 61.57% of the fSEAD partial blocks resources.
From this, we calculate the compute-bound performance for FPGA and fSEAD as 218.3 GOP/s and
110.4 GOP/s, respectively.

While no algorithms reach the boundary of the roofline, xStream is closer to the computational
boundary than Loda and RS-Hash, as seen in Figures 15 and 16. We believe this is a function of the
algorithms: The current three detectors are not extremely computationally intensive, but xStream
has more vector and matrix multiplication operations among the current AD library.

Figure 17 shows scalability of a single pblock, RP-1, using the Cardio dataset with 20% to 80% re-
source utilization for Loda, RS-Hash, and xStream. Working at the same 188 MHz clock frequency,
the throughput of three detectors can be seen to vary linearly with the resource utilization of RP-1.
This linear scalability enables one to quickly identify potential ensembles that will fit on a given
FPGA and estimate their throughput. One could then perform software experiments, such as those
in Table 5, to identify which of these potential ensembles provides the best accuracy for the target
dataset.

The power consumption of fSEAD is separated into chip power and system power, Figures 18
and 19 show the measured chip and system power consumption from Xilinx Vivado Tool [29]

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:23

Fig. 17. Example of the scalability inside single partial block: RP-1.

Fig. 18. Chip power consumption. Fig. 19. System power test-bed.

and EcoFlow RIVER Max Portable Power Station [21], respectively. In Figure 19, the idle system
power measured on EcoFlow is 30 Watts and the working system power (35 Watts) is gained by
configuring the PYNQ to invoke all pblocks for xStream with the biggest dataset HTTP-3, which
matches the dynamic power of 5.232 Watts, as demonstrated in Figure 18. Intel(R) Core(TM) i7-
10700F CPU power is measured with the powerstat command using Running Average Power
Limit (RAPL) domains. 120 samples of power measurements with 0.5-second step are averaged
over the duration of one minute time. The CPU idle power is 7.90 Watts, and the CPU work-
ing power for xStream with the biggest dataset HTTP-3 is 51.23 Watts. The dynamic CPU power
(43.33 Watts) is more than 8× higher than the fSEAD dynamic power consumption on ZCU111
FPGA (5.232 Watts).

4.5 Partial Reconfiguration

Although the reconfiguration of each partial region in fSEAD can often be done when the system
is idle, we measure the overhead of partial reconfiguration in the PYNQ framework. The horizon-
tal axis of Table 13 shows all pblocks, and the vertical axis shows the direction of reconfigura-
tion for bitstream downloads. For example, Function → Identity indicates that the configured
logic is Function that is overwritten with Identity. We have chosen a common function module:
Loda_Cardio and Averaдinд for (RP-1 to RP-7) and (COMBO1 to COMBO3), respectively, as the
Function module. Identity is a design where the input is simply passed to the output. The objective
is to evaluate the impact of the hardware logic size of the target bitstream on the reconfiguration
time cost. Referring to the size of each pblock provided in Table 6 (all seven AD-pblock resources
are larger than those of COMBO1 to COMBO3; among the seven AD-pblocks, RP-3 has the least

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

42:24 B. Lou et al.

Table 13. Partial Reconfiguration Time Cost (Unit is ms) of the Different Pblocks

BIT download directions RP-1 RP-2 RP-3 RP-4 RP-5 RP-6 RP-7 COMBO1 COMBO2 COMBO3

Function → Identity 607.8 606.1 604.5 606.1 608.9 609.6 609.5 587.2 582.7 579.8
Identity → Function 606.3 611.3 607.2 606.0 606.9 608.1 607.5 582.9 580.1 581.9

Fig. 20. Example of fSEAD channel with empty logic.

programmable resources and RP-6 the most; while COMBO1 occupies the largest area of the three
COMBO blocks).

