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Abstract—Collaborative Foveated Rendering (CFR) is the latest collaborative rendering framework proposed to enable high frame
rate VR applications on mobile devices. Compared with the strategies adopted in conventional collaborative rendering, the pixel-based
Adaptive Foveal Sizing (AFS) mechanism in CFR offers a more flexible and intelligent workload trade-off by predicting the radius.
However, the performance of the AFS mechanism in actual deployment depends on its adaptability to two factors, including the Sudden
Environmental Variations (SEV) and the Random Discrete Latency (RDL). Guaranteeing the performance of the AFS mechanism by
adapting to these two factors is of great significance to guaranteeing users’ immersive experience. This paper identifies the existence
of the SEV and RDL phenomenon in the AFS mechanism for the first time, and contributes the first method that offers the
effective and real-time AFS mechanism implementation for the practical deployment, namely the Efficient Radius Search (ERS).
The ERS method efficiently searches the largest radius online that controls the rendering workload within the foveated layer just below
the offline baked threshold, thereby achieving the immediate response to SEV and reducing the oscillating frame rendering latency led
by RDL. Through the experiments on 3 VR applications and 4 mobile devices, the resulting 2.44× to 9.07× higher frame rate
precision compared with the state-of-the-art method demonstrate the superiority of the ERS method.

Index Terms—Mobile devices, virtual reality, collaborative foveated rendering, untethered

✦

1 INTRODUCTION

V IRTUAL Reality (VR) devices can be categorized into
Mobile-Powered VR (MVR) and PC-Powered VR

(PCVR), where MVR is more competitive than PCVR in
terms of mobility and price, but has difficulty achieving
the high frame rate due to the limited battery power and
graphics rendering capabilities. Therefore, providing a high
frame rate on MVR is of great importance for its wider
adoption in the VR-based future metaverse.

Cloud Rendering is the earliest technology proposed
to improve the frame rate of MVR, in which all rendering
tasks are offloaded from mobile device to cloud server
with powerful graphics processing capabilities [1], then
transmit the rendered results back to the mobile devices
through the wireless network. Tiled-based panoramic
frames transmission with dynamic quality are widely
adopted in Cloud Rendering [2]–[5], some are equipped
with the user motion prediction to assist the quality selec-
tion [6], [7]. Besides, different sorts of bit-rate adjustment
algorithms including [8]–[15] are proposed to dynami-
cally encode panoramic frames, thereby increasing its
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adaptability to wireless network environment variation.
However, mobile device in Cloud Rendering is normally
treated as the video decoder, and its graphic rendering
resources are not utilized.

Collaborative Rendering proposed in [16], can make up
for the deficiency in Cloud Rendering by partitioning the
graphics rendering tasks into Foreground Interactions (FI)
and Background Environment (BE), and distributing them
separately to mobile device and cloud server. Technologies
developed in the related research including motion pre-
diction [17] and similarity evaluation [18] are effective on
reducing the transmission cost of BE frames under the
wireless network. Nevertheless, handling the additional
overhead brought by those methods such as the storage
overhead and motion sickness [19], [20] is still difficult.
Furthermore, FI rendered on different mobile devices
and VR applications requires to be manually defined by
experienced developers to satisfy real-time constraints,
which is labor intensive and impractical [21].

To address the challenges in Collaborative Rendering,
Collaborative Foveated Rendering (CFR) proposed in Q-
VR [21] subtly integrates collaborative mechanism into
Foveated Rendering [22]. It designs the Adaptive Foveal
Sizing (AFS) mechanism as the core technology to auto-
matically balances the workload distribution between the
mobile device and cloud server. However, we find for the
first time that the performance of the AFS mechanism in
practical deployment is determined by its adaptability to
two factors, including Sudden Environmental Variations
(SEV) and Random Discrete Latency (RDL) phenomenon.
Q-VR’s implementation to the AFS mechanism lacks of

This article has been accepted for publication in IEEE Transactions on Mobile Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TMC.2023.3277577

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Sydney. Downloaded on June 22,2023 at 23:43:18 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 2

the consideration to these two factors, thus its perfor-
mance in practical deployment is limited.

The Efficient Radius Search (ERS) presented in this work,
is the first method to provide the effective and real-time AFS
mechanism implementation for the practical deployment.
In the ERS method, an offline algorithm is developed to
bake the threshold table for the whole VR application scene.
And an online algorithm is designed to firstly derive the
correct threshold from the offline baked threshold table with
respect to user’s coordinates, then search the largest radius
to control the rendering workload within the foveated layer
just below the weighted threshold. The rendering workload
estimation in both offline and online algorithms is time-
consuming under the complex VR application, hence a
dedicated accelerator is designed to minimize the algorithm
execution latency. Extensive experiments on various VR
applications and mobile devices demonstrate that the
proposed ERS method has higher adaptability to both
SEV and RDL phenomenon than the state-of-the-art Q-
VR method, which is reflected through the 2.44× to 9.07×
higher frame rate precision and one millisecond-level
execution latency.

2 BACKGROUND

Since this paper discusses aspects crossing over multiple
disciplines, significant background are provided in this
section to help different communities to better understand
the content.

2.1 Collaborative Foveated Rendering
Foveated Rendering [22] coupled with eye-tracking is a
innovative technology that reduce the overall rendering
workload based on the human visual perception differ-
ence to different parts of the screen. Apart from prior
works that focused on exploring the flexibility of shad-
ing techniques [23] [24], Foveated Rendering was also
extended to light fields [25] and video streaming [26].
Besides, the frequency of eye tracker was dramatically
improved in recent work [27].

The lower part of Fig. 1 shows the schematic diagram
of the Foveated Rendering in mobile virtual reality. The
gaze point is where users are starring at the device screen
(captured by Eye Tracker), and the part of screen that
surrounds the gaze point is the foveated layer, which
should be rendered in a high resolution to guarantee
users’ vision perception. The horizontal resolution of the
foveated layer in pixels, DFL, is defined in Equation (1)
[22]:

DFL(r) =
2DH r

W
(1)

where r is the radius of the foveated layer, D is the screen
horizontal resolution in pixels, H and W are the height
and width of the screen in centimeter, respectively.

