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Abstract—Freezing of gait (FoG) is common in Parkinsonian
gait and strongly relates to falls. Current clinical FoG
assessments are patients’ self-report diaries and experts’
manual video analysis. Both are subjective and yield
moderate reliability. Existing detection algorithms have
been predominantly designed in subject-dependent settings. In
this work, we aim to develop an automated FoG detector for
subject-independent. After extracting highly relevant features,
we apply anomaly detection techniques to detect FoG events.
Specifically, feature selection is performed using correlation
and clusterability metrics. From a list of 244 candidates,
36 candidates were selected using saliency and robustness
criteria. We develop an anomaly score detector (ASD) with
adaptive thresholding to identify FoG events. Then, using
accuracy metrics, we reduce the feature list to seven candidates.
Our novel multi-channel freezing index was the most selective
across all window sizes, achieving sensitivity (specificity) of
96% (79%). On the other hand, freezing index from the
vertical axis was the best choice for a single input, achieving
sensitivity (specificity) of 94% (84%) for ankle and 89% (94%)
for back sensors. Our subject-independent method is not only
significantly more accurate than those previously reported, but
also uses a much smaller window (e.g., 3s vs. 7.5s) and/or lower
tolerance (e.g., 0.4s vs. 2s).

Index Terms—Anomaly score, gait freezing, feature selection.

I. INTRODUCTION

Gait is one of the most affected motor characteristics in
Parkinson’s disease (PD). Freezing of gait (FoG), defined as
a motor block of movement (especially before gait initiation)
during turns or when meeting obstacles [1], is one of the most
common symptoms (e.g., reference [2] reported that 47% of
more than six thousand subjects had 28% FoG events every
day). Moreover, there is a strong relationship between FoG and
falls [1], [3], [4]. Current clinical FoG assessment methods are
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self-report diaries from patients (e.g. the Unified Parkinson’s
Disease Rating Scale (UPDRS) [5], Freezing of Gait Ques-
tionnaire [6]) and manual video analysis of walking [7], [8].
These methods are unfortunately subjective. UPDRS has poor
agreement with expert labels (the kappa statistic only ranged
from 0.49 to 0.78) [9]. The reliability of existing manual video
assessment is not robust (within or across multiple participant
recruitment sites); and the intra-rater reliability is remarkably
low [10]. An additional difficulty lies in provoking FoG during
routine clinical examinations [11].

Objective FoG detection is very much desirable, especially
out-of-lab deployment with wearable devices [12][13]. Com-
pared with kinematic and electrophysiological data (e.g. elec-
tromyographic and electroencephalogram), acceleration data
have been widely adopted thanks to the small size of ac-
celerometers, making them suitable for wearable systems. An
early effort was reported in [14] with two accelerometers at
both ankles. The authors of [14] found that freezing gait has
high frequency components (6→ 8Hz) compared with normal
gait (2Hz). Wavelet analysis [15] has been used to classify
normal and freezing gait (including the ratios of each level’s
power to discriminate the freezing and resting states) [14]. A
freezing index (FI), defined as the power in the freeze band
(3 → 8Hz) divided by the power in the locomotor band
(0.5→ 3Hz) [12], has been used to build FoG detectors [12],
[13], [16], [17], [18], [19], [20].

Recently, to detect all FoG and festination episodes stride
length and cadence were suggested rather than FI [21]. An-
other work using Pearson’s correlation introduced a rule-
based 5-class classifier for strides including two classes for
FoG with tremor and complete motor block [22]. As these
reports were based on separate specific channels and several
contexts, we compare our work with following similar studies:
simple thresholding techniques [12], [13], [16], [19], [20] and
supervised/semi-supervised learning classifiers [17], [18].

To extract features, two types of inputs can be used: single
input (e.g., single channels from single sensors (SCSS), the
sum of squares of all three channels of single sensors (MCSS))
and multiple inputs (i.e., multiple channels of multiple sensors,
MCMS). While SCSS and MCSS have been well studied,
MCMS is for the first time considered in this work. Note
that reference [19] examined one case of using seven sensors
(single axis each sensor) that was the majority votes of seven
outputs, we categorize that into the SCSS group. We refer
MCMS to a case where feature values are computed from a
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matrix of inputs.

Recently, apart from FI, several features from accelerometer
data (e.g., average, standard deviation, variance, median,
entropy, energy, and power) have been proposed for FoG
detectors [12], [13], [14], [16], [17], [18], [19], [20], [23].
Advanced statistical techniques to assess gait of human in
general (e.g., postural control) can be found in a compre-
hensive feature investigation [24], however the work was
concerned with 3D motion analysis for trajectory data using
a single accelerometer at the lumbar. The authors concluded
that no measure in their study was able to discriminate the
gait patterns of individuals within clinical groups of PD and
peripheral neuropathy. Furthermore, freezing of gait data was
not collected in that study.

On the other hand, we explore the new combinations of inputs.
We investigate three new computation methods: the spectral
coherence [25], multi-channel FI (FIMC), and Koopman spec-
tral analysis [26] (FIK). FIMC and FIK , are applicable only
to MCMS inputs.