The latencies reported in Table 13 are the total partial reconfiguration latency. This will be a
function of the size and location of the region, as well as the size of the partial bitstream and the
chosen FPGA. Since we do not have the ability to modify the chosen FPGA, in this section, we
explore how these other factors impact reconfiguration time. The results in Table 13 show that
the pblock with larger area takes a little more time to reconfigure, e.g., RP-6 takes 609.6 ms for
updating Loda_Cardio with Identity. The pblock with the smallest area uses the shortest time i.e.,
COMBO3 used 579.8 ms to reconfigure Loda_Cardio to Identity. In addition, the complexity of
the target bitstream has a slight impact on the reconfiguration time. Apart from RP-2, RP-3, and
COMBO3, a general trend indicates that the simpler the logic of the target bitstream (in this case,
Identity), the lower the reconfiguration time.

While fSEAD is focused on ensemble-centric anomaly detection, different real-life detectors in
the literature can be incorporated into this library for higher flexibility and salable combinations.
Moreover, it has the potential to be used for more general machine learning applications by adding
different modules. To evaluate the default latency of fSEAD interconnections, since this is a key
metric that could affect design decisions, Figure 20 illustrates a data-path where each pblock simply
copies its input to output (the “Bypass” in Figure 20 is the same as Identity in Table 13). The
execution time, which is a measure of system latency overhead, is 0.80 ms. Thus for pblocks with
latency L1 on the left and L2 on the right, the maximum latency of the system is≈ 0.80+L1+L2 (ms).
We also measure the shorter DMA latency where the data-path include: DMA (input), L1, Switch-1,
and DMA (output), the latency is 0.77 ms. This reflects that the default system latency is dominated
by the Linux OS-based PYNQ framework, rather than by the routing latency of switches.

5 CONCLUSIONS AND FUTURE WORK

In this article, we proposed a flexible computing architecture consisting of multiple partially recon-
figurable regions, called pblocks, which are interconnected via the AXI-Streaming Switches. The
scheme enables parallel constructions of repeating blocks to be easily scaled to fill the FPGA. We
also demonstrated a concrete application of this architecture to streaming anomaly detection

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:25

using ensembles (fSEAD). fSEAD allows complex and more powerful anomaly detectors to be
composed from simple pblocks in an arbitrary fashion. Careful floorplanning of the pblocks and
switches, together with bus-level pipelining, minimize routing delay and allow timing closure to
be achieved. Through a number of experiments involving ensembles of three sub-detectors (Loda,
RS-Hash, and xStream), we demonstrate 3 to 8× speedup compared with a CPU.

Future work will extend this architecture in several directions. First, continuing with the anom-
aly detector application, we will create module generators that can automatically generate opti-
mized HLS directives and detector parameters such as ensemble size. We will also support more
anomaly detection methods to enrich the existing library. Finally, we plan to use the proposed
composable architecture for a wider range of applications, e.g., classification and regression tasks.

REFERENCES

[1] Elke Achtert, Hans-Peter Kriegel, Lisa Reichert, Erich Schubert, Remigius Wojdanowski, and Arthur Zimek. 2010.

Visual evaluation of outlier detection models. In Proceedings of the International Conference on Database Systems for

Advanced Applications. Springer, 396–399.

[2] Charu C. Aggarwal and Saket Sathe. 2015. Theoretical foundations and algorithms for outlier ensembles. ACM SIGKDD

Explor. Newslett. 17, 1 (2015), 24–47.

[3] Mohiuddin Ahmed, Abdun Naser Mahmood, and Md Rafiqul Islam. 2016. A survey of anomaly detection techniques

in financial domain. Fut. Gen. Comput. Syst. 55 (2016), 278–288.

[4] Luis Basora, Xavier Olive, and Thomas Dubot. 2019. Recent advances in anomaly detection methods applied to avia-

tion. Aerospace 6, 11 (2019), 117.

[5] Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and Jörg Sander. 2000. LOF: Identifying density-based local

outliers. In Proceedings of the ACM SIGMOD International Conference on Management of Data. ACM, New York, NY,

93–104.