Human eyes have falling acuity to the rest part of
screen, hence the peripheral Layer can be rendered in
decreasing resolution to reduce the overall rendering
workload. The horizontal resolution of the peripheral
layer in pixels, DPL, is defined in Equation (2) [22]:

DPL(r) =
D tan−1( 2W

V D )

marctan( r H
V ) + ω0

(2)

Fig. 1. Architecture of Collaborative Foveated Rendering
[21] in Virtual Reality

where V is the eye-to-screen distance in centimeter. Both
m and ω0 are constant value, m is within the range of
0.022∼0.034 to cover a wide range of user’s sensitivity to
blur phenomenon, and the representative value of ω0 is
1/48. As indicated in Equation (1) and Equation (2), r is
proportional to DFL and inversely proportional to DPL.
Besides, there is a transition operation at the junction
of the foveated layer and the peripheral layer. This part
usually uses the interpolation algorithm to fuse the pixels
at the junction of the two sides, thereby avoiding the
visual perception loss caused by the rendering resolution
difference.

Q-VR [21] innovatively applied the collaborative
mechanism adopted in [16]–[18] into Foveated Render-
ing and proposed the Collaborative Foveated Rendering,
whose schematic diagram is shown in the upper part of
Fig. 1. In each frame during VR application run-time,
the eye tracker will firstly capture the user eyes’ gaze
point on the screen and use the Adaptive Foveal Sizing
(AFS) mechanism to set up the optimal radius r for the
foveated layer, then perform foveated layer rendering on
the mobile device. Simultaneously, the cloud server will
perform rendering for the peripheral layer with dedicated
resolution determined by radius r, and transmit the ren-
dered result back to the mobile device to stitch with the
locally rendered foveated layer. Finally, show the stitch
results on the device screen.

2.2 AFS Mechanism
Under the Collaborative Foveated Rendering context shown
in Fig. 1, the composition of the local latency LLocal on mo-
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bile device and the remote latency LRemote on cloud server
are described in Equation (3) and Equation (4), respectively:

LLocal = LFL (3)

LRemote = LPL + LE + LNT + LD (4)

where LFL and LD are the foveated layer rendering latency
and the peripheral layer decoding latency on the mobile
device, LPL and LE is the peripheral layer rendering and
encoding latency on the cloud server, LNT is the network
transmitting latency of the encoded results. As indicated in
Equation (5), the instant frame rate FR is the reciprocal of
the larger value between LLocal and LRemote:

FR =
1

max[LLocal, LRemote]
(5)

The instant frame rate FR must be maximized for the
best immersive experience, which means both LLocal and
LRemote should be minimized. The target of the Adaptive
Foveal Sizing (AFS) mechanism is to generate the optimal
radius ro that balances the workload distribution between
mobile device and cloud server, thereby minimizing both
LLocal and LRemote.

3 INFLUENCE FACTORS OF AFS MECHANISM
PERFORMANCE

To better understand the research problem, two influence
factors that highly affect the performance of the AFS
mechanism are defined and discussed separately in this
section.

3.1 Factor I: Sudden Environmental Variation

During the run-time of the VR application with the high
user interaction requirements, for example, the racing game
and the first-person shooting game, the environment vari-
ations between adjacent frame is sometimes violent and
unpredictable. This phenomenon is named Sudden Envi-
ronmental Variation (SEV).

As illustrated in section 2.2, the AFS mechanism im-
plementation in Q-VR applies the Q-learning algorithm to
gradually learn the most appropriate radius variation △r
for the current environment. Such settings are not able to
perform real-time reactions to SEV because of three reasons.
Firstly, the Q-learning algorithm must take a certain amount
of frames to learn how to provide an optimal △r no matter
how hyperparameters are tuned. Secondly, users’ motion
and gaze point changes in adjacent frames are entirely
random, which further increases the convergence difficulty
because the status selection s is random. Thirdly, whenever
the user moves to a new environment whose rendering
workload distribution is slightly different from the former
environment, the quality score in the former Q table is
no longer of the reference value, and the algorithm has to
restart the learning process. During the learning process, the
AFS mechanism can not work normally, and the inappropri-
ate radius output will lead to the oscillating frame rate.

Fig. 2. Instant Frame Latency Distribution of 100 frames
under Different Number of ’Blacksmith’ Buildings

3.2 Factor II: Random Discrete Latency

Randomness is one of the fundamental characteristics
of frame rendering latency, which is affected by a large
number of factors in the rendering system. Lots of studies
propose to predict the frame rendering latency based
on different factors. Some studies start from the bottom
level of the rendering pipeline, and predict the frame
rendering latency/workload based on the intermediate
factors such as vertex [28], vertices [29] [30], triangles
[28] [31], projected pixels [29], Light [32], API calls and
textures [33] [30]. Others take the CPU and GPU working
frequency or utilization ratio as reference factors [34] [35]
[36] [37] to predict the frame rendering latency/workload.
Although these methods have good performance under
specific restrictions and different test platforms including
Mobile [28] [33] [30] [34] [36] [37], PC [31] [29] [32] [35],
they cannot achieve stable prediction accuracy. On one
hand, some rendering factors is on-the-fly data so that it
is difficult to take all rendering factors at very beginning
into consideration. On the other hand, the hardware level
factors are usually invisible from software level and
they also contain certain randomness, such as hardware
preemption, in real-case.

Instead of continuous on developing a higher preci-
sion frame rendering latency/workload estimation method
like the research mentioned above, we consider if it is
possible to directly model the random behavior of the
frame rendering latency using large amount of real mobile
devices experiments, and try to find a solution based on
the modeling results.