With regard to feature selection, FI was compared with
several other features [23]. These include statistical and zero
crossing rate (SCSS group), sum of the Euclidean norm of
magnitude, eigenvalues of the covariance matrix, the mean
energy, and principal component analysis over the three axes
of the sensor (MCSS group). Nevertheless, the authors of [23]
solely relied on mutual information (MI) which measures the
correlation of features with labels (Shannon’s information the-
ory) [27]. This selection could not guarantee the clusterability
[28] of the selected features. Thus, in our work we introduce
two additional saliency criteria for feature ranking: the vari-
ance ratio of clusters [28] and the separability calculated by
Euclidean distances from an instance to a near-hit and near-
miss [29]. These two criteria help finding more discriminative
relevant features to increase the performance of classification.

Several techniques have been recently proposed for subject-
independent FoG detection. Using the vertical axis of an
ankle sensor, a global threshold FI of 2.3 with 6s windowing
was suggested in [12], then another global FI of 3 with 7s
windowing was reported in [19]. By examining the same
three locations of sensors with [19], reference [20] selected a
different choice for the global FI of 1.4 (2s windows and the
dorsoventral direction of the lumbar sensor). Model learning
based classifiers have worked well for subject-dependent or
group-dependent settings [17], [18]. Nevertheless in order
to achieve subject-independent settings these automatic tech-
niques only address global parameters. We suggest to use an
universal technique that can avoid subjective parameters.

A primary reason hindering subject-independent perfor-
mance lies in the generalization of parameters. One example
could be a strong context dependence of parameters in con-
junction with large subject-variability [19]. We hypothesize
that an anomaly score detector (ASD) can significantly im-
prove subject-independent performance. Anomaly detection is
a technique to identify patterns in data that are not similar to
previous behaviors. Inspired by observations of an increase in
FI during a FoG event (vesus a locomotor activity) [14][12],

we investigate if this is also the case for other features. When
the current feature value of a data window is lower than the
on-the-fly threshold, we consider the window a potential non-
FoG epoch. During detection, the threshold is the average of
all previous values from potential non-FoG epochs. Thus, ASD
adapts itself based on previous data, rather than seeking a uni-
versal fixed threshold. Furthermore, ASD can address diurnal
variation. In other words, ASD is inherently independent of
subject variability.

The main contributions of this work are:
• This is the first reported feature selection technique based

on voting process with not only mutual information
criterion but also clusterability for FoG detection.

• We report new features that are more relevant and dis-
criminative than those previously employed.

• We propose a better model of detection in subject-
independent settings using anomaly scores which, to
the best of our knowledge, achieves the best reported
performance (about 10% more accurate).

II. METHODS

A. Data Sets

We first developed our algorithm with a dataset from the
Daphnet project [16]. Then we deployed out-of-sample tests
with a different dataset that recorded independently as one
part of a larger project for FoG studies [30]. FoG annota-
tion/labels were assessed on the Movement Disorder Society
Unified Parkinson’s Disease Rating Scale Section III (MDS-
UPDRS-III) [31] and Hoehn and Yahr stage score [32].

1) Development Set: Seven male and three female ad-
vanced PD patients who could walk unassisted in the OFF
period were recruited at Tel Aviv Sourasky Medical Center
(TASMC) in Israel as a part of the EU FP6 Daphnet project
(a collaboration with ETH Zurich, Switzerland) [16]. These
ten participants (66.5 ± 4.8 years old) have been diagnosed
with PD for 13.7 ± 9.67 years (Hoehn and Yahr score [32]
(H&Y) is 2.6 ± 0.65). As illustrated in Fig. 1, three tri-axial
accelerometers were attached at the shank, thigh, and lower
back using elasticized straps. Data was recorded at 64Hz and
transmitted via a Bluetooth link.

Figure 1. Three tri-axial accelerometers were attached at the shank, the thigh,
and the lower back.

Three walking tasks (10−15 minutes each) were conducted:
walking a straight line, with numerous turns, and a daily living
activity (e.g., fetching coffee, opening doors); more details
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are given in [16]. Three tri-axial accelerometers were attached
at the shank, thigh, and lower back using elasticized straps.
To prevent aliasing, data points were sampled at 64Hz and
transmitted via a Bluetooth link. Annotation and simultaneous
video taping were used by physiotherapists to determine the
start/end times of FoG episodes. A FoG event label started
when the gait pattern (i.e., alternating left–right stepping) was
arrested and ended when the pattern was resumed [16]. The
study was approved by the local Human Subjects Review
Committee, and was performed in accordance with the ethical
standards of the Declaration of Helsinki.

A total of five hundred minutes of data were collected. Eight
participants had FoG while two did not. A total of 237 freezing
events (0 → 66 per subject, 23.7 ± 20.7) were recognized
using video analysis by physiotherapists. This is used as
the ground truth in our accuracy evaluations. For algorithm
development (i.e., ranking features and tuning parameters),
we take a random sample of 70% (five) participants who had
FoG events (66 ± 5.9 years old, with PD for 16.2 ± 10.15
years, H&Y score: 2.3 ± 0.44). For out-of-sample tests, we
use the remaining subjects (66.8± 4.1 years old, with PD for
11.2±9.6 years, H&Y score: 2.9±0.74). Specifically, the test
set consists of 30% (three) of participants who had FoG and
the others with no FoG.