[6] Alex R. Bucknall, Shanker Shreejith, and Suhaib A. Fahmy. 2020. Build automation and runtime abstraction for par-

tial reconfiguration on Xilinx Zynq Ultrascale+. In Proceedings of the International Conference on Field-Programmable

Technology (ICFPT’20). IEEE, 215–220.

[7] Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM Comput. Surv. 41,

3 (2009), 1–58.

[8] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD’16). ACM, New York, NY, 785–794.

DOI:https://doi.org/10.1145/2939672.2939785

[9] Graham Cormode and Shan Muthukrishnan. 2005. An improved data stream summary: The count-min sketch and its

applications. J. Algor. 55, 1 (2005), 58–75.

[10] Abhishek Das, David Nguyen, Joseph Zambreno, Gokhan Memik, and Alok Choudhary. 2008. An FPGA-based network

intrusion detection architecture. IEEE Trans. Inf. Forens. Secur. 3, 1 (2008), 118–132.

[11] Dheeru Dua and Casey Graff. 2017. UCI Machine Learning Repository. Retrieved from http://archive.ics.uci.edu/ml.

[12] David Faraggi and Benjamin Reiser. 2002. Estimation of the area under the ROC curve. Statist. Med. 21, 20 (2002),

3093–3106.

[13] Yoav Freund and Robert E. Schapire. 1996. Experiments with a new boosting algorithm. In Proceedings of the Interna-

tional Conference on Machine Learning. Citeseer, 148–156.

[14] Yoav Freund and Robert E. Schapire. 1997. A decision-theoretic generalization of on-line learning and an application

to boosting. J. Comput. Syst. Sci. 55, 1 (1997), 119–139.

[15] Pedro Garcia-Teodoro, Jesus Diaz-Verdejo, Gabriel Maciá-Fernández, and Enrique Vázquez. 2009. Anomaly-based net-

work intrusion detection: Techniques, systems and challenges. Comput. Secur. 28, 1–2 (2009), 18–28.

[16] G. O. Campos and A. Zimek, et al. 2016. DAMI Datasets. Retrieved from https://www.dbs.ifi.lmu.de/research/outlier-

evaluation/DAMI.

[17] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric

Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-

wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant,

Kevin Sheppard, Tyler Reddy, Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. 2020.

Array programming with NumPy. Nature 585, 7825 (Sept. 2020), 357–362. DOI:https://doi.org/10.1038/s41586-020-

2649-2

[18] Ami Hayashi and Hiroki Matsutani. 2017. An FPGA-based In-NIC cache approach for lazy learning outlier filtering.

In Proceedings of the Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP).

IEEE, 15–22.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

https://doi.org/10.1145/2939672.2939785
http://archive.ics.uci.edu/ml
https://www.dbs.ifi.lmu.de/research/outlier-evaluation/DAMI
https://doi.org/10.1038/s41586-020-2649-2

42:26 B. Lou et al.

[19] Tin Kam Ho, Jonathan J. Hull, and Sargur N. Srihari. 1994. Decision combination in multiple classifier systems. IEEE

Trans. Pattern Anal. Mach. Intell. 16, 1 (1994), 66–75.

[20] Markus Hofmann and Ralf Klinkenberg. 2016. RapidMiner: Data Mining Use Cases and Business Analytics Applications.

CRC Press, New York.

[21] Ecoflow Inc. 2022. River Max Portable Power Station. Retrieved from https://au.ecoflow.com/products/river-max-

portable-power-station?variant=40043438211270.

[22] Intel Inc. 2022. Intel Advisor. Retrieved from https://www.intel.com/content/www/us/en/develop/documentation/get-

started-with-advisor/top.html.

[23] Xilinx Inc. 2018. ZCU111 Evaluation Board User Guide. Retrieved from https://docs.xilinx.com/v/u/en-US/ug1271-

zcu111-eval-bd.