To model the random behavior of the frame rendering
latency, a preliminary modeling experiment is performed
as follows. We firstly create a simplified ’Viking Village’
test scene [38] in Unity that only contains specific amounts
of ’Blacksmith’ building duplicates. Then fix the camera
towards the buildings to keep the rendering content un-
changed, and attach a script that can record the instant
frame rate of consecutive 100 frames to repeatedly render
this content. Finally, we repeatedly export the test scene
and run it on Moto G9 Plus mobile device each time with
one more ’Blacksmith’ building to simulate the linearly
increased rendering workloads.

The experiment results shown in Fig. 2 provide two
significant observations. Firstly, only three discrete frame
rendering latency values 16.66, 33.33, and 49.99 ms related
to n = 1, 2, 3 are detected along 15 levels of complexity
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Fig. 3. Schematic Diagram of the Random Discrete Latency
Phenomenon

due to the forced Vsync mechanism on mobile devices.
In order to optimize the display performance, Google has
reconstructed the Android display system since Android
4.1 and realized Project Butter, that is, only after receiving
the Vertical Synchronization (Vsync) pulse, the CPU and
GPU will start the rendering of the next frame, just like it
is shown in Fig. 3. The iOS system also possesses a similar
measure. For mobile devices with the 60 Hz screen refresh
rate, the interval between adjacent Vsync pulse is the fixed
16.66 ms, which is the root reason for the discrete frame
rendering latency. The system will not render in advance or
later, which extends the battery life and optimizes the user
interaction experience.

Secondly, the frame rendering latency is the random
value among 16.66 ms, 33.33 ms, and 49.99 ms or even
bigger if the number of ’Blacksmith’ buildings exceeds a
threshold 4. One reason for the random phenomenon
is the hardware resource preemption between the VR
application and the hidden process during run-time. Fig.
4 shows the amount of GPU preemption occured per
second captured by Qualcomm Snapdragon Profiler [39]
’Realtime’ function when rendering different amounts of
’Blacksmith’ buildings. The data is obtained from Moto
G9 Plus mobile device. When there is only 1 building
appeared in the camera, no GPU preemption is triggered.
But With more buildings rendered simultaneously, GPU
preemption occurs more frequently. We argue that if the
rendering task of the current frame is not able to be finished
within 16.66 ms or 33.33 ms due to the randomly triggered
resource preemption, it will be extended to the nearest
impending Vsync pulse at 33.33 ms or 49.99 ms as the block
2 in Fig. 3 shows, which will degrade the performance of the
AFS mechanism, and finally results in the overall oscillating
frame rate.

The experiment above is further extended to two differ-
ent interaction objects and three other mobile devices. The
results listed in Table 1 demonstrate that there is a unique
rendering workload threshold T for each interaction object
and the mobile device. Through the above experiments and
analysis, the random behavior model of the frame rendering
latency can be defined using Equation (6):

L =

{
16.66 RW ≤ T

n ∗ 16.66 RW>T
(6)

where L is the frame rendering latency in milliseconds, n is
a random positive integer. We are able to achieve a close
to 100% steady 16.66 ms frame rendering latency if the
rendering workload RW is less than or equal to the unique
threshold T . If RW is higher than T , n is a random integer

Fig. 4. The Amount of GPU Preemption Occured per Sec-
ond under Different Number of ’Blacksmith’ Buildings

TABLE 1
Workload Threshold T of Four Mobile Devices on Three

Types of Interaction Objects

T (Amount of Objects) ’Building’ ’Tree’ ’TableSet’
Huawei Nova4 5 83 90
Moto G9 Plus 4 30 42

Vivo X60 16 43 176
iPhone 12 23 68 194

and the frame rendering latency will oscillate, which marks
the exception of AFS mechanism. In general, the random
behavior described using Equation (6) is named Random
Discrete Latency (RDL).

4 RESEARCH PROBLEM

The research problem of this paper is how to guarantee
the performance of the AFS mechanism by adapting to the
SEV and RDL phenomenon discussed in section 3.

For high adaptability to the SEV phenomenon, ma-
chine learning should be carefully used in the AFS mech-
anism, especially when designing the algorithm that has
high-frequency interaction with users. Because machine
learning method may incur extra computing latency, hard-
ware resource competition, and high interaction latency
discussed in section 3.1.

For high adaptability to the RDL phenomenon, we start
with the target of the AFS mechanism defined in section
2.2, which is to locate the optimal radius ro that minimizes
both the local latency LLocal and the remote latency
LRemote. To locate the optimal radius ro, the first step is
to discover the relationship between radius r and LLocal.
Equation (3) indicates LLocal is only consists of the foveated
layer latency LFL, and the behaviour of LFL follows the
RDL phenomenon described with Equation (6). Therefore,
the method that can minimize LFL and adapt to the RDL
phenomenon at the meanwhile, is to find the radius r that
controls the foveated layer’s rendering workload RW below
the specific rendering workload threshold T . However, the
relationship between RW and r is actually random and it is
difficult to obtain a fixed mathematical model that describes
this relationship. In some cases, reducing r does shrink the
foveated layer, but a tiny part of one object is still visible
to the camera, and the CPU will still submit the whole
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Fig. 5. Algorithm Design and Accelerator Deign of the Proposed Efficient Radius Search Method

mesh of this object to GPU to perform rendering, thus the
RW remains unchanged. In another case, the objects are
distributed with a big enough interval within the scene,
reducing the r may linearly reduce RW . Therefore, we
extend Equation (6) to identify the relationship between r
and LLocal in Equation (7):

LLocal(r) =

{
16.66 RW (r) ≤ T

n ∗ 16.66 RW (r)>T
(7)

The second step is to explore the relationship between
radius r and LRemote. In Collaborative Foveated Rendering,
the peripheral layer will be rendered by cloud server and
transmitted back to mobile device through the network. As
indicated in Equation (2), the larger r takes the smaller DPL,
thereby bringing in the lower LNT and the possible lower or
unchanged LE , LNT , and LD , finally resulting in the lower
LRemote. Therefore, we define Equation (8) to identify the
relationship between r and LRemote:

LRemote(r) = LPL,E,D(r) +
DPL(r)

2 PD CR

8 BW
(8)

where LPL,E,D(r) indicates the latency sum of peripheral
layer rendering, encoding, and decoding operations, which
does not belong to the research scope of this paper. The latter
part refers to the network transmitting latency LNT of the
encoded data, where PD is the bit depth of each pixel, CR

refers to the compression rate of the selected codec, BW is
the network bandwidth between the cloud server and the
mobile device in Bytes/s.