:
2) Test Set:

We employed an independent data set for out-of-sample tests
from a larger FoG study project [30]. This set included 24
patients (mean (SD) age: 69 (8.41) with advanced PD (mean
(SD) Hoehn and Yahr: 2.66 (0.53); UPDRS III: 40.24 (11.06))
at Parkinson’s Disease Research Clinic (the Brain and Mind
Research Institute, University of Sydney, NSW Australia).
These participants had severe self-reported freezing behavior
and satisfied UKPDS Brain Bank criteria [33]. The subjects
were deemed unlikely to have dementia or major depression
according to DSM-IV criteria (by consensus rating of a
neurologist and a neuropsychologist) and had a mean (SD)
Mini-Mental State Examination (MMSE) [34] score of 28.57
(1.61). The study was approved by The Human Research and
Ethics Committee at the University of Sydney and written
consents from participants obtained.

Participants were recorded in the practically-defined ‘off’
state following overnight withdrawal of dopaminergic therapy.
Six patients also had Deep Brain Stimulation (five Subthala-
mic Nuclei and one Pedunculopontine Nuclei), which were
turned off for one hour prior to assessment. None of the
patients described any increase in freezing behavior following
the administration of their usual dopaminergic therapy.

Walking tasks were described in details at the previous
work [30] that were designed to best provoke FoG during data
collection. Participants, started from a sitting position, walked
along a corridor about five meters meeting a marked square
on the floor (size of 0.6 m) then made a turn (180o or 540o to
the left or right of the subject). Procedure of each task were
introduced to a participant at the beginning of the trial, if the
subject had failed to meet the procedure, the measurement was

abandoned. Each trial started by a signal from the investigator
and was completed on return to the beginning position.

Data from accelerometer were acquired by seven tri-axial
sensors attached to each subject at the back, foot, thigh and/or
knee (further details as in the previous work [19]). These
sensors were inertial measurement units (IMUs - Xsens MTx,
Enschede, Netherlands) that were 38×53×21mm and 30 g.
Data transmitted via a wireless link to a computer (sampling
frequency of 50 Hz). Clocks of computer for data acquisition
and of the video camera were used to synchronize the timing
between clinical annotations and acceleration measurement.

Manual assessment of FoG made by clinicians (neurolo-
gist/neuropsychologist experienced in FoG) using video taped
during each trial. These annotations were converted to binary
labels (“0” for non-FoG or “1” for FoG each time instance).
Each trial was assessed by two clinicians. The official label
was determined FoG if at least one clinician marked as such.
The agreement of these two raters were previously reported
with high intraclass correlation coefficient (0.82 for number
of FoG epochs and 0.99 for percent time frozen) [30][19]).

For a better comparison with the development stage, we
selected data from all three tri-axial channels at three sensor
locations of back, left thigh, and left shank. There were total
of 71 trials across 15 subjects with six different walking
procedures.

B. Feature Extraction

1) New features: We study four new types of feature
extraction. The first two use single input data channels: the
maximum and number of peaks in the spectral coherence
[25] (called CXYNpks and CXYmax). The others use multiple
inputs: FIMC and FIK .

Let x and y be two consecutive data windows. The spectral
coherence CXY between x and y using the Welch method
[25] is CXY (ω) = PXY (ω)√

PXX(ω).PY Y (ω)
where ω is frequency,

PXX(ω) is the power spectrum of signal x, PY Y (ω) is
the power spectrum of signal y, and PXY (ω) is the cross-
power spectrum for signals x and y. When PXX(ω) = 0 or
PY Y (ω) = 0, then PXY (ω) = 0 and we assume that CXY (ω)
is zero. To estimate the power and the cross spectra, let Fx(ω)
and Fx(ω) denote the Fourier transform and its conjugate of

signal x, respectively, i.e. Fx(ω) =
+∞∫
−∞

x(t).e−jωtdt. The

power spectrum is then: PXX(ω) = Fx(ω).Fx(ω); PY Y (ω) =
Fy(ω).Fy(ω); and PXY (ω) = Fx(ω).Fy(ω).

