2005 IEEE International Conference on Robotics and Biomimetics

Field Programmable Gate Array Technology for Robotics Applications

P.H.W. Leong and K.H. Tsoi
{phwl khtsoi} @cse.cuhk.edu.hk
Department of Computer Science and Engineering
The Chinese University of Hong Kong

Shatin, NT Hong Kong

Abstract g L 3# | & | \\ L
e . %( - o
Field programmable gate arrays (FPGAs) are integrated % & % S
circuits which can be user customised to implement ar- S :F”[%%*"' ‘ } /i -
bitrary digital functions. Modern FPGAs combine gen- NS o o
eralised logic resources with programmable interconnect, = JRAP QF :"“L @,L T

microprocessors, networking, multipliers, memories, de- Fj*uf Al | F*LJ A j: :
lay/phase locked loops and other cores to provide a versa- W{F; i ?7 ad
tile system on a chip (SoC). In this review paper, we describe ___§{b-4-i¥l;-9-—-- | e | B
a typical FPGA architecture and discuss how they can be @ /M*"*ij%J\r”f ***** 77**"
used advantageously in robotics. Compared with conven- € Q:* | &JD *1; b -

tional technologies, FPGAs offer high speed, low power,
reduced development time and cost. Examples are given
including applications in logic replacement, rapid prototyp-
ing, control, planning and sensors.

1 Introduction

A field programmable gate array (FPGA) is an array of
logic gates in which the connections can be configured by
downloading a bitstream into its memory. They offer a com-
promise between microprocessor/DSP and application spe-
cific integrated circuit (ASIC) based systems, offering bet-
ter performance than the former and shorter development
times and lower cost than the latter. In this paper, we re-
view the architecture of FPGA devices and describe some
of the advantages that they offer for robotics subsystems in-
cluding system integration, control, task planning, machine
vision, neural networks and fuzzy logic.

As illustrated in Figure 1, an FPGA consists of a num-
ber of logic cells (LC) which can be interconnected to
other logic cells and input/output cells (IOC) via pro-
grammable routing resources (RR). The LC consists of
user-programmable combinatorial elements with an op-
tional register at the output. Using such an architecture, sub-
ject to FPGA imposed limitations on the circuit’s speed and
density, an arbitrary circuit can be implemented. The ac-
tual design is described via a configuration bitstream which

0-7803-9315-5/05/$20.00 ©2005 IEEE

Figure 1. Architecture of an FPGA with four-
input LUT cells (figure courtesy of M.P.
Leong). The LUTs, shown as grey rectangles
are connected to programmable routing re-
sources (shown as wires, dots and diagonal
switch boxes).

specifies the LC functionality and their interconnection.

In a traditional FPGA design flow, a user enters a de-
scription of the desired circuit by using a hardware descrip-
tion language (HDL) such as VHDL or Verilog. A CAD
tool is used to synthesize a netlist from the HDL description.
Another CAD tool is then used to decompose the netlist to
fit the logic resources of the FPGA, and then a place and
route (P&R) tool is used. Following this, the logic and in-
terconnection of the FPGA is defined, and the CAD tool
outputs a bitstream which can be downloaded to the FPGA’s
configuration RAM.

Apart from the basic FPGA architecture just described,



current trends are to incorporate commonly used features
so that designers can integrate entire systems on a single
FPGA device. Apart from cost and board area benefits, this
also improves performance since higher transfer rates can
be achieved if all components are on the same chip. A con-
temporary FPGA usually has the following features: carry
chains to enable fast addition, wide decoders, tristate buffers
etc; blocks of on-chip memory and multipliers; embedded
microprocessors; programmable I/O standards in the I0C;
delay locked loops (DLLs) and phase locked loops (PLL)
for clock de-skewing, phase shifting and multiplication.

In addition to the architectural features described, in-
tellectual property (IP) cores, implemented using the LC
resources of the FPGA, are available from vendors which
can be incorporated into a design. These include bus inter-
faces, networking components, memory interfaces, signal
processing functions, microprocessors etc and can signifi-
cantly reduce development time and effort.