As indicated in Equation (2), radius r is inverse pro-
portional to DPL, thus the larger r brings the smaller
LRemote according to Equation (8). Therefore, referring to
Equation (7), the optimal radius ro should be defined as
the largest r that controls RW (r) below the rendering
workload threshold T , so that both LLocal and LRemote are
minimized and the adaptability to the RDL phenomenon
can be significantly improved. Equation (9) describes the
mathematical model of the optimal radius:

ro = max(argmin
r

(LLocal(r), LRemote(r)))

s.t. r ∈ [0.05, 0.5].
(9)

ro is searched within the normalized range of 0.05 and 0.5,
where 0.05 refers to the minimal 5◦ central area indicated in
[22], while 0.5 represents the whole screen.

5 EFFICIENT RADIUS SEARCH METHOD

As shown in Fig. 5, we propose the Efficient Radius Search
(ERS) method to tackle the research problem defined in
section 4. The ERS method takes the VR application map
as the input and output the optimal radius ro for each
frame. The algorithms and the accelerator design of the
ERS method will be discussed separately in the following
subsections.

5.1 Algorithm Design

The rounded rectangle boxes circled by the solid line in
the left, up middle, and right side of Fig. 5 represent
the algorithm design of the ERS method. The first func-
tional module is the Threshold Baking Algorithm (TBA),
which is responsible for automatically baking the rendering
workload threshold table TT for the input VR application
scene. TT will be delivered to the second functional mod-
ule, namely Conditional Optimal Radius Search Algorithm
(CORSA), to search and output the optimal radius ro during
VR application run-time.It should be noted that the offline
TBA algorithm is only for the VR application developing
team when testing the their product on mainstream mobile
devices, and the online CORSA algorithm is integrated in
the VR application rendering pipeline, which will be au-
tomatically performed when user use the VR application.

5.1.1 Threshold Baking Algorithm
The value of the rendering workload threshold T along dif-
ferent areas varies with the VR application scene complexity
distribution, thus adopting only one global T for the whole
application cannot always satisfy Equation (7). Threshold
Baking Algorithm (TBA) based on Grid Partitioning (GP) is
proposed to record T for the selected grid points 1 within

1. Grid point is a physical location in the VR application used to
provide threshold value when user get closer.
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the scene. As shown in Fig. 5, the VR application scene is
divided by the parameter grid partitioning density m, for
example in , if m = 4, the scene is divided into 4×4 pieces,
with 25 grid points in total. Then bake T of 4 directions
including top, bottom, right, and left for each grid point, and
finally store the results in the threshold table TT . Algorithm
1 illustrates the details of TBA.

For each direction in each grid point, r will keep reduc-
ing from 0.5 to 0.05 under a certain step si to locate r that can
bring the minimal average local latency avgLLocal(r), until
avgLLocal(r) has already been close to the minimal value
16.66 ms (reciprocal of 60 FPS) or r has reached to 0.05.
The final r will be fed to Lightweight Rendering Workload
Estimation Module (LRWEM) to calculate the rendering
workload. The calculated rendering workload under final r
is the rendering workload threshold T and should be stored
in the threshold table TT .

Algorithm 1 Threshold Baking Algorithm

Input: GPs: The group of grid points
si: Radius searching interval

Output: TT : The table that stores T of all grid points
1: for each gp in GPs do
2: for each dir in 4 Dirs of current gp do
3: rfinal = 0, MinAvgLLocal(r) = 9999
4: for r = 0.5 to 0.05 with step si do
5: sumLLocal(r) = 0, avgLLocal(r) = 0
6: for i = 1 to 10 do do
7: camera.Render(r)
8: sumLLocal(r)+ = LLocal(r)
9: end for

10: if i = 10 then
11: avgLLocal(r) = sumLLocal(r)/10
12: if (avgLLocal(r) <

MinAvgLLocal(r)) then
13: MinAvgLLocal(r) =

avgLLocal(r)
14: rfinal = r
15: end if
16: end if
17: if (avgLLocal(r) == 16.66 or r == 0.05)

then
18: T = LRWEM(rfinal)
19: TT.Add(T )
20: break
21: end if
22: end for
23: end for
24: end for

5.1.2 Conditional Optimal Radius Searching Algorithm

Conditional Optimal Radius Searching Algorithm (CORSA)
based on Half Interval Search (HSA) is proposed to effi-
ciently search the optimal radius r for each frame during
run-time. With the offline baked threshold table TT from
TBA, CORSA can synthesis the reasonable threshold T for
any positions within the scene by weighting the T of the
nearest 4 grid points.

As outlined in Algorithm 2, CORSA firstly looks up the

closest 4 grid points according to the user’s position and
rotation, then fetch the corresponding rendering workload
of each grid point from the input threshold table TT . For
example in Fig. 5, the user is facing forward and locating
among 4 gird points including gp0, gp1, gp2, and gp3, hence
Tdir0 of those 4 grid points are fetched from the threshold
table TT. Then use Equation (10) and Equation (11) to
calculate the respective weights ω0, ω1, ω2, and ω3, and
calculate the weighted T to be the threshold for the current
position.