Let a matrix X of size N × M represent a N -channel
recording session with M regularly spaced time samples.
Similar to the single input FI, FIMC is the ratio of powers
PH to PL (i.e., for the freeze and locomotor bands) that are
summations of single powers over N channels. Specifically:
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PH =
1

2fs

N∑
n=1

[

H2∑
i=H1+1

[PXXn(i)] +

H2−1∑
i=H1

[PXXn(i)]] (1)

PL =
1

2fs

N∑
n=1

[

H1∑
i=L+1

[PXXn(i)] +

H1−1∑
i=L

[PXXn(i)]] (2)

FIMC =
PH
PL

(3)

where N is number of inputs, fs is sampling frequency, H1 =
3NFFT
fs

, H2 = 8NFFT
fs

, L = 0.5NFFT
fs

.
We also extract another type of freeze index from X, called

FIK , that results from a spectral analysis using the Koopman
operator [26]. This operator was introduced to study the spec-
trum of Hamiltonian systems by using linear transformations
on Hilbert space. Dynamic Mode Decomposition [35] is a
technique to estimate a linear model with Koopman eigen-
functions and eigenvalues. Inspired by a feature extraction
application in [36], Koopman eigenvalues and eigenfunctions
are considered frequencies (λ) and the power (K(λ)); details
of equations and algorithms as in [36]. Hence, we define

FIK as follows, FIK =
∑H2
λ=H1+1K(λ)∑H1
λ=L+1K(λ)

where L = 0.5 × 2π,

H1 = 3× 2π, H2 = 8× 2π.
2) Exploratory Pool: We construct a feature pool that

consists of 244 features (Appendix A: Table III). The first
half of the pool are 122 candidates, extracted using seven
previously published features (i.e., average, standard deviation,
variance, median, entropy, energy, power and FI as found in
[12], [13], [14], [16], [17], [18], [19], [20], [23]) and our four
aforementioned new features. We apply these eleven extraction
functions to single and multiple inputs. Specifically, FIMC

and FIK are applied to MCMS while the other functions are
to SCSSs and the sum square of all three channels of single
sensors. The second half of the pool consists of 122 anomaly
score vectors (details as in the next section) of the above 122
features.

C. FoG Detector

We consider FoG events to be anomalies while the other
events are normal data. ASD, a detector based on anomaly
scores, is a simple way to combine features and produce an
anomaly detector. If the feature value extracted from a window
is higher than the current threshold, the window is labelled as
a FoG event. The threshold can be calculated as in Eq. 4.

Let φ(n) be a value of feature vector of length N at time
n. We define its anomaly score, A(n), as follows:

A(n) = sign(φ(n)− α

|n− 1|

n−1∑
m=1

[φ(m)A(m)]) (4)

where A(1)=1, n ∈ [2, N ], α > 0 is a scale factor, and sign(x)
is 1 if x > 0 else 0.

Intially, the first data window is assumed to be normal be-
haviour. If this assumption is wrong, we expect the averaging
effect of Eq. 4 will low pass filter FoG events and eventually
converge to a normal value. This work reports a simple case

of Eq. 4 where α = 1 (i.e no scaling deviation, other scales
will be examined in another report specifically for that)

D. Feature Selection

We introduce a voting process to select the best feature
from the large exploratory pool. This process uses three
levels of selection: saliency, robustness, and accuracy; called
Round1, Round2, Round3 respectively (Fig. 2). After each
level, selected candidates become more favourable. Specif-
ically, Round1 suggests the most salient and discriminative
subset. Then, Round2 examines if the candidates are robust
across window sizes. Finally, Round3 tests the detection per-
formance of these features using our ASD.

In Round1, we rank feature candidates according to three
saliency criteria, i.e., mutual information (MI), separability
calculated using Euclidean distances (DIS), and the variance
ratio of clusters (VarRatio). This step is implemented across
7 window sizes (2 → 8 s in steps of 1s), creating 21 lists
of ranking scores. The range for window sizes is based on
the minimum and maximum values currently suggested in the
literature (e.g., 2 s in [20] and 7.5s in [19]). After finding a
subgroup of high saliency score, we examine the robustness
in Round2. Secondly, we identify salient candidates that are
shared in more than one list across window sizes or criteria
(i.e., robustness). Finally, we use accuracy metrics to find the
subset for our ASD.

Figure 2. Feature selection process. 244 features as described in Table III.
7 window sizes are 2→ 8 s in steps of 1s. Three saliency criteria are DIS,
MI, VarRatio scores. Common candidates are entries that are shared by more
than one list of Round1.

1) Saliency Criteria: Let X be a discrete random variable
X ∈ X and C be a target variable (c ∈ C, class label set).
The entropy Hb(X) of X measures its uncertainty [27]. The
mutual information between X and C, I(X;C), measures the
relevance of X to C [27].

I(X;C)
def
= H(X)−H(X|C) (5)

=
∑
x∈X

∑
c∈C

p(xc) log
p(xc)

p(x)p(c)
(6)

To compute the clusterability, we use the RELIEF algorithm
[29] to calculate DIS scores (i.e., Euclidean distances between
features and a near-hit or near-miss instance) [37]. The
variance ratio of a feature X is the ratio of the between-cluster
variance (BC(X)) to the within-cluster variance (WC(X)),
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V (X)
def
= BC(X)

WC(X) . The higher V (X) implies that it is easier to
cluster X [28], therefore the feature is more desirable.