2 FPGAs vs ASICs and Microprocessors

Microprocessors offer an easy to use, powerful and flex-
ible implementation medium for digital systems. Their util-
ity in embedded applications makes them an overwhelm-
ing first choice for robotics systems since they come in a
wide variety of models which can cater to different cost
and performance requirements. Moreeover, it is relatively
easy to find software developers and they are widely sup-
ported by development systems, compilers, debuggers, li-
braries and operating systems. Unfortunately, their general-
ity does not make them the best choice for a large class of
applications which need to be optimised for performance,
power or board space.

Application specific integrated circuits (ASICs) and FP-
GAs are able to arrange computations in a spatial rather than
temporal fashion and greater levels of parallelism than a mi-
croprocessor can be achieved. Thus performance improve-
ments of several orders of magnitude can be achieved. Also,
the absence of caches and instruction decoding can result in
the same amount of work being done with less chip area and
lower power consumption [2].

Compared with ASICs, FPGAs offer very low non recur-
rent engineering (NRE) costs. This is often a more impor-
tant factor than the fact that FPGAs have higher units costs
and applications in robotics normally do not have the very
high volumes required to make ASICs a cheaper proposi-
tion. As integrated circuit feature sizes continue to decrease,
the NRE costs associated with ASICs continue to escalate,
making the volume at which it becomes cheaper to use an
ASIC much higher. FPGAs will be used in increasingly
more applications, ASICs only being cost effective for the
highest performance or highest volume applications.

Additional benefits of FPGAs are that its technology pro-

296

vides a shorter time to market than ASICs since the associ-
ated fabrication time is essentially zero, making many fab-
rication iterations within a single day possible. This allows
more advanced algorithms to be deployed and makes pos-
sible problem-specific customisations of designs. A final
consideration is that FPGA based designs are inherently less
risky in terms of technical feasibility and cost since shorter
design times and lower upfront costs are involved.

3 Applications
3.1 Logic Replacement

FPGAs were firstly used as logic replacement devices,
having the benefit of being able to replace a number of
small and medium scale integration devices. Another ben-
efit comes from being able to reprogram the devices, so
design changes and bug fixes can be made by changing
the bitstream without modifying the printed circuit board.
An example of this type of application might be to inter-
face peripheral devices to a microprocessor system, the re-
quired address decoders, memory controllers, bus interfaces
and motor controllers being implemented in a single FPGA.
With modern devices, large amounts of logic can be incor-
porated on a single device, resulting in large savings in time
to market, footprint and power consumption. Furthermore,
board complexity is greatly reduced through tighter integra-
tion. FPGAs are also commonly used to prototype ASICs.

3.2 Reconfigurable Computing

Since FPGAs are general purpose logic devices, they can
be used to develop high performance implementations of
computational tasks. A direct implementation of an algo-
rithm in hardware can achieve higher levels of parallelism
than a microprocessor based design, and are often several
orders of magnitude faster, use less area and have lower
power consumption.

One other defining feature of FPGAs is the ability to re-
configure the device in the field or even at runtime. Field
programmability allows hardware designs to be modified by
downloading a bitstream, and the bitstream itself can be de-
livered via many different means including the internet or
a telemetry system. Runtime reconfigurability is a feature
which perhaps has not yet been exploited to its full poten-
tial and opens the way for customised hardware subsystems
to be generated and downloaded to the FPGA only when
needed. In the future, this may allow for systems which use
the FPGA’s logic in a manner similar to virtual memory and
where portions of the design are downloaded to the device
on a demand-based fashion. This would allow much smaller
devices to be used, resulting in cost and power savings while



at the same time freeing designers from logic limitations of
the device.

4 FPGA Design Tools

One barrier that has affected the adoption of FPGAs
has been the large amount of specialized knowledge re-
quired to use them. Designers needed expertise in digital
logic design, floating point arithmetic was not available,
devices were small so straightforward parallel implemen-
tations were not possible etc. Other issues that arise in
hardware implementations include describing parallelism in
a design and decisions regarding wordlength precision for
fixed and floating point units. Furthermore, testing is usu-
ally more difficult since the FPGA normally forms a part of
a larger system and interfaces may be difficult to observe
and exercise.

