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Abstract—This paper presents an architecture for a recon-
figurable device that is specifically optimized for floating-point
applications. Fine-grained units are used for implementing con-
trol logic and bit-oriented operations, while parameterized and
reconfigurable word-based coarse-grained units incorporating
word-oriented lookup tables and floating-point operations are
used to implement datapaths. In order to facilitate comparison
with existing FPGA devices, the virtual embedded block scheme
is proposed to model embedded blocks using existing field-pro-
grammable gate array (FPGA) tools. This methodology involves
adopting existing FPGA resources to model the size, position, and
delay of the embedded elements. The standard design flow offered
by FPGA and computer-aided design vendors is then applied and
static timing analysis can be used to estimate the performance of
the FPGA with the embedded blocks. On selected floating-point
benchmark circuits, our results indicate that the proposed archi-
tecture can achieve four times improvement in speed and 25 times
reduction in area compared with a traditional FPGA device.

Index Terms—Architecture, embedded blocks, field-pro-
grammable gate array (FPGA), floating point, modeling.

I. INTRODUCTION

F IELD-programmable gate array (FPGA) technology has
been widely adopted to speed up computationally inten-

sive applications. Most current FPGA devices employ an island-
style fine-grained architecture [1], with additional fixed-func-
tion heterogeneous blocks such as multipliers and block RAMs;
these have been shown to have severe area penalties compared
with application-specific integrated circuits (ASICs) [2]. In this
paper, we propose an architecture for FPGAs that are optimized
for floating-point applications. Such devices could be used for
applications in DSP, control, high-performance computing, and
other applications that have large dynamic range, convenience,
and ease-of-verification compared with traditional fixed-point
designs on conventional FPGAs.

The proposed floating-point FPGA (FPFPGA) architecture
has both fine- and coarse-grained blocks, such usage of multiple
granularity having advantages in speed, density, and power over
more conventional heterogeneous FPGAs. The coarse-grained
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block is used to implement the datapath, while lookup table
(LUT) based fine-grained resources are used for implementing
state machines and bit level operations. In our architecture,
the coarse-grained blocks have flexible, parameterized ar-
chitectures that are synthesized from a hardware description
language. This allows tuning of the parameters in a quantitative
manner to achieve a good balance between area, performance,
and flexibility.

One major issue when evaluating new architectures is deter-
mining how a fair comparison to existing commercial FPGA ar-
chitectures can be made. The Versatile Place and Route (VPR)
tool [1] is widely used in FPGA architecture research; however,
the computer-aided design (CAD) algorithms used within are
different from those of modern FPGAs, as is its underlying is-
land-style FPGA architecture. As examples, VPR does not sup-
port retiming, nor does it support carry chains that are present
in all major FPGA devices. To enable modeling of our FPFPGA
and comparison with a standard island-style FPGA, we pro-
pose a methodology to evaluate an architecture based on an ex-
isting FPGA device. The key element of our methodology is to
adopt virtual embedded blocks (VEBs), created from the recon-
figurable fabric of an existing FPGA, to model the area, place-
ment, and delay of the embedded blocks to be included in the
FPGA fabric. Using this method, the impact of incorporating
embedded elements on performance and area can be quickly
evaluated, even if an actual implementation of the element is
not available.

The key contributions of this paper are as follows.
1) A novel FPFPGA architecture combining fine-grained

resources combined with design-time parameterizable
coarse-grained units that are reconfigurable at runtime.
To the best of our knowledge, this is the first time such a
scheme has been proposed.

2) The VEB methodology that allows modeling of FPGA ar-
chitectures with embedded blocks and comparisons with
commercial FPGAs.

3) Experimental results over various applications for the
FPFPGA device.

This paper is organized as follows. Section II describes re-
lated work and existing FPGA architectures. Section III de-
scribes the proposed FPFPGA architecture. An example map-
ping is presented in Section IV. Section V discusses the re-
quirements and the associated design challenges of an FPFPGA
compiler. The evaluation methodology, including a review of
the VEB flow, is described in Section VI, and the evaluation is
given in Section VII. Section VIII summarizes our research and
discusses opportunities for future research.
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II. BACKGROUND

A. Related Work

FPGA architectures containing coarse-grained units have
been reported in the literature. Compton and Hauck propose
a domain-specific architecture that allows the generation of a
reconfigurable fabric according to the needs of the application
[3]. Ye and Rose suggest a coarse-grained architecture that em-
ploys bus-based connections, achieving a 14% area reduction
for datapath circuits [4].