2) Performance Metrics: In the literature, automatic tech-
niques have been evaluated using different measures such as
confusion matrices and/or intra-class correlations (ICCs) [38].
For instance, authors of [16], [18], [23] used timing-instance-
based confusion matrices (i.e., counting FoG time frames and
often involving a tolerance of milliseconds or seconds); and
authors of [12], [13], [19], [20] used event-based confusion
matrices (i.e., counting continuous FoG epochs) and ICCs on
the number of FoG events or percentage of freezing time over
a trial. With regard to real-time applications using wearable
FoG detectors, the timing-based method is of most interest,
whereas event-based is important in clinical FoG assessments.
We utilize both types during feature selection as extra criteria
(apart from saliency scores).

In our work, ICCs are used as supplemental criteria during
Round3 to select features rather than in performance com-
parisons with other works due to several limitations of ICC
usages. First, low intra-rater reliability was reported for FoG
number (0.44 (CI 0.18)). Secondly, at least two observers
are recommended to analyse task videos [10]. In this work,
information regarding the reliability for manual ratings were
not available (nor were the number of raters). Thirdly, walking
tasks were designed to have a single recording session per
subject (about 30 minutes) rather than several short trial
recordings (around one minute each). Hence, because in our
data set the number of individual recordings is relatively
small, thus, we group the data into one-minute segments.
We assume that the segmentation is close to the multi-trials
settings. Therefore, our estimation of ICC is a non-deceasing
relationship with the reported ICC in the literature. Given
two vectors of an automatic detection result and manual
labels, we calculate the estimated intraclass correlation as in
[39]; specifically we use the ICC(A-1) designation (two-way
random effects) for the degree of absolute agreement among
measurements.

With respect to the timing-based metrics, in confusion
matrices, we refer to ground truth as the manual video anal-
ysis, and positives for FoG windows. True Positives (TP) are
windows which were marked as FoG by both a test algorithm
and the label. False Positives (FP) are windows labelled as
FoG but did not agree with the ground truth. Windows that
we failed to label as FoG but were annotated as such, are
defined as False Negatives (FN). When the test method and
the human agree a window was non-FoG, it is counted as a
True Negative (TN). Please note that the reference labels used
in this work were made by human thus are subjective. Likewise
the literature works [16], [18], we investigate a tolerance, tol.
Let t be the time instance an automated method decides it
is FoG. If within the range of [t − tol, t + tol], there is at
least one instance where the reference (i.e., manual method)
says it is FoG, we count this agreement is a true positive.
Otherwise it is a false positive. Similarly for negative cases.
The tolereance will be determined during the experiments
using the performance curves (ROC).

Sensitivity and specificity are TP
TP+FN and TN

TN+FP , re-
spectively. F1-score, which is the harmonic mean of precision

and sensitivity, with best value at 1 and worst at 0 [40], is
calculated as 2TP

(2TP+FP+FN) .

III. RESULTS

A. Selection by Saliency (Round1)

Fig. 3 illustrates feature ranking results (Round1) using win-
dow size of 2s and DIS saliency criterion. Details of results
for other window sizes and saliency criteria can be found in
the appendix B Fig. 5.

As can be seen, scores outside the top ten rank (the dotted
vertical line) dropped quickly. Therefore, we selected these top
ten candidates to create 210 input entries from 21 short-lists
for the Round2. However, we also noticed that only 64 distinct
features in the output of Round1 (out of 244 candidates, See
the appendix B Fig. 5 for the sharing of selected features
among outputs).

In Figs. 3,5, new features were indicated with circle markers
and labelled horizontal axes with feature identifications (IDs).
Description of IDs can be found in the appendix A Table
III. Specifically, the output of Round1 includes FI0y (i.e.,
freezing index from ankle at vertical axis [12], [16], [18])
and previously proposed features (e.g., FI2y [19], FI2x [20],
energy, sum of power Psum [16], and their standard deviation,
mean, variance [23]). Among the 64 distinct features, our new
candidates, CXYNpks, CXYmax, FIK , and FIMC , were listed
in more top-ranking lists than the existing ones.

Figure 3.
Example of feature ranking (a) and the shortlists (b) using DIS and window
size of 2 s. Vertical axes: saliency scores. Horizontal axes: ranking order. The
top-ten lists are in the dotted boxes. Features with circle markers are new while
others are have been currently used in literature. The top ten identifications
(IDs) of features are detailed in Table III. E.g., FI0y is the current popular
existing feature. Continued at the appendix B Fig. 5.

B. Selection by Robustness (Round2)

In the second round, we consider candidates of Round1 that
are selected as the top ten in more than one list (across window
sizes and/or criteria) robust features. There were 33 entries in
Round2 (i.e., about half of Round1). Interestingly, FIMC is
one of the most robust candidates in terms of being selective
across window sizes (Table IV). Other new or popular existing
candidates are also added in the table for comparison purposes.

C. FoG Detection Performance (Round3)
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Fig. 4 and Table III present performance observations using a
simple form of ASD (Section II-C). Our new features in this
work and popular existing features (details in Table IV) were
also included for comparison purposes.

Fig. 4 only showed seven candidates that had at least one
report of ICC > 0.2 for freezing time percentage and number
of FoG (suggestion from [10]). Specifically, these candidates
are FIMC , FI2y, FI2x, FI1z, FI0y, Mean 0z, and Mean 1z
(Table III).