βn =
disn∑
disn

(10)

ωn =
1

1 + βn∏
βm

∑
1

βm

s.t. n∈[0,1,2,3], m ̸=n (11)

βn is the intermediate variables. Finally, the Half-Interval
Search Algorithm (HSA) is adopted to efficiently locate the
optimal radius ro. The key principle of HSA is to half the
searching interval si after each search, and the searching
direction sd depends on the comparison results between
the weighted T and the rendering workload RW output
by LRWEM. Therefore, useless intervals are quickly skipped
and the searching efficiency is greatly improved compared
with exaustive search. The mechanism of HSA guarantees
the final radius is always the maximum value whose RW is
just below the weighted T , so that Equation (9) is satisfied.
Besides, the radius error is smaller enough than 0.005 if
searching times st = 9.

Algorithm 2 Conditial Optimal Radius Searching Algorithm

Input: TT : The table that stores T of all grid points
Output: ro: The optimal radius that satisfies Equation (4)

1: dis0, dis1, dis2, dis3 = Distance(gp0, gp1, gp2, gp3, T )
2: ω0, ω1, ω2, ω3 = Weights(dis0, dis1, dis2, dis3)
3: T = ω0 ∗ Tdir0 + ω1 ∗ Tdir0 + ω2 ∗ Tdir0 + ω3 ∗ Tdir0

4: Half Interval Search:
5: HSA parameters: st = 8, si = 0.45, sd = −1, r = 0.5
6: for i = 0 to st do
7: RW = LRWEM(r)
8: if (RW < T ) then
9: sd = 1

10: else if (RW == T ) then
11: break
12: else
13: sd = −1
14: end if
15: si = sd * si / pow(2, i)
16: r += si
17: end for
18: ro = r
19: camera.Render(ro)

5.1.3 Lightweight Rendering Workload Estimation Module
As shown in Algorithm 1 and 2, both TBA and CORSA will
use Lightweight Rendering Workload Estimation Module
(LRWEM) to generate unified rendering workload estima-
tion. LRWEM is designed based on the Occlusion Culling
(OC) and Level of Details (LOD) technologies applied in the
rendering pipeline’s application stage.
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OC technology will perform a series of calculations so
that only the objects that are visible to the camera will
be submitted from CPU to GPU for rendering. Therefore,
the rendering workload on CPU RWCPU can be simply
described using Equation (12):

RWCPU = M (12)

where M is the visible objects calculated by the Visibil-
ity Checking Unity (VCU), whose details are outlined in
Algorithm 3. The visibility of all objects V is[N ] is finally
obtained by comparing their Clip Plane Coordinates (CPC)
with default camera View Port Coordinates (VPC).

Algorithm 3 Visibility Checking Unit (VCU)

Input: Objs[N ]: All N Objects, r: Input Radius
Output: V is[N ]: Vsibility of N Objects, 1: Visible; 0: Invisi-

ble
1: Projection Matrix: PM , Culling Matrix: CM , World to

Camera Matrix: WCM , Clip Plane Coordinates: CPC ,
View Port Coordinates: V PC

2: CM = PM(r) ∗WCM
3: for each obj in Objs[N ] do
4: CPC = obj.Pos ∗ CM
5: if (CPC is within the range of V PC) then
6: V is[obj] = 1
7: else
8: V is[obj] = 0
9: end if

10: end for

LOD technology will dynamically select the mesh with
different triangles amounts in each object according to its
distance to the camera, which means if the object is close to
the camera, the mesh with more triangles will be rendered
by GPU to provide users with clearer details, if the object
is far away from the camera, the mesh with fewer triangles
will be rendered to avoid additional GPU rendering work-
load brought by unnecessary details. Therefore, the render-
ing workload on GPU RWGPU can be simply described
using Equation (13):

RWGPU =
M∑
i

Trii ∗ (1−
Di

Dr
) (13)

Where Trii refers to the triangles amount of the current
object, Di represents the distance between the current object
and the camera, and Dr is the maximum distance in the
current VR scene. Algorithm 4 illustrates the rendering
workload estimation module designed based on Equation
(12) and Equation (13). Only the visible objects from VCU
are counted for final rendering workload estimation.

5.2 Accelerator Design
The rounded rectangle boxes circled by the dotted line in
the down middle side of Fig. 5 represent the accelerator
design of the ERS method. LRWEM should execute as fast
as possible to minimize the additional latency introduced to
CORSA, as it will be executed in each frame during run-
time. To tackle this issue, we design the High Level Syn-
thesis (HLS) oriented accelerator for LRWEM. The LRWEM

Algorithm 4 Workload Estimation Unit (WEU)

Input: V is[N ]: Visibility of All N Objects
Output: RWCPU : Rendering Workload of CPU

RWGPU : Rendering Workload of GPU
1: for each obj in V is[N ] do
2: if (V is[obj] == 1) then
3: RWCPU+ = 1
4: RWGPU+ = obj.T ri ∗ (1− obj.Dis

Dr
)

5: end if
6: end for

Fig. 6. Visibility Checking Unit and Workload Estimation
Unit Accelerator

accelerator is consists of the VCU accelerator and WEU
accelerator that accelerate Algorithm 3 and 4, respectively.
The architectures of those two sub accelerators are shown in
Fig. 6

5.2.1 VCU Accelerator
VCU accelerator includes VIS accelerator and CM accel-
erator, which are used for accelerating different steps in
Algorithm 3. CM accelerator is responsible for accelerating
standard 4x4 matrix multiplication CM = PM ∗ WCM ,
which can be implemented as three overlapped for loops
in the C programming language. We firstly add UNROLL
directives to the inner loop to enable parallel execution
of the + = operation, then add PIPELINE directives to
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upper loops to increase the throughput. The output CM
by CM accelerator will be delivered to the VIS accelerator
to calculate CPC , then compare with V PC to obtain the
visibility V is[N ] of all N objects. N may be extremely large
in complex VR applications, therefore the strategy we adopt
is to add PIPELINE directives to the for loop so that the
additional hardware resources required for the throughput
improvement are ignorable.