The study of embedded heterogeneous blocks for the accel-
eration of floating-point computations has been reported by
Roesler and Nelson [5] as well as Beauchamp et al. [6]. Both
studies conclude that employing heterogeneous blocks in a
floating-point unit (FPU) can achieve area saving and increased
clock rate over a fine-grained approach.

Leijten–Nowak and van Meerbergen [7] proposed mixed-
level granularity logic blocks and compared their benefits with
a standard island-style FPGA using the VPR tool [1]. Ye et al.
[8] studied the effects of coarse-grained logic cells (LCs) and
routing resources for datapath circuits, also using VPR. Kuon
and Rose [2] reported the effectiveness of embedded elements
in current FPGA devices by comparing such designs with the
equivalent ASIC circuit in 90-nm process technology.

Beck modified VPR to explore the effects of introducing hard
macros [9], while Beauchamp et al. augmented VPR to assess
the impact of embedding FPUs in FPGAs [6]. We are not aware
of studies concerning the effect of adding arbitrary embedded
blocks to existing commercial FPGA devices, nor of method-
ologies to facilitate such studies.

In earlier work, we described the VEB technique for mod-
eling heterogeneous blocks using commercial tools [10], do-
main-specific hybrid FPGAs [11], and a word-based synthe-
sizable FPGA architecture [12]. This paper provides a unified
view of these studies, describes the proposed FPGA architec-
ture in greater detail, presents improved results through the use
of a higher performance commercial floating-point core, intro-
duces the mapping process for the FPFPGA, discusses the re-
quirement of a hardware compiler dedicated to such FPFPGA
device, and includes two new synthetic benchmark circuits in
the study, one of which is twice the size of the largest circuit
studied previously.

B. FPGA Architectures

An FPGA is typically constructed as an array of fine-grained
or coarse-grained units. A typical fine-grained unit is a -input
LUT, where typically ranges from 4 to 7, and can imple-
ment any -input Boolean equation. We call this an LUT-based
fabric. Several LUT-based cells can be joined in a hardwired
manner to make a cluster. This greatly reduces area and routing
resources within the fabric [13].

Heterogeneous functional blocks are found in commercial
FPGA devices. For example, a Virtex II device has embedded
fixed-function 18-bit multipliers, and a Xilinx Virtex 4 device
has embedded DSP units with 18-bit multipliers and 48-bit ac-
cumulators. The flexibility of these blocks is limited and it is
less common to build a digital system solely using these blocks.

When the blocks are not used, they consume die area without
adding to functionality.

FPGA fabric can have different levels of granularity. In gen-
eral, a unit of smaller granularity has more flexibility, but can
be less effective in speed, area, and power consumption. Fab-
rics with different granularity can coexist as evident in many
commercial FPGA devices. Most importantly, the aforemen-
tioned examples illustrate that FPGA architectures are evolving
to be more coarse-grained and application-specific. The pro-
posed architecture in this paper follows this trend, focusing on
floating-point computations.

III. FPFPGA ARCHITECTURE

A. Requirements

Before we introduce the FPFPGA architecture, common
characteristics of what we consider a reasonably large class
of floating-point applications that might be suitable for signal
processing, linear algebra and simulation are first described.
Although the following analysis is qualitative, it is possible to
develop the architecture in a quantitative fashion by profiling
application circuits in a specific domain.

In general, FPGA-based floating-point application circuits
can be divided into control and datapath portions. The datapath
typically contains floating-point operators such as adders,
subtractors, and multipliers, and occasionally square root and
division operations. The datapath often occupies most of the
area in an implementation of the application. Existing FPGA
devices are not optimized for floating-point computations, and
for this reason, floating-point operators consume a significant
amount of FPGA resources. For instance, if the embedded
DSP48 blocks are not used, a double-precision floating-point
adder requires 701 slices on a Xilinx Virtex 4 FPGA, while a
double-precision floating-point multiplier requires 1238 slices
on the same device [14].