In terms of receiver operating characteristic (ROC), for
each window size of each feature extraction with a timing
tolerance range from 0 → 1s in steps of 0.1s, we observed
that configurations FIMC (3), F I0y( 2s or 7s ), F I1z(6), FI2y
(3s or 8s), called Round3, had excellent results (Appendix C
Fig. 6).

D. Tests and comparisons with the same cohort set

We then applied unseen test sets (five subjects who have
been with PD for 11.2±9.6 years; H&Y score: 2.9±0.74 ) to
validate ASD. Three subjects had FoG during data collection
while the other two had no FoG. We noticed that, during the
validation, FIMC (3 s) and FI2y (3s) had high accuracies with
lowest deviation between development and out-of-sample tests
(Table I). FI0y, a popular feature in existing detectors (7 s
windows), achieved a sensitivity of 79% (specificity 79.5%)
at a tolerance of 0.3s. On the other hand, FI0y scores the
highest F1-score of 84% with 2 s window size (tolerance of
0.9 s). FI2y with 8 s windows and 0.9 s tolerance can achieve
sensitivity of 87.5% (specificity of 84.5%).

Hence, we propose an optimized configuration for ASD
as follows: window size as small as 3 s, tolerance for per-
formance measurements of 0.4 s, freezing index is used for
feature extraction. There was slightly preference of sensor lo-
cations between ankle and hip in terms of further performance
improvement.

Figure 4. ICCs for feature selection. Markers are for different features. Left:
Estimated ICC for the freezing time percentage. Right: Estimated ICC for
number of FoG events.

E. External Validation Tests

Finally, using independent test sets that were from a different
cohort to the one we used for development (Sec. II-A2), we
validated our proposed ASD-based method (i.e., online ASD
detector, freezing index feature, window size of 3 s). Though
the performance improvement between ankle and hip sensor
locations was not signifincant during the development stage,
for a better comparison with existing works that used both
types of inputs: single channel and multiple channels, such
cases were still included in our report. Table II shows its high
accuracy performance comparing with earlier works across
several configurations of inputs.

IV. DISCUSSION

During the development stage, we observed that beside the
existing FI extracted from ankle sensor at vertical axis, our
new feature with multiple channels, FIMC , is one of the
top features in saliency, clusterability, and robustness. Only
seven out of 244 candidates met requirements of our three-
round selection procedure. To detect FoG, we implemented an
anomaly score based detector, ASD. With ASD, our features
outperformed existing works with a small window and/or low
tolerance. Specifically, FI2y, the freezing index from vertical
data at a hip sensor, was found to be the best choice for per-
formance; achieving sensitivity (specificity) of 87.5% (84.5%).
FIMC , is also a promising candidate. For example, FIMC has
high ICC and is the most robust candidates across window
sizes during feature selection by saliency. FIMC achieved a
sensitivity of 81% (specificity of 77%) at the smallest tolerance
of 0.2s (3s windows).

During the test stage, we reported out-of-sample test out-
comes in as many similar configurations as suggested from
compared works. Our ASD that performed better than current
methods can use only one type of feature extraction (freezing
index) from a single channel. It is flexible and convenient to
choose a sensor location between ankle and hip.

Regarding the system design, to the best of our knowledge,
references [17], [18] achieved the best published performance
to date for subject-independent settings. Specifically, with
different reported configurations, these two methods used a
context recognition network [16] and a Random Forest [18]
with leave one out cross validation techniques (LOOCV).
Other works used various global FI values with different
channel selection. Note that, sensitivities and specificities in
[12], [19], [20] were for event-based calculation that may dif-
fer from the others in Table II. Our algorithm can operate in an
online manner, has low computational cost and latency is one
window (3 sec for the best configuration during development).
Furthermore, we demonstrated excellent subject-independent,
unsupervised anomaly detection accuracy. As presented, our
performance is significantly higher than the one of compared
automatic detectors while using a much smaller window
and/or lower tolerance. However, to assess the performance of
our proposed algorithm against less advanced subjects (e.g.,
lower H & Y scores), we may need to recruit a more diverse
population test set to further validate the method
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Table I
DEVELOPMENT PERFORMANCE OF ASD USING FEATURES IN Round3. ‘WIN’: WINDOW SIZE. ‘TOL’: TOLERANCE. ‘SD’: STANDARD DEVIATION OF

DEVELOPMENT AND OUT-OF-SAMPLE TEST. PERFORMANCE IN %.