5.2.2 WEU Accelerator
As shown in Algorithm 4, WEU takes V is[N ] from VCU
as the input, then calculates and sum RWCPU and RWGPU

based on Equation (12) and Equation (13), which is the main
performance bottleneck in LRWEM. Due to the access order
restrictions to RWCPU and RWGPU BRAMS under + =
operation and the large N value, accelerating WEU requires
tricks. We rewrite Algorithm 4 for the convenience of HLS
acceleration, the sum operation + = is separated from
the calculation operation of RWCPU and RWGPU , thus
the PIPELINE directive can be applied to the calculation
operation. Then we divide the separated + = operation
into k segments so that HLS will automatically conduct
the intra-segment rendering workload summation for all
k segments in parallel, finally perform the inter-segment
rendering workload summation to get the final RWCPU and
RWGPU .

6 PERFORMANCE EVALUATION

6.1 Prototype Implementation
To evaluate the performance of the proposed ERS method,
we compare it with the state-of-the-art AFS mechanism
implementation, Q-VR [21]. The algorithm design of both
the ERS method and the Q-VR method are implemented on
Unity 2020.2.7f1c1 [40] using C# script inherited from Unity
Monobehaviour base class [41], UnityEngine API [42], and
.NetStandard2.0 system libraries [43]. The effect of the
Foveated Rendering is achieved by adjusting the projection
matrix of the camera API provided by UnityEngine.

The accelerator design of the ERS method is implemented
through the Vivado Design Suite. The implementation of
HSA algorithm is firstly converted from C# to C program.
Secondly, Vivado HLS 2017.4 [44] is adopted to apply the
HLS directives illustrated in Section 5.2 to the converted C
program, add the AXI interface, run synthesis to generate
the corresponding accelerator, and export it as an IP core
for Vivado 2017.4. Thirdly, the Processing System IP core
and the accelerator IP core are instantiated in Vivado 2017.4,
and the AXI connection between them is built, so that the
accelerator can be controlled through CortexA9 CPU in
Vivado SDK 2017.4.

6.2 Experiments Setup
We deploy the Q-VR method and the proposed ERS method
on 4 commercial mobile devices and three commonly
adopted open-source VR applications in former research
[2] [3]. Mobile devices include Huawei Nova4, MotoG9
Plus, Vivo X60, and iPhone 12, whose chipsets and OS
configurations are listed in Table 2. VR applications include
Nature [45], Office [46], and Viking Village [38], whose

TABLE 2
Statistic Info of Four Tested Mobile Devices

Devices Huawei Nova4 Moto G9 Plus Vivo X60 iPhone 12
SoC Kirin 970 Snapdragon 730G Exynos 1080 A14 Bionic
OS Android 8 Android 10 Android 11 iOS 14

TABLE 3
Statistic Info of Three Tested VR Applications

VR Applications Nature Office Viking Village
Number of Objects 322 450 1206

Number of Triangles 0.189M 0.206M 4.693M

statistic information including the total number of objects
and triangles are summarized in Table 3.

To analyse the rationality and effectiveness of the algo-
rithm design in the ERS method, for each VR application,
we choose scattered 100 test points that do not overlap with
grid points in the TBA algorithm. And for each test point
during run-time, we record the variables in the CORSA
algorithm including the rendering workload RW on CPU
and GPU (RWCPU and RWGPU ) at the optimal radius ro
and the average frame rate avgFRro at the optimal radius
ro. The ground truth of those variables above are baked
using a similar method as Algorithm 1. More specifically, for
each test point, we keep decreasing r from 0.5 to 0.05 with
a certain stride, records the maximum radius r which can
bring the maximum average frame rate as the ground truth
radius rgt and average frame rate ground truth avgFRgt,
and the corresponding rendering workload threshold under
rgt is recorded as TCPUgt

and TGPUgt
.

The effectiveness of ERS method should ultimately be
reflected on its ability to adapt to the SEV phenomenon
and the RDL phenomenon. Due to the existence of the
RDL phenomenon, the frame rate improvement evalu-
ation strategy adopted in the previous research [21] is
inaccurate because the instant frame rate is a random
value if the rendering workload exceeds the threshold.
Therefore, the radius must be introduced to the evaluation
strategy to better reflect the adaptability to the RDL
phenomenon. Based on the ro, avgFRro , and their ground
truth value recorded above, the frame rate precision P is
defined using Equation (14):

P =

∑
(|avgFRro − avgFRgt| ≤ ∆FR & |ro − rgt| ≤ ∆r)

N
(14)

where avgFRgt and rgt are the ground truth average frame
rate and radius just mentioned, ∆FR and ∆r are allowed
errors. Due to the RDL phenomenon, we hope at least
70% of instant Frame Rate FR(r) that involved in the
calculation of avgFR(r) should be equal to ground truth
FRgt (7 frames in 60 FPS, 2 frames in 30 FPS, and 1
frame in 20 FPS can get average 50 FPS), which results
in ∆FR = 10 after conversion (60 − 50 = 10), so ∆FR

is fixed to 10 in all experiments. In short, the frame rate
precision P calculated by Equation (14) can be interpreted
as the percent of N test points whose ro searched by radius
obtaining method and the corresponding average frame rate
avgFRro are close to their ground truth values rgt and
avgFRgt.
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Fig. 7. Comparison between the rendering workload
RWCPU and RWGPU under the optimal radius ro and the
corresponding ground truth rendering workload thresh-
old TCPUgt and TGPUgt . The curve is obtained from the
Nature VR application at 50 test points deployed on 4
mobile devices when m = 12

The implementation of the accelerator design in the
ERS method is deployed on Xilinx Zynq-7000 development
board AX7Z035 [47], which takes Xilinx XC7Z035-2FFG676
as the core chip. As illustrated in Section 5.2, the number of
objects N and the segment amount k all have a significant
impact on the LRWEM accelerator performance. To exactly
quantify this impact, we adopt N = 1000, 3500, 7000 to
represent three levels of high complexity VR applications,
set k = 3, 6, record the FPGA hardware resource utilization
and HSA execution latency on PS and PL of the Zynq-7000
development board, where the resource utilization can be
reflected through the Vivado HLS 2017.4 synthesis report,
and the execution latency can be obtained through C time
library.