The floating-point precision is usually a constant within an
application. The IEEE 754 single precision format (32 bit) or
double-precision format (64 bit) is commonly used.

The datapath can often be pipelined and connections within
the datapath may be unidirectional in nature. Occasionally, there
is feedback in the datapath for some operations such as accu-
mulation. The control circuit is usually much simpler than the
datapath, and therefore, the area consumption is typically lower.
Control is usually implemented as a finite-state machine and
most FPGA synthesis tools can produce an efficient mapping
from the Boolean logic of the state machine into fine-grained
FPGA resources.

Based on the aforementioned analysis, some basic require-
ments for FPFPGA architectures can be derived as follows.

1) A number of coarse-grained floating-point addition and
multiplication blocks are necessary since most computa-
tions are based on these primitive operations. Floating-
point division and square root operators can be optional,
depending on the domain-specific requirement.

2) Coarse-grained interconnection, fabric, and bus-based op-
erations are required to allow efficient implementation and
interconnection between fixed-function operators.
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Fig. 1. Architecture of the FPFPGA.

3) Dedicated output registers for storing floating-point values
are required to support pipelining.

4) Fine-grained units and suitable interconnections are re-
quired to support implementation of state machines and
bit-oriented operations. These fine-grained units should be
accessible by the coarse-grained units and vice versa.

B. Architecture

Fig. 1 shows a top-level block diagram of our FPFPGA ar-
chitecture. It employs an island-style fine-grained FPGA struc-
ture with dedicated columns for coarse-grained units. Both fine-
grained and coarse-grained units are reconfigurable. The coarse-
grained part contains embedded fixed-function floating-point
adders and multipliers. The connection between coarse-grained
units and fine-grained units is similar to the connection between
embedded blocks (embedded multiplier, DSP block or block
RAM) and fine-grained units in existing FPGA devices.

The coarse-grained logic architecture is optimized to imple-
ment the datapath portion of floating-point applications. The ar-
chitecture of each block, inspired by previous work [4], [12],
is shown in Fig. 2. Each block consists of a set of floating-
point multipliers, adder/subtractors, and general-purpose bit-
blocks connected using a unidirectional bus-based interconnect
architecture. Each of these blocks will be discussed in this sec-
tion. To keep our discussion general, we have parameterized the
architecture, as shown in Table I. There are subblocks in each
coarse-grained block. of these subblocks are floating-point
multipliers, another of them are floating-point adders, and the
rest are general-purpose wordblocks. Specific values
of these parameters will be given in Section VI.

The core of each coarse-grained block contains multiplier
and adder/subtractor subblocks. Each of these blocks has a
reconfigurable registered output, and associated control input
and status output signals. The control signal is a write enable
signal that controls the output register. The status signals report

the subblock’s status flags and include those defined in IEEE
standard as well as a zero and sign flag. The fine-grained unit
can monitor these flags via the routing paths between them.

Each coarse-grained block also contains general-purpose
wordblocks. Each wordblock contains identical bitblocks,
and is similar to our earlier published design [12]. A bitblock
contains two 4-input LUTs and a reconfigurable output register.
The value of depends on the bit-width of the coarse-grained
block. Bitblocks within a wordblock are all controlled by
the same set of configuration bits, so all bitblocks within a
wordblock perform the same function. A wordblock, which
includes a register, can efficiently implement operations such
as fixed-point addition and multiplexing. Like the multiplier
and adder/subtractor blocks, wordblocks generate status flags
such as MSB, LSB, carry out, overflow, and zero; these signals
can be connected to the fine-grained units.

Apart from the control and status signals, there are input
buses and output buses connected to the fine-grained units.
Each subblock can only accept inputs from the left, simplifying
the routing. To allow more flexibility, feedback registers have
been employed so that a block can accept the output from the
right block through the feedback registers. For example, the
first block can only accept input from input buses and feedback
registers, while the second block can accept input from input
buses, the feedback registers, and the output of the first block.
Each floating-point multiplier is logically located to the left of
a floating-point adder so that no feedback register is required to
support multiply-and-add operations. The coarse-grained units
can support multiply-accumulate functions by utilizing the feed-
back registers. The bus width of the coarse-grained units is 32
bits for the single-precision FPFPGA and 64 bits for double
precision.