Progress has been made in using C or C++ (e.g. [5]) as
the input language for FPGA designs, an example of a com-
mercial quality tool being Handel-C (www.celoxica.com).
The use of traditional programming languages improves the
productivity of experienced designers since low level details
are handled by the compiler in a manner analogous to C ver-
sus assembly language for software development. Another
difference with potentially large implication is that using
these tools, software developers can also develop FPGA-
based applications.

Many developers find that domain specific languages
such as MATLAB/Simulink offer even greater improve-
ments in productivity since it is interactive, includes a
large library of primitive routines and toolkits and has good
graphing capabilities. Indeed, many designs are first proto-
typed in MATLAB and then converted to other languages
for implementation. Tools such as the MATCH compiler
[3] and Xilinx System Generator can translate a subset of
MATLAB/Simulink directly to an FPGA design.

The recent availability of Linux for microprocessors in-
ternal to an FPGA provides a familiar software development
environment for programmers. This greatly facilitates pro-
gram development through the availability of an enormous
range of open source libraries as well as high quality devel-
opment tools. Such tools can greatly speed up the develop-
ment time and improve the quality of embedded systems.

To facilitate debugging, tools such as Xilinx’s Chip-
Scope offer on-FPGA logic and bus analyzer functionality.
This enables a designer to view internal FPGA and proces-
sor signals at full operating speed.

5 Case Studies

FPGAs can be applied to almost any problem that can
be solved using digital techniques. In this section, several

297

examples in which FPGA technology was used successfully
will be described.
5.1 Mars Lander Cameras

The Mars Pathfinder, Mars Surveyor *98 and Mars Sur-
veyor *01 lander craft use several charge coupled device
(CCD) based cameras for stereo and multispectral imaging.
They are used to assist with navigation of surface rovers,
confirm the manipulation of robotic arms and capture im-
ages for scientific investigations such as studies of surface
morphology, minerology, atmospheric dust and water vapor.
FPGAs are used extensively in these instruments for tasks
including: decoding of commands from the spacecraft com-
puter, control of image data storage and generating stepper
motor drive pulses for a two axis gimbal which controls the
cameras orientation in azimuth and elevation [6].

FPGAs have advantages for space applications since ra-
diation qualified devices are available off-the-shelf, they
have short design times and they can be reprogrammed af-
ter they are deployed. A major design challenge is to ensure
correct operation in the presence of radiation which causes
bit errors to occur with much greater frequency than within
the Earth’s atmosphere. In order to address this issue, peri-
odic configuration bitstream readback and reconfiguration,
cyclic redundancy checking (CRC) and logic redundancy
are employed. All of these techniques are well matched
with FPGA architectures.

5.2 Formulal

Although not exactly a robot, a Formula 1 (F1) car has
many similar characteristics. The 2003 BMW Williams car
uses a vehicle control and monitoring (VCM) unit made
from a Texas Instruments DSP chip and a Xilinx Virtex
XCV600-E FPGA [1]. The VCM controls all aspects of
the chassis except for the engine and its functions include:

o Control of the hydraulically actuated gear changes: in-
cluding control of the clutch and gearbox actuators.

o Modelling of wheel slip to maximise traction and min-
imise tire wear.

o Control of the hydraulically actuated differential to op-
timise stability of the car when cornering.

e Launch control to maximise acceleration from a stand-
ing start.

e Logging and telemetry: approximately 220 channels
of data are logged to a compact flash card for later
analysis and a subset of this data is sent to the pit via a
telemetry transmitter.



o Fault tolerance: the VCM uses redundant sensors so
that it can continue to work correctly even in the pres-
ence of sensor failures. Decision logic is incorporated
to override or ignore suspect inputs. The pit crew can
also control whether or not a sensor is overridden via
the telemetry link.

FPGA technology is beneficial for this application since
the DSP is able to offload performance critical functions to
the hardware of the FPGA; allows weight, space and power
consumption to be saved through the reduction of parts; en-
ables features to be easily added and removed as the rules
of F1 are continually changing and finally, reduces the time
required to incorporate new innovations, allowing the team
to gain a competitive edge.