[24] Xilinx Inc. 2020. AXI4-Stream Infrastructure IP Suite v3.0 Product Guide (PG085). Retrieved from https://docs.xilinx.

com/v/u/en-US/pg085-axi4stream-infrastructure.

[25] Xilinx Inc. 2020. AXI4-Stream Interconnect v1.1 Product Guide (PG035). Retrieved from https://docs.xilinx.com/v/u/

en-US/pg035_axis_interconnect.

[26] Xilinx Inc. 2020. Xilinx. Vivado Design Suite Tutorial: Partial Reconfiguration (UG947). Retrieved from https://docs.

xilinx.com/r/en-US/ug947-vivado-partial-reconfiguration-tutorial.

[27] Xilinx Inc. 2020. Xilinx. Vivado Design Suite User Guide: Dynamic Function eXchange (UG909). Retrieved from https:

//docs.xilinx.com/r/en-US/ug909-vivado-partial-reconfiguration.

[28] Xilinx Inc. 2020. Xilinx. Vivado Design Suite User Guide: High-Level Synthesis (UG902). Retrieved from https://docs.

xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis.

[29] Xilinx Inc. 2020. Xilinx. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907). Retrieved from

https://docs.xilinx.com/v/u/2020.1-English/ug907-vivado-power-analysis-optimization.

[30] Xilinx Inc. 2022. Python Productivity for Zynq. Retrieved from http://www.pynq.io/home.html.

[31] Akira Jinguji, Shimpei Sato, and Hiroki Nakahara. 2018. An FPGA realization of a random forest with k-means clus-

tering using a high-level synthesis design. IEICE Trans. Inf. Syst. 101, 2 (2018), 354–362.

[32] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Light-

GBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 30 (2017), 3146–3154.

[33] Lukasz Komsta and Maintainer Lukasz Komsta. 2011. Package outliers. Med. Univ. Lublin, Lublin (2011). https://cran.r-

project.org/web/packages/outliers/outliers.pdf.

[34] G. Korcyl and P. Korcyl. 2020. Optimized Implementation of the Conjugate Gradient Algorithm for FPGA-based Plat-

forms using the Dirac-Wilson Operator as an Example. Retrieved from https://arxiv.org/abs/2001.05218.

[35] Aleksandar Lazarevic and Vipin Kumar. 2005. Feature bagging for outlier detection. In Proceedings of the 11th ACM

SIGKDD International Conference on Knowledge Discovery in Data Mining. Association for Computing Machinery, New

York, NY, 157–166.

[36] Quoc Le, Tamás Sarlós, and Alex Smola. 2013. Fastfood-approximating kernel expansions in loglinear time. In Pro-

ceedings of the International Conference on Machine Learning.

[37] Xiang Lin, R. D. Shawn Blanton, and Donald E. Thomas. 2017. Random forest architectures on FPGA for multiple

applications. In Proceedings of the Great Lakes Symposium on VLSI. Association for Computing Machinery, New York,

NY, 415–418.

[38] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In Proceedings of the 8th IEEE International

Conference on Data Mining. IEEE Computer Society, 413–422.

[39] Junshui Ma and Simon Perkins. 2007. Online novelty detection on temporal sequences. In Proceedings of the 9th ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery,

New York, NY, 613–618.

[40] Emaad Manzoor, Hemank Lamba, and Leman Akoglu. 2018. xStream: Outlier detection in feature-evolving data

streams. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.

Association for Computing Machinery, New York, NY, 1963–1972.

[41] Duncan J. M. Moss, David Boland, Peyam Pourbeik, and Philip H. W. Leong. 2018. Real-time FPGA-based anomaly

detection for radio frequency signals. In Proceedings of the IEEE International Symposium on Circuits and Systems

(ISCAS’18). IEEE, 1–5.

[42] Servesh Muralidharan, Kenneth O’Brien, and Christian Lalanne. 2015. A semi-automated tool flow for roofline anaylsis

of OpenCL kernels on accelerators. In Proceedings of the 1st International Workshop on Heterogeneous High-performance

Reconfigurable Computing (H2RC’15).