Switches in the coarse-grained unit are implemented using
multiplexers and are bus-oriented. A single set of configuration
bits is required to control each multiplexer, improving density
compared to a fine-grained fabric.

IV. EXAMPLE MAPPING

To illustrate how our architecture can be used to implement
a datapath, we use the example of a floating-point matrix mul-
tiply. Fig. 3 illustrates the example datapath and the implemen-
tation of this datapath on our architecture. In this example, we
assume an architecture in which the multiplication subblocks
are located in the second and sixth subblocks within the archi-
tecture, and floating-point adder/subtractor units are located in
the third and the seventh subblocks.

The datapath of this example application can be implemented
using two coarse-grained blocks. The datapath produces the re-
sult of the equation . The first
coarse-grained unit performs two multiplications and one ad-
dition. The result is forwarded to the next coarse-grained
unit. The second coarse-grained unit performs one multiplica-
tion and one addition. However, as all multiplications start in the
same clock cycle, the last addition cannot start until is ready.
In order to synchronize the arrival time of and , an-
other floating-point adder (FA2) in the second coarse-grained
block is instantiated as a first-input, first-output (FIFO) with the
same latency as FA6 in CGU0. This demonstrates an alternate
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Fig. 2. Architecture of the coarse-grained unit.

Fig. 3. Example mapping for matrix multiplication.

TABLE I
PARAMETERS FOR THE COARSE-GRAINED UNIT

use of a coarse-grained unit. Finally, and are added to-
gether and the state machine sends the result to the block RAM.
All FPU subblocks have an enabled registered output to further
pipeline the datapath.

V. FPFPGA COMPILATION

While traditional HDL design flow can be used in trans-
lating applications to our FPFPGA, the procedure is tedious
and the designers have to fully understand the usage of the
coarse-grained units in order to manually map the circuit effec-
tively. A domain-specific hardware compiler, which can map
a subset of a high-level language to the proposed architecture,

is useful in developing applications on such as an FPFPGA.
In addition, the hardware compiler is beneficial during the
development of the FPFPGA itself since the compiler can be
used to generate benchmark circuits. Although we have not
implemented such a compiler, this section proposes the basic
requirements of the compiler and discusses how some of the
design challenges can be addressed.

The basic requirements of the FPFPGA compiler are as
follows.

1) The compiler should contain a set of predefined
built-in functions that represent the functionality in
the coarse-grained unit. For example, the compiler can
provide floating-point functions such as fadd(), fmul() (or
even better, overloaded operators such as “ ” or “ ”) that
associate with the floating operators in the coarse-grained
unit. This feature allows application designers to infer the
coarse-grained units easily.

2) It should have the ability to differentiate the control logic
and the datapath. This feature would allow the technology
mapper to handle the control logic and the datapath sep-
arately. Since the control logic can be efficiently imple-
mented using the fine-grained logic, a standard hardware
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compilation technique such as [15] can be used. The data-
path, which is usually much more complicated, can be
mapped to coarse-grained units whenever it is possible.

3) The compiler should contain a parametrizable technology
mapper for the coarse-grained architecture. Since this is pa-
rametrized for design exploration, the technology mapper
should map to devices with differing amounts of coarse-
grained resources. For example, the technology mapper
should be aware of the number of floating-point operator
in a coarse-grained unit so it can fully utilize all the opera-
tors in a unit. This feature would allow FPGA designers to
evaluate new architectures effectively by compiling bench-
mark circuits with modified architectural parameters.

4) The compiler should contain an intelligent resource al-
location algorithm. It should be aware of the function-
ality of the coarse-grained unit and decide if the given
operation is best implemented by coarse-grained units or
fine-grained units. For example, if the compiler receives a
“square root” instruction but there is no square root func-
tion in the coarse-grained units, the allocation algorithm
can infer a square root operator using fine-grained unit
instead.