6.3 Performance Evaluation to Algorithm Design

This section will firstly evaluate the design rationality of
the proposed ERS method, including the offline TBA algo-
rithm and the online CORSA algorithm. Then compare the
adaptability of the ERS method and the state-of-the-art Q-
VR method to the SEV phenomenon. Finally demonstrate
the superiority of the ERS method on the adaptability to the
RDL phenomenon compared with the Q-VR method.

6.3.1 Algorithm Design Rationality
Fig. 7 offers an intuitive comparison among the rendering
workload RWCPU and RWGPU under the optimal radius
ro at 50 test points and the ground truth rendering workload
threshold Tgt. The data is obtained from the Nature VR
application deployed on four mobile devices when m = 12.
Remind that the parameter m represents the grid partition-
ing density adopted in the offline TBA algorithm.

The first phenomenon in Fig. 7 is that all threshold ren-
dering workload curves are jagged and downward, which

is caused by the distribution of test points in the test VR
applications. The location of the test point starts with the
left bottom side of the test scene and horizontally shifts to
the right bottom side under a certain stride, then vertically
shifts move a distance and repeats the horizontal movement,
finally reaching the right top side. The test point on the
bottom side can capture more game objects than the top
side, which is why all threshold rendering workload curves
are generally trending downward. Similarly, the reason why
threshold rendering workload curves are jagged is that
the test point located in the middle part of each repeated
horizontal movement can capture more game objects than
two other sides. The above analysis demonstrates that the
common module LRWEM within the offline algorithm TBA
and the online algorithm CORSA can indeed reflect the
rendering workload variations when the surrounding en-
vironment changes.

The second phenomenon in Fig. 7 is that, for all mobile de-
vices, the rendering workload RWCPU and RWGPU under
the optimal radius ro overlaps with the ground truth ren-
dering workload threshold TCPUgt

and TGPUgt
under most

test points. This is benefited from the design rationality of
the offline algorithm TBA and the online algorithm CORSA.
Firstly, TBA and the threshold weighting strategy in CORSA
together provides a reasonably weighted rendering work-
load threshold T that is very close to the ground truth
rendering workload threshold for the current test point. Sec-
ondly, the subsequent HSA algorithm can efficiently search
the optimal radius ro that controls the rendering workload
RWCPU and RWGPU within the foveated layer just below
this weighted rendering workload threshold.

There are some test points whose rendering workload
have a huge difference with the ground truth value, for
example, for Moto G9 Plus, the test point 6 and the test
point 16. This is because the test point is located within
the rendering object, hence is not visible to the camera
and will not be counted to the rendering workload in
the online CORSA algorithm. However, this rendering
object is visible to the surrounding grid points and will
be counted to the rendering workload in the offline TBA
algoithm, thereby leading to the huge rendering workload
difference under current test point.

6.3.2 Adaptability to SEV Phenomenon
Fig. 8 display the differences between the ground truth
radius rgt, the corresponding optimal radius ro output by
the proposed ERS, and the state-of-the-art Q-VR method
at 50 test points. The data is obtained from the Viking Vil-
lage VR application deployed on 4 mobile devices when
the grid partitioning density m = 12. The environment
complexity changes among the 50 test points are similar to
that of the Nature VR application described in the section
6.3.1, which all simulate the SEV phenomenon that is quite
common during the user use.

As it is shown in Fig.8, under the four tested mobile
devices, the optimal radius ro output by the proposed
ERS method have a good fit with the ground truth radius
rgt, which may be further improved by increasing the grid
partitioning density m value. From the theoretical perspec-
tive, the higher m will help offline TBA algorithm provide
the online CORSA algorithm with the finer threshold
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Fig. 8. Comparison between the optimal radius ro output
by the ERS method, Q-VR method, and the corresponding
ground truth radius rgt at 100 test points (zoom in on the
first 50 points). The curve is obtained from the Viking
Village VR application deployed on 4 mobile devices
when m = 12

table, thereby decreasing the difference between ro and
rgt.

Q-VR has difficulty to follow the aggressive environ-
mental changes compared with ERS, which is reflected by
the huge difference between the optimal radius ro output
by Q-VR and the ground truth radius rgt as indicated in
Fig.8. The Q-learning algorithm adopted by Q-VR does
not requires the offline baking process like ERS, but it
comes with the price that the online learning mechanism
has high reaction latency to the environment.

In general, compared with the state-of-the-art Q-VR
method, the experiment above demonstrates the superi-
ority of the proposed ERS method on the adaptability to
the SEV phenomenon.

6.3.3 Adaptability to RDL phenomenon
As discussed in Equation (14), the adaptability to the
RDL phenomenon can be better quantified by the frame

Fig. 9. Frame rate precision comparison between ERS
under different m value and the state-of-the-art method
Q-VR (∆FR = 10, ∆r = [0.05, 0.10, 0.15, 0.20, 0.25])

rate precision. Fig. 9 shows the frame rate precision of
ERS method and Q-VR method on 3 VR applications
including Nature, Office, and Viking Village, and on 4
mobile devices including Huawei Nova4, Moto G9 Plus,
Vivo X60, and iPhone 12. The ERS method are tested in
three versions of the grid partitioning density including
m = 3, m = 6, m = 12. ∆FR is fixed to 10 as indicated in
section 6.2, and ∆r is set to the value in [0.05, 0.10, 0.15,
0.20, 0.25] array in turn.