[43] Yeyong Pang, Shaojun Wang, Yu Peng, Nicholas J. Fraser, and Philip H. W. Leong. 2013. A low latency kernel recursive

least squares processor using FPGA technology. In Proceedings of the International Conference on Field-Programmable

Technology (FPT’13). IEEE, 144–151.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

https://au.ecoflow.com/products/river-max-portable-power-station?variant=40043438211270
https://www.intel.com/content/www/us/en/develop/documentation/get-started-with-advisor/top.html
https://docs.xilinx.com/v/u/en-US/ug1271-zcu111-eval-bd
https://docs.xilinx.com/v/u/en-US/pg085-axi4stream-infrastructure
https://docs.xilinx.com/v/u/en-US/pg035_axis_interconnect
https://docs.xilinx.com/r/en-US/ug947-vivado-partial-reconfiguration-tutorial
https://docs.xilinx.com/r/en-US/ug909-vivado-partial-reconfiguration
https://docs.xilinx.com/v/u/en-US/ug902-vivado-high-level-synthesis
https://docs.xilinx.com/v/u/2020.1-English/ug907-vivado-power-analysis-optimization
http://www.pynq.io/home.html
https://cran.r-project.org/web/packages/outliers/outliers.pdf
https://arxiv.org/abs/2001.05218

fSEAD: A Composable FPGA-based Streaming Ensemble Anomaly Detection Library 42:27

[44] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion, Olivier Grisel, Mathieu

Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. J.

Mach. Learn. Res. 12, Oct. (2011), 2825–2830.

[45] Tomáš Pevný. 2016. Loda: Lightweight on-line detector of anomalies. Mach. Learn. 102, 2 (2016), 275–304.

[46] Dragoljub Pokrajac, Aleksandar Lazarevic, and Longin Jan Latecki. 2007. Incremental local outlier detection for data

streams. In Proceedings of the IEEE Symposium on Computational Intelligence and Data Mining. IEEE, 504–515.

[47] Sridhar Ramaswamy, Rajeev Rastogi, and Kyuseok Shim. 2000. Efficient algorithms for mining outliers from large data

sets. In Proceedings of the ACM SIGMOD International Conference on Management of Data. Association for Computing

Machinery, New York, NY, 427–438.

[48] Shebuti Rayana. 2016. ODDS Library. Retrieved from http://odds.cs.stonybrook.edu.

[49] Mayu Sakurada and Takehisa Yairi. 2014. Anomaly detection using autoencoders with nonlinear dimensionality re-

duction. In Proceedings of the MLSDA 2nd Workshop on Machine Learning for Sensory Data Analysis. Association for

Computing Machinery, New York, NY, 4–11.

[50] Osman Salem, Alexey Guerassimov, Ahmed Mehaoua, Anthony Marcus, and Borko Furht. 2014. Anomaly detection in

medical wireless sensor networks using SVM and linear regression models. Int. J. E-Health Med. Commun. 5, 1 (2014),

20–45.

[51] Saket Sathe and Charu C. Aggarwal. 2016. Subspace outlier detection in linear time with randomized hashing. In

Proceedings of the IEEE 16th International Conference on Data Mining (ICDM’16). IEEE, 459–468.

[52] Thomas Schlegl, Philipp Seeböck, Sebastian M. Waldstein, Georg Langs, and Ursula Schmidt-Erfurth. 2019. f-AnoGAN:

Fast unsupervised anomaly detection with generative adversarial networks. Med. Image Anal. 54 (2019), 30–44.

[53] Mei-Ling Shyu, Shu-Ching Chen, Kanoksri Sarinnapakorn, and LiWu Chang. 2003. A Novel Anomaly Detection Scheme

Based on Principal Component Classifier. Report. Miami University, Coral Gables, Florida Department of Electrical and

Computer Engineering.