5) Support is required for bitstream generation for coarse-
grained units. Such a feature is necessary to determine the
delay of a mapped coarse-grained unit.

Requirements 1, 4, and 5 have been studied in other contexts
[16], and requirement 2 has been addressed in [17] in which the
authors propose a compiler that can produce separate circuits
for control logic and datapath for floating-point applications.
Requirement 3 is new, and is specific for our architecture. One
approach to creating this tool would be to develop a dedicated
technology mapper for the coarse-grained units within the Tri-
dent framework [17]. A bitstream generator for coarse-grained
units can be integrated into the framework as well. This is on-
going work.

VI. MODELING METHODOLOGY

In this section, we describe the methodology we use to model
our architecture. We employ an experimental approach and use
the concept of VEBs to model the embedded coarse-grained
blocks. The following sections first describe the benchmark
circuits we used, followed by a description of the VEB
methodology.

A. Benchmark Circuits

Eight benchmark circuits are used in this study, as shown in
Table II. Five are computational kernels, one is a Monte Carlo
simulation datapath, and two are synthetic circuits. All bench-
mark circuits involve single-precision floating operations. We
choose these circuits since they are representative of the appli-
cations we envision being used on an FPFPGA. We note that the
strong representation of simple floating-point kernels that map
directly to the CGU favorably influences the overall density and
performance metrics, so our results can be considered an upper
bound. Dependencies, mapping, control, and interfacing are is-
sues likely to degrade performance.

The bfly benchmark performs the computation
where the inputs and output are complex numbers; this is

TABLE II
BENCHMARK CIRCUITS

Fig. 4. Modeling flow overview.

commonly used within a fast Fourier transform computation.
The dscg circuit is the datapath of a digital sine--cosine gen-
erator. The fir circuit is a four-tap finite-impulse response
filter. The mm3 circuit performs a 3 3 matrix multiplication.
The ode circuit solves an ordinary differential equation. The
bgm circuit computes Monte Carlo simulations of interest
rate model derivatives priced under the Brace, Gatarek, and
Musiela (BGM) framework [18]. All the word lengths of the
aforementioned circuits are 32 bit.

In addition, a synthetic benchmark circuit generator based on
[19] is used. The generator can produce floating-point circuits
from a characterization file describing circuit and cluster sta-
tistics. Two synthetic benchmark circuits are produced. Circuit
syn2 contains five floating-point adders and four floating-point
multipliers. Circuit syn7 contains 25 floating-point adders and
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Fig. 5. Modeling coarse-grained unit in FPGAs using VEBs.

25 floating-point multipliers. The syn7 circuit is considerably
larger than the other benchmarks.

B. VEB Methodology

To model the mapping of our benchmark circuits on the ar-
chitecture described in Section III, we employ the VEB method-
ology. This methodology allows us to quantify the impact of em-
bedding our block into a modern FPGA using commercial CAD
tool optimizations. This is in contrast to VPR-based methodolo-
gies that assume a bare-bone island-style FPGA (without carry
chains and with a simplified routing architecture) and do not
employ modern optimizations such as physical synthesis and
retiming.

Fig. 4 illustrates the modeling flow using the VEB method-
ology. The input is a high-level application description and the
output is an FPGA bitstream. The application is first broken into
control logic and datapath portions. Since we do not yet have
a complete implementation of a suitable compiler, we perform
this step manually.

The datapath portion is then mapped to the embedded
floating-point blocks (again, this is currently done manually).
An example of this mapping was given in Section IV. The result
of this step is a netlist containing black boxes representing those
parts of the circuit that will be mapped to embedded blocks,
and fine-grained logic elements representing those parts of
the circuit that will be mapped to LUTs in the cases where no
suitable embedded block is found or all have been used.

Unfortunately, this netlist cannot be implemented directly
using commercial FPGA CAD tools, since the corresponding
commercial FPGAs do not contain our floating-point embedded
blocks. The basic strategy in our VEB flow is to use selected
logic resources of a commercial FPGA (called the host FPGA)
to match the expected position, area, and delay of an ASIC
implementation of the coarse-grained units, as shown in Fig. 5.