Feature Name Parameter Development (%) Out-of-sample (%) Average ±SD (%)
ID Channel Win. Tol. Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity F1-score
244 FIMC 3s 0.2s 85 74.0 77.0 80.0 81.0 ±6 77.0±4 74.5± 6
139 FI 0y 2s 0.9s 88.0 81.0 86.0 63.0 87.0 ±1 72.0±13 84.0± 10

7s 0.3s 71.0 93.0 87.0 66.0 79.0 ±11 79.5±19 82.5± 11
179 FI 1z 6s 0.1s 80.3 80.0 82.0 58.0 81.0 ±1 69.0±16 78.0± 6
199 FI2y 3s 0.4s 75.0 80.0 83.0 92.0 79.0 ±6 86.0±8 76.5± 12

8s 0.9s 76.0 74.0 99.0 95.0 87.5 ±16 84.5±15 82.0± 24

Table II
OUT-OF-SAMPLE DETECTION PERFORMANCE OF ASD (VERUS EXISTING
METHODS [16] a [18] b [19][20] c d ) ACROSS CONFIGURATIONS e AND

DATASETS f . PERFORMANCE IN %.

Settings Performance (%)
Method Input Win Tol Sensitivity Specificity F1
CNR
[16]

FI0y,
Psum0y

4s 2s 73.1a 81.6a -

Learning
[18]

Mean0y,
Std0y,
FI0y,
Energy0y

4s 1s 66.25 b 95.38 b -

Global
[19]

FI012yd,
FI = 3

7.5s - 84.3 c 78.4 c -

Global
[20]

FI2x,
FI =
1.47

2s - 75.0 c 76.0 c -

Online ASDs (proposed), external validation f

ASD
multi-
inputs

FIMC 3s 0.4s 96 ±17 79 ±41 99
±7

ASD
ankle
y-axis

FI0y 3s 0.4s 94 ±23 84 ±36 99
±4

ASD hip
y-axis

FI2y 3s 0.4s 89 ±32 82 ±39 96
±18

ASD hip
x-axis

FI2x 3s 0.4s 89 ±32 94 ±23 97
±17

a as reported in [16] using CNR classifier and LOOCV.
b as reported in [18] using Random Forest classifier and LOOCV.
c for event-based calculation while others were for timing-based.
d the majority vote of seven sensors [19].
e Input: features, sensors, and axes. ‘Tol’: tolerance. ‘Win’: window size.
f 71 trials of 15 subjects; different cohort to the development set (same to

the work [19]) .

V. CONCLUSION

In this work, we studied the important task of FoG detection.
We reported new features and a detection scheme that are more
relevant in identification of freezing occurrences in subject-
independent settings. Freezing index feature from single
channel (x or y axis) at ankle or hip sensor location can be used
for an anomaly detection based scheme to detect FoG events.
Our proposed method is objective and significantly out-
performs (e.g., mean (±SD) of sensitivity, specificity are
94% (±23%) and 84% (±36%) for ASD ankle y-axis) other
automated methods in the literature.

In future work, a combination of these two candidates should
be further evaluated. A more elaborate technique for the ASD

threshold is also worthy of further study. These findings form
a further step towards subject-independent out-of-lab FoG
detectors.
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APPENDIX A
LIST OF FEATURES

The feature pool consists of 244 features (Table III). There
are eleven extraction functions: seven previously published
and our four new methods. We apply these eleven extraction
functions to single and multiple inputs.

APPENDIX B
DETAILS OF FEATURE RANKING

Fig. 5 illustrates three types of ranking scores (i.e., MI, DIS,
and VarRatio) across window sizes for each feature candidate
(sorted from high to low scores). The order of ranking is from
1 to 244 (high to low); a higher saliency score indicated the
higher ranking order. The other window sizes shared a similar
trend.

APPENDIX C
PERFORMANCE AGAINST TOLERANCES AND WINDOWS

Fig. 6 presents performance metrics across window sizes
of each feature extraction with a timing tolerance range from
0 → 1s in steps of 0.1s. Due to the difficulty of displaying
ROCs across many variables, F1-scores were presented.
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Table III
FEATURE POOL EXAMINED IN THIS WORK. THREE TYPES OF DATA INPUTS: SCSS, MCSS, MCMS. IDENTIFICATIONS OF SENSORS AND AXES DESCRIBE

FOR EACH CHANNEL USED TO EXTRACT FEATURES. EIGHT EXISTING FUNCTIONS AND TWO NEW OF CXY ARE FOR SCSS AND MCSS. FOR MCMS,
TWO NEW FEATURES ARE FIK ( BY KOOPMAN SPECTRAL ANALYSIS ) AND FIMC (BY FOURIER TRANSFORM EQ. 1). FEATURE IDS 123→ 244 ARE

CORRESPONDING ANOMALY SCORE BASED FEATURES OF THE ABOVE 1→ 122.

SCSS MCSS MCMS
Sensor 0 (ankle) 1 (knee) 2 (back) 0 1 2 0,1,2 0,1,2
Axis x y z x y z x y z

√
x2 + y2 + z2 x,y,z x,y,z

Extraction Average, standard deviation, variance, median, entropy, energy, power, FI, CXY Npks, and CXY max FIK FIMC

IDs 1:10 11:20 21:30 31:40 41:50 51:60 61:70 71:80 81:90 91:100 101:110 111:120 121 122

Figure 5. Example of feature ranking and the shortlists. (a,b,c) are ranking scores for the feature pool; (a). DIS, (b). MI, (c). VarRatio scores. Vertical axes:
saliency scores. Horizontal axes: ranking order. The top-ten lists are in the dotted boxes. The others, (d-k), illustrate the sharing among shortlists across
window sizes and criteria. Features with circle markers are new while others are have been currently used in literature. The top ten identifications (IDs) of
features are detailed in Table III. E.g., FI0y is the current popular existing feature.