5.3 Autonomous Fuzzy Behaviour Control

Li et. al., describe a car-like robot which uses an FPGA
to implement autonomous fuzzy behaviour control (AFBC),
its control knowledge being derived from a small number
of fuzzy rules [4]. The robot is capable of performing
wall following, corner turning, garage parking and parallel
parking manoeuvers. Fuzzy logic control and sensor-based
behaviours are combined in the AFBC FPGA (an Altera
EPF6024ACT144-3 chip which provides 24000 gates), its
input being readings from six infrared sensors. The AFBC
has two ouputs, a pulse width modulation (PWM) signal to
a DC servomotor for control steering and another output for
speed control.

As an example, for reverse parking, the driver passes the
parking space by a short distance, turns the steering wheel,
reverses the car into the space, the steering wheel being
turned to straight as the car moves into the space, and the
position is adjusted by going forward and backward until
the car is in the middle of the space. This strategy is im-
plemented directly in the fuzzy logic controller. The FPGA
has submodules which convert the sensor data into fuzzy
input status, a fuzzy inference module and a defuzzification
module which performs a weighted average to determine a
crisp outputs which are sent to the steering and speed mo-
tors. An autonomous robot of length 30 cm, width 24 cm
and weight 5 kg was used to demonstrate the real-time abil-
ity of the AFBC to implement real-time driving and parking
manoeuvers using a modest sized FPGA.

5.4 Autonomous Flying Object Navigated by Op-
tical Flow

In an application which requires a high speed feedback
control system, Yamada et. al. demonstrate a single FPGA
system which can make a flying object (FO) hover in the air
based on a high speed vision system [7]. Inputs are obtained
via three CMOS horizontal optical sensors at 40 frames per

second. Optical flow is computed in real-time in the FPGA
and the attitude of the flying object is derived. An addi-
tional optical sensor mounted on top of the FO is used to
determine a reference position based on two targets on the
ceiling. Using these data, the roll, pitch, yaw and height of
the object are controlled in an autonomous manner. The FO
has a total weight of 400 g.

6 Conclusion

FPGAs are general purpose computing devices which
can be used to reduce board size and accelerate applications
in almost any domain. As they continue to improve in den-
sity, performance, cost and ease of usage, their applications
in robotics can only increase.

Acknowledgement

The authors gratefully acknowledge support from a Chi-
nese University of Hong Kong direct grant.

References

[1] L. Boland. Formula I racing: The Xilinx advantage. Xcell,
47(Fall):46-49, 2003'.

A.DeHon. The density advantage of configurable computing.
Computer, 33(4):41-49, April 2000.

M. Haldar, A. Nayak, A. Choudhary, and P. Banerjee. A sys-
tem for synthesizing optimized FPGA hardware from MAT-
LAB. In ICCAD ’01: Proceedings of the 2001 IEEE/ACM
international conference on Computer-aided design, pages
314-319, Piscataway, NJ, USA, 2001. IEEE Press.

T.-H. S. Li, S.-J. Chang, and Y.-X. Chen. Implementation of
human-like driving skills by autonomous fuzzy behavior con-
trol on an FPGA-based car-like mobile robot. IEEE Transac-
tions on Industrial Electronics, 50(5):869-880, Oct 2003.

I. Page. Constructing hardware-software systems from a sin-
gle description. Journal of VLSI Signal Processing, 12(1):87—
107, 1996.

R. Reynolds, P. Smith, L. Bell, and H. Keller. The design of
mars lander cameras for mars pathfinder, mars surveyor 98
and mars surveyor *01. IEEE Transactions on Instrumenta-
tion and Measurement, 50(1):63-71, Feb 2001.

H. Yamada, T. Tominaga, and M. Ichikawa. An autonomous
flying object navigated by real-time optical flow and visual
target detection. In Proceedings of the IEEE International
Conference on Field Programmable Technology (FPT), pages
222-227, 2003.

[2]

(31

[4]

[5

[6]

171

298

Uhitp://www.xilinx.com/publications/xcellonline/xcell 47/xc. pdf/xc formulad7.pdf