To employ this methodology, area and delay models for the
coarse-grained units are required. To estimate the area, we syn-
thesize an ASIC description of each coarse-grained block using
a comparable technology. For instance, 0.13- m technology is
used in synthesizing the ASIC block embedded in a Virtex II

device, which, in turn, uses a 0.15- m/0.12- m process. Nor-
malization to the feature size is then applied to obtain a more
accurate area estimation. We employ a parameterized synthesiz-
able IEEE 754 compliant floating-point library [20]. The library
supports four rounding modes and denormalized numbers. A
floating-point multiplier and floating-point adder are generated
and synthesized using a regular standard cell library flow.

The area of the coarse-grained block is then translated into
equivalent LC resources in the virtual FPGA. In order to make
this translation, an estimate of the area of an LC in the FPGA
is required, where an LC refers to a four-input LUT and an as-
sociated output register. The area estimation includes the asso-
ciated routing resources and configuration bits. All area mea-
sures are normalized by dividing the actual area by the square
of the feature size, making them independent of feature size.
VEB utilization can then be computed as the normalized area
of the coarse-grained unit divided by the normalized area of an
LC. This value is in units of equivalent LCs, and the mapping
enables modeling of coarse-grained units using existing FPGA
resources. In addition, special consideration is given to the in-
terface between the LCs and the VEB to ensure that the corre-
sponding VEBs have sufficient I/O pins to connect to the routing
resources. This can be verified by keeping track of the number
of inputs and outputs that connect to the global routing resources
in an LC. For example, if an LC only has two outputs, it is not
possible to have a VEB with an area of four LCs that requires
nine outputs. For such a case, the area is increased to five LCs.

In order to accurately model the delay, both the logic and the
wiring delay of the virtual FPGA must match that of the host
FPGA. The logic delay of the VEB can be matched by intro-
ducing delays in the FPGA resources. In the case of very small
VEBs, it may not be possible to accurately match the number of
I/O pins, area, or logic delay, and it may result in inaccuracies. A
complex coarse-grained unit might have many paths, each with
different delays. In this case, we assume that all delays are equal
to the longest one (i.e., the critical path) as it is the most impor-
tant characteristic of a coarse-grained unit in terms of timing.

In our implementation, area matching is achieved by creating
a dedicated scan chain using shift registers. A longer scan chain
consumes more LC, and therefore, the VEB is larger. There are
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TABLE III
NORMALIZATION ON THE AREA OF THE COARSE-GRAINED UNITS AGAINST A VIRTEX II LC

SP and DP stand for single precision and double precision, respectively. CGU stands for coarse-grained unit. For the values shown in the second
column (area), 15% overheads have already been applied on the coarse-grained units.

many options available to match the timing of a VEB. We utilize
the fast carry chains presented in most FPGAs to generate delays
that emulate the critical path in a VEB. This choice has the added
advantage that relocation of LCs on the FPGA does not affect
the timing of this circuit.

It should also be noted that the use of the carry and scan
chains allows delay and area to be varied independently. Mod-
eling wiring delays is more problematic, since the placement
of the virtual FPGA must be similar to that of an FPGA with
coarse-grained units to ensure that their routing is similar. This
requires that: 1) the absolute location of VEBs matches the in-
tended locations of real embedded blocks in the FPGA with
coarse-grained units and 2) the design tools are able to assign in-
stantiations of VEBs in the netlist to physical VEBs while min-
imizing routing delays.

The first requirement is addressed by locating VEBs at prede-
fined absolute locations that matches the floorplan of the FPGA
with coarse-grained units. To address requirement 2), the as-
signment of physical VEBs is currently made by a two-phase
placement strategy that consists of unconstrained placement fol-
lowed by manual placement. We first assume that the VEB can
be placed anywhere on the virtual FPGA so that the place and
route tools can determine the most suitable location for each
VEB. Once the optimal VEB locations are known, a manual
placement is applied to ensure that the placement of each VEB
is aligned on dedicated columns while maintaining nearest dis-
placement to the optimal location. We believe that this strategy
can provide a reasonable placement as the location of each VEB
is derived from the optimal placement.