For all test cases, the proposed ERS method un-
der different grid partitioning density m settings have
higher frame rate precision than the state-of-the-art Q-VR
method. More specifically, for Huawei Nova4, the ERS
method has 1.45× to 4.47× higher frame rate precision
than the Q-VR method. For Moto G9 Plus, the ERS method
has 1.71× to 5.71× higher frame rate precision than the Q-
VR method. For Vivo X60, the ERS method has 1.51× to
4.00× higher frame rate precision than the Q-VR method.
For iPhone 12, the ERS method has 2.44× to 9.07× higher
frame rate precision than the Q-VR method. Another
observation is that frame rate precision is tend to increase
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when adopting higher m value, because the finer grid
partitioning in TBA will provide CORSA with the more
realistic weighted rendering workload threshold table.

In general, compared with the state-of-the-art Q-VR
method, the proposed ERS method have 1.45× to 9.07×
higher frame rate precision over all test cases in the exper-
iments of this paper, which demonstrates the superiority
of the proposed ERS method on the adaptability to the
RDL phenomenon.

6.4 Performance Evaluation to Accelerator Design

Table 4 compares the accelerator performance under dif-
ferent number of objects N and the segment amount k
mentioned in section 5.2. Firstly, the resource utilization
of the proposed accelerator design is acceptable. With the
increase of k, more DSP48E, and Flip-Flops are utilized
because more float calculations and RAMs are established
in the parallel calculation of different segments, for exam-
ple, k = 6 brings a 1.37x higher average speedup ratio
from 44.82× to 61.24× with a price of 1% FPGA resource
utilization. Higher N requires much higher amounts of
BRAMs to store the intermediate calculation results, thereby
increasing BRAMs utilization from 5% to 12%. Secondly,
when N becomes larger, the accelerator execution latency
can still be controlled within 1 ms by increasing k, so as to
minimize the impact of LRWEM on the rendering pipeline.
For example, the accelerator latency under N = 3500, k = 3
is 1.192 ms, we can reduce it to 0.898 ms by increasing k to
6, same principles can be applied to N = 7000, k = 6.

In general, the accelerator design of the ERS method
can control the algorithm level latency around 1 ms with
acceptable additional hardware resources utilization.

7 DISCUSSION

Before releasing the new VR application to the market,
the developing team will perform extensive tests for
their product on mainstream mobile devices, and the
offline TBA algorithm of the proposed ERS method is
designed for this stage. Given a VR application scene as
the input, the offline TBA algorithm can automatically
output the threshold table specific for current mobile
device without human participation, then store it. When
user purchases this mobile device and starts to run the
VR application, the threshold table will be fetched by the
online CORSA algorithm to guarantee the performance
of the AFS mechanism. However, the running time of
the offline TBA algorithm is still long in some cases,
especially when adopting a large grid partitioning density
m or running on a low processing capacity mobile device,
which may limit the scalability of the ERS method. For
example, for Huawei Nova4 tested in this paper, running
TBA algorithm on the Viking Village VR application with
m = 24 will take around 3 hours.

As indicated in Algorithm 1, the major time-consuming
operation in the offline TBA algorithm is the repeated 10
times rendering for a single radius, whose purpose is to
judge whether the rendering workload under current ra-
dius is ’affordable’ or ’not affordable’ for the tested mobile
device. Therefore, to reduce the time consumption of the

TABLE 4
Accelerator Performance and Resource Utilization

Comparison on Different k and N Values

k N PS (ms) PL (ms) SpeedUp
Resource (%)

BRAM DSP FF

3
1000 17.867 0.409 43.68× 5% 20% 8%
3500 53.834 1.192 45.16× 7% 20% 8%
7000 107.242 2.35 45.63× 12% 20% 8%

6
1000 18.135 0.296 61.27× 5% 21% 9%
3500 55.111 0.898 61.37× 7% 21% 9%
7000 107.732 1.763 61.11× 12% 21% 9%

offline TBA algorithm, a machine learning model which
directly performs the judgement above can be trained to
gradually replace the repeated rendering operation.

Considering to the difficulty of obtaining large amount
of training data and labels, the reinforcement learning
adopted in Q-VR [21] is suitable for this binary judge-
ment. In the early stage of the offline TBA algorithm
running for the tested VR application and mobile device,
if the rendering workload under current radius is judged
by the reinforcement learning model as ’affordable’, but
the subsequent repeated rendering operation behaves in
a unexpected frame rate, then a negative feedback will
be added to the ’acceptable’ judgement for this rendering
workload. Then if a similar rendering workload under any
radius is countered next time, the reinforcement learn-
ing model tends to provide ’not affordable’ judgement.
Gradually, the reinforcement learning model can provide
more accurate judgement for a wide range of rendering
workload, then the repeated rendering operations can be
disabled to dramatically reduce the time consumption of
the offline TBA algorithm, thereby improving the scala-
bility of the proposed ERS method. The detailed design
and validation to the idea above is left as the future work.

It should be noted that the application of the machine
learning algorithm in the offline TBA algorithm will not
affect the high adaptability of the proposed ERS method
to the SEV phenomenon, because the SEV phenomenon
only appears in the online CORSA algorithm which has
high-frequency interaction with users.

8 CONCLUSION

In this paper, the existence of the SEV and RDL phe-
nomenon that exist in the AFS mechanism are identified
using theoretical analysis and experiments in the first time.
To adapt to the SEV and RDL phenomenon, a novel, real-
time, and effective implementation for the AFS mechanism,
namely the ERS method, is proposed for the practical de-
ployment. According to experiments on 4 mobile devices
and 3 VR applications, the ERS method can achieve 2.44× to
9.07× higher frame rate precision than the state-of-the-art Q-
VR method, and with an ignorable influence of around 1 ms
on the rendering pipeline task scheduling under the support
of the dedicated hardware accelerator. This performance
is achieved by designing the algorithm that successfully
adapts to two influence factors in the AFS mechanism.
Firstly, the algorithm does not adopt any online learning
operations in the function which has high-frequency
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interaction with users, thus can make real-time reactions to
any SEV phenomenon. Secondly, the algorithm controls the
rendering workload within the foveated layer just below the
rendering workload threshold, therefore will not be affected
by the RDL phenomenon.
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