[54] Swee Chuan Tan, Kai Ming Ting, and Tony Fei Liu. 2011. Fast anomaly detection for streaming data. In Proceedings

of the 22nd International Joint Conference on Artificial Intelligence. AAAI Press, 1511–1516.

[55] Mahbod Tavallaee, Ebrahim Bagheri, Wei Lu, and Ali A. Ghorbani. 2009. A detailed analysis of the KDD CUP 99 data

set. In Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications. IEEE,

Ottawa, 1–6.

[56] Brian Van Essen, Chris Macaraeg, Maya Gokhale, and Ryan Prenger. 2012. Accelerating a random forest classifier:

Multi-core, GP-GPU, or FPGA? In Proceedings of the IEEE 20th International Symposium on Field-Programmable Custom

Computing Machines. IEEE, 232–239.

[57] Andrew Elbert Wilson. 2020. Dynamic Reconfigurable Real-time Video Processing Pipelines on SRAM-Based FPGAs. The-

sis. Brigham Young University.

[58] Ke Wu, Kun Zhang, Wei Fan, Andrea Edwards, and Philip S. Yu. 2014. RS-Forest: A rapid density estimator for stream-

ing anomaly detection. In Proceedings of the IEEE International Conference on Data Mining. IEEE Computer Society,

600–609. DOI:https://doi.org/10.1109/ICDM.2014.45

[59] Selim F. Yilmaz and Suleyman Serdar Kozat. 2020. PySAD: A streaming anomaly detection framework in Python.

ArXiv abs/2009.02572 (2020).

[60] Yuan Yuan, Jianwu Fang, and Qi Wang. 2014. Online anomaly detection in crowd scenes via structure analysis. IEEE

Trans. Cyber. 45, 3 (2014), 548–561.

[61] Yue Zhao, Xiyang Hu, Cheng Cheng, Cong Wang, Changlin Wan, Wen Wang, Jianing Yang, Haoping Bai, Zheng Li,

and Cao Xiao. 2021. SUOD: Accelerating large-scale unsupervised heterogeneous outlier detection. Proc. Mach. Learn.

Syst. 3 (2021), 463–478.

[62] Yue Zhao, Zain Nasrullah, Maciej K. Hryniewicki, and Zheng Li. 2019. Locally selective combination in parallel outlier

ensembles. In Proceedings of the SIAM International Conference on Data Mining. SIAM, 585–593. DOI:https://doi.org/

10.1137/1.9781611975673.66

[63] Yue Zhao, Zain Nasrullah, and Zheng Li. 2019. PyOD: A Python toolbox for scalable outlier detection. J. Mach. Learn.

Res. 20, 96 (2019), 1–7. Retrieved from http://jmlr.org/papers/v20/19-011.html.

[64] Yue Zhao, Xuejian Wang, Cheng Cheng, and Xueying Ding. 2020. Combining machine learning models using Combo

library. In Proceedings of the AAAI Conference on Artificial Intelligence. AAAI Press, New York, 13648–13649.

[65] Arthur Zimek, Ricardo J. G. B. Campello, and Jörg Sander. 2014. Ensembles for unsupervised outlier detection: Chal-

lenges and research questions a position paper. ACM SIGKDD Explor. Newslett. 15, 1 (2014), 11–22.

[66] Indre Zliobaite, Mykola Pechenizkiy, and Joao Gama. 2016. An Overview of Concept Drift Applications. Springer Inter-

national Publishing AG, Switzerland, 91–114. DOI:https://doi.org/10.1007/978-3-319-26989-4

Received 17 June 2022; revised 22 August 2022; accepted 30 September 2022

ACM Transactions on Reconfigurable Technology and Systems, Vol. 16, No. 3, Article 42. Pub. date: June 2023.

http://odds.cs.stonybrook.edu
https://doi.org/10.1109/ICDM.2014.45
https://doi.org/10.1137/1.9781611975673.66
http://jmlr.org/papers/v20/19-011.html
https://doi.org/10.1007/978-3-319-26989-4