There are inevitable differences between real implementa-
tions and the VEB emulated ones. In our previous work [10],
we compared an actual embedded multiplier with one modeled
using the VEB method. It was found that timing difference can
be as large as 11% while the area is accurately determined. We
believe such errors are acceptable for the first-order estimations
desired. Once a suitable coarse-grained unit architecture is iden-
tified, a more in-depth analysis using lower level methods such
as SPICE simulation can be performed to confirm the results.

To instantiate all the VEBs and connect all together, we de-
scribe the control logic and instantiate the VEBs explicitly and
connect the signals between the fine-grained units and coarse-
grained units. The design is then synthesized on the target de-
vice and a device-specific netlist is generated. The timing of the
VEBs is also specified in the FPGA synthesis tool.

After generating the netlist of the overall circuit, a two-phase
placement is used to locate near-optimal placement of VEBs
along dedicated columns. We then use the vendor’s place and
route tool to obtain the final area and timing results. This
represents the characterization of a circuit implemented on the

FPFPGA with fine-grained units and routing resources exactly
the same as the targeted FPGA.

It is important to note that timing information cannot be de-
termined before programming the configuration bits. Otherwise,
the tool reports the worst-case scenario where the longest com-
binational path from the first wordblock to the last wordblock
is considered as critical path, and this is usually not the correct
timing in most designs. To address this issue, the tool has to
recognize the configuration of the coarse-grained units before
the timing analysis. Therefore, a set of configurations is gener-
ated during manual mapping, and the associated bitstream can
be used in timing analysis. This bitstream can be imported to the
timing analysis tool, so the tool can identify false paths during
timing analysis and produce correct timing for that particular
configuration.

VII. RESULTS

In this section, we present an evaluation of our architecture.
The flow described in the previous section is employed.

The best-fit architecture can be determined by varying the
parameters to produce a design with maximum density over
the benchmark circuits. Additional wordblocks are included, al-
lowing more flexibility for implementing circuits outside of the
benchmark set. Manual mappings are performed for each bench-
mark. A more in-depth analysis on how these parameters affect
the application performance is ongoing work.

For the single-precision FPFPGA device, a Xilinx
XC2V3000-6-FF1152 FPGA is used as the host, and we
assume 16 coarse-grained units. We emphasize that the pa-
rameter settings chosen for the coarse-grained block is fixed
over the entire set of benchmarks, each coarse-grained unit
having nine subblocks , four input buses ,
three output buses , three feedback registers ,
two floating-point adders, and two floating-point multipliers

. We assume that the two floating-point multipliers in
the coarse-grained unit are located at the second and the sixth
subblocks. The two floating-point adders are located in the
third and the seventh subblocks.

The coarse-grained blocks constitute 7% of the total area of
an XC2V3000 device. All FPGA results are obtained using Syn-
plicity Synplify Premier 9.0 for synthesis and Xilinx ISE 9.2i
design tools for place and route. All ASIC results are obtained
using Synopsys Design Compiler V-2006.06.

The physical die area and photomicrograph of a Virtex II de-
vice has been reported [21], and the normalization of the area of
coarse-grained unit is estimated in Table III. From inspection of
the die photograph, we estimate that 60% of the total die area is
used for LCs.
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Fig. 6. Comparisons of FPFPGA and Xilinx Virtex II FPGA device.

This means that the area of a Virtex II LC is 5456 m .
This number is normalized against the feature size (0.15 m).
A similar calculation is used for the coarse-grained units. The
ASIC synthesis tool reports that the area of a single-precision

Fig. 7. Floorplan of the single-precision bgm circuit on Virtex II FPGA and
FPFPGA. Area is significantly reduced by introducing coarse-grained units.

coarse-grained unit is 433 780 m . We further assume 15%
overhead after place and route the design based on our expe-
rience [12]. The area values are normalized against the fea-
ture size (0.13 m). The number of equivalent LC is obtained
through the division of coarse-grained unit area by slice area.
This shows that single-precision coarse-grained unit is equiva-
lent to 122 LCs. Assuming each LC has two outputs, the VEB
allows a maximum of 244 output pins while the coarse-grained
unit consumes 162 output pins only. Therefore, we do not need
to further adjust the area.