REFERENCES

[1] B. Bloem et al., “Falls and freezing of gait in Parkin-
son’s disease: a review of two interconnected, episodic
phenomena”, Mov disord, vol. 19, no. 8, pp. 871–884,
Aug. 2004.

[2] M. Macht et al., “Predictors of freezing in Parkinson’s
disease: a survey of 6,620 patients”, Mov disord, vol.
22, no. 7, pp. 953–956, May 2007.

[3] M. Latt et al., “Clinical and physiological assessments
for elucidating falls risk in Parkinson’s disease”, Mov
disord, vol. 24, no. 9, pp. 1280–1289, Jul. 2009.

[4] S. Paul et al., “Three simple clinical tests to accurately
predict falls in people with Parkinson’s disease”, Mov
disord, vol. 28, no. 5, pp. 655–662, May 2013.

[5] S. Fahn and R. Elton, “Unified rating scale for Parkin-
son’s disease”, Recent developments in Parkinson’s dis-
ease. florham park. new york: Macmillan, pp. 153–163,
1987.

[6] N. Giladi et al., “Validation of the freezing of gait
questionnaire in patients with Parkinson’s disease”,
Movement disorders, vol. 24, no. 5, pp. 655–661, 2009.

[7] A. H. Snijders et al., “Obstacle avoidance to elicit
freezing of gait during treadmill walking”, Movement
disorders, vol. 25, no. 1, pp. 57–63, 2010.

[8] C. Moreau et al., “Externally provoked freezing of gait
in open runways in advanced parkinson’s disease results
from motor and mental collapse”, Journal of neural
transmission, vol. 115, no. 10, pp. 1431–1436, 2008.

[9] J. Reimer et al., “Use and interpretation of on-off diaries
in Parkinson’s disease”, J neurol neurosurg psychiatr,
vol. 75, no. 3, pp. 396–400, Mar. 2004.

[10] T. R. Morris et al., “A comparison of clinical and
objective measures of freezing of gait in Parkinson’s
disease”, Parkinsonism & related disorders, vol. 18, no.
5, pp. 572–577, 2012.

[11] J. Schaafsma et al., “Characterization of freezing of
gait subtypes and the response of each to levodopa
in Parkinson’s disease”, Eur j neurol, vol. 10, no. 4,
pp. 391–398, Jul. 2003.

[12] S. Moore et al., “Ambulatory monitoring of freezing of
gait in Parkinson’s disease”, J neurosci methods, vol.
167, no. 2, pp. 340–348, Jan. 2008.



REFERENCES 9

Figure 6. Effects of window sizes and tolerances on F1-scores of ASD. Tolerance from 0s→ 1s. Three dimensional view for planes of window sizes from
2s→ 8s.Markers are for different features.

[13] E. Gazit et al., “Assessment of Parkinsonian motor
symptoms using a continuously worn smartwatch: Pre-
liminary experience”, Movement disorders, vol. 30,
S272–S272, 2015.

[14] J. Han et al., “Gait analysis for freezing detection in
patients with movement disorder using three dimen-
sional acceleration system”, Engineering in medicine
and biology society, proceedings of the 25th annual
international conference of the ieee, vol. 2, 1863–1865
Vol2, 2003.

[15] I. Daubechies and B. J. Bates, “Ten lectures on
wavelets”, The journal of the acoustical society of
america, vol. 93, no. 3, pp. 1671–1671, 1993.

[16] M. Bachlin et al., “Wearable assistant for Parkinson’s
disease patients with the freezing of gait symptom”, In-
formation technology in biomedicine, ieee transactions
on, vol. 14, no. 2, pp. 436–446, 2010.

[17] B. Cole et al., “Detecting freezing-of-gait during un-
scripted and unconstrained activity”, Engineering in
medicine and biology society,embc, annual interna-
tional conference of the ieee, pp. 5649–5652, 2011,
ISSN: 1557-170X.

[18] S. Mazilu et al., “Online detection of freezing of gait
with smartphones and machine learning techniques”,
Pervasive computing technologies for healthcare (per-
vasivehealth), 6th international conference on, pp. 123–
130, 2012.

[19] S. T. Moore et al., “Autonomous identification of freez-
ing of gait in Parkinson’s disease from lower-body
segmental accelerometry”, Journal of neuroengineering
and rehabilitation, vol. 10, no. 1, p. 1, 2013.

[20] H. Zach et al., “Identifying freezing of gait in Parkin-
son’s disease during freezing provoking tasks using
waist-mounted accelerometry”, Parkinsonism & related
disorders, vol. 21, no. 11, pp. 1362–1366, 2015.

[21] C. Azevedo Coste et al., “Detection of freezing of gait
in parkinson disease: Preliminary results”, Sensors, vol.
14, no. 4, pp. 6819–6827, 2014.
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