Single-precision FPFPGA results are shown in Table IV(a)
and Fig. 6(a) and (b). A comparison between the floorplan of
the Virtex II device and the floorplan of the FPFPGA on bgm
circuit is illustrated in Fig. 7.

The FPU implementation on FPGA is based on the work in
[22]. This implementation supports denormalized floating-point
numbers that are required in the comparison with the FPFPGA.
The FPU area for the XC2V3000 device [seventh column of
Table IV(a)] is estimated from the distribution of LUTs, which
is reported by the FPGA synthesis tool. The logic area (eighth
column) is obtained by subtracting the FPU area from the total
area reported by the place and route tool. As expected, FPU
logic occupies most of the area, typically more than 90% of the
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TABLE IV
FPFPGA IMPLEMENTATION RESULTS

Values in the brackets indicate the percentages of LC used in corresponding FPGA device. CGU stands for coarse-grained unit and FGU stands for
fine-grained unit.

user circuits. While the syn7 circuit cannot fit in an XC2V3000
device, it can be tightly packed into a few coarse-grained blocks.
The circuit syn7 has 50 FPUs that consume 214% of the total
FPGA area. They can fit into 16 coarse-grained units, which
constitute just 6.8% of the total FPGA area.

Similar experiments for double-precision floating-point ap-
plications have been conducted, and the results are reported in
Table IV(b) and Fig. 6(c) and (d). In double-precision floating-
point FPFPGA, we use the XC2V6000 FPGA as the host FPGA
and the comparison is done on the same device.

For both single- and double-precision benchmark circuits, the
proposed architecture reduces the area by a factor of 25 on av-
erage, a significant reduction. The saving is achieved by: 1) em-
bedded floating-point operators; 2) efficient directional routing;
and 3) sharing configuration bits. On larger circuits, or on cir-
cuits with a smaller ratio of floating-point operations to random
logic, the improvement will be less significant. However, the
reported ratio gives an indication of the improvement possible
if the architecture is well matched to the target applications. In
essence, our architecture stands between ASIC and FPGA im-
plementation. The authors in [2] suggest that the ratio of sil-
icon area and delay required to implement circuits in FPGAs
and ASICs is on average 35. Our proposed architecture can re-
duce the gap between FPGA and ASIC from 35 times to 1.4
times when floating-point applications are implemented on such
FPGAs.

The delay reduction is also significant. In our benchmark cir-
cuits, delay is reduced by 3.6 times on average for single-pre-
cision applications and 4.3 times on average for double-pre-
cision applications. We believe that double-precision floating-
point implementation on commercial FPGA platform is not as
effective as the single-precision one. Therefore, the double-pre-
cision FPFPGA offers better delay reduction than the single-pre-
cision one. In our circuits, the critical path is always within the

embedded FPUs; thus, we would expect a ratio similar to that
between normal FPGA and ASIC circuitry. Our results are con-
sistent with [2] that suggests the ratio is between 3 and 4. As the
critical paths are in the FPU, improving the timing of the FPU
through full-custom design would further increase the overall
performance.

VIII. CONCLUSION

We propose an FPFPGA architecture that involves a combi-
nation of reconfigurable fine-grained and reconfigurable coarse-
grained units optimized for floating-point computations. A pa-
rameterizable description is presented that allows us to explore
different configurations of this architecture. To provide a more
accurate evaluation, we adopt a methodology for estimating the
effects of introducing embedded blocks to commercial FPGA
devices. The approach is vendor independent and offers a rapid
evaluation of arbitrary embedded blocks in existing FPGA de-
vices. Using this approach, we show that the proposed FPFPGA
enjoys improved speed and density over a conventional FPGA
for floating-point intensive applications. The area can be re-
duced by 25 times and the frequency is increased by four times
on average when comparing the proposed architecture with an
existing commercial FPGA device. Current and future work
includes developing automated design tools supporting facili-
ties such as partitioning for coarse-grained units, and exploring
further architectural customizations for a large number of do-
main-specific applications.
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