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On Time Series Forecasting Error Measures for Finite Horizon Control
Farzad Noorian, Member, IEEE, and Philip H. W. Leong, Senior Member, IEEE

Abstract— Time series forecasting is routinely utilized to
improve regulation in finite horizon control (FHC) problems by
forecasting the system’s uncontrollable inputs. In this brief, we
propose a novel measure for validating forecasting models for
FHC applications. Specifically, for the case of linear-quadratic
time-invariant systems, we derive a closed-form equation for the
increase in cost due to forecast error, present techniques for
reducing its computational cost, and demonstrate that compared
with conventional error measures, model validation using this
measure can improve the controller’s performance.

Index Terms— Finite horizon control (FHC), linear-
quadratic (LQ) regulator, model selection, time series forecasting.

I. INTRODUCTION

F INITE HORIZON CONTROL (FHC) is the process of
determining control policies by solving an optimal control

problem over a finite time horizon. The FHC methodology
is well studied [1], [2], especially for linear-quadratic (LQ)
systems, where closed-form or efficient numerical solutions
exist. FHC regulators, commonly implemented in discrete
time using digital computers, have been successfully applied
to many applications including electric power systems [3],
inventory management [4] and finance [5].

In FHC, as with other optimal control techniques, a state-
space model is defined to allow the predictive modeling of
the system’s future states to any input. Based on this model,
the controllable inputs of the system are determined such
that the objective cost function is minimized, and thus the
system is controlled toward the desirable outcome.

Classic FHC formulations model the system’s uncontrol-
lable exogenous inputs analytically as a part of the state-
space equations. This is performed by dividing these inputs
into measurable and nonmeasurable external disturbances, and
using an analytic model to describe them [2]. However, due
to the complexity of real-world applications, developing an
accurate analytic model for the system’s exogenous inputs is
not always possible.

One relatively recent solution is the use of statistical
models and machine learning (ML) algorithms as a part
of the predictive model, where the time-varying exogenous
inputs are treated as a time and estimated via a forecasting
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algorithm [6]–[8]. In time series forecasting, error measures,
such as mean square error (MSE) or mean absolute
error (MAE) are used for model validation, by comparing
the effectiveness of different forecasting techniques and their
parameters for a certain prediction task [9]. However, these
assume that the error of each sample is independent of other
time-steps, which is not generally true. To obtain full accu-
racy for model selection, one must consider the control law
while validating prediction models over the control horizon.
Alternative techniques exist, such as including the conditional
distribution of the exogenous input in the dynamic program-
ming problem [10]. Unfortunately, none of these approaches
are computationally efficient.

In this brief, we advocate using �J , i.e., the increase in the
cost function of an FHC system due to forecast error, for model
validation instead of conventional forecasting error measures.
The contributions are threefold.

1) We derive an exact closed-form solution to effi-
ciently compute �J for the case of discrete LQ FHC
systems.

2) We apply dimensionality reduction techniques to the
closed-form solution, reducing the computational cost
of �J with minimal loss of accuracy. This leads to a
significant speedup in the cases, where several forecast-
ing algorithms and parameters need to be tested for fixed
system parameters.

3) We demonstrate via two case studies that by considering
the effects of prediction error on FHC dynamics, using
�J instead of MSE as a forecasting model selection
criterion can improve the system’s performance.

The rest of this brief is organized as follows. In Section II,
the FHC notation used in this brief is introduced. Section III
discusses the effect of additive noise in the FHC formulation
and offers a closed-form solution for quantifying it. Time
series prediction requirements for FHC regulation are ana-
lyzed in Section IV, and a dimensionality reduction technique
for reducing cross-validation computational cost is presented
accordingly. In Section V, two inventory and portfolio man-
agement examples are studied to demonstrate the effectiveness
of the proposed formulation. Finally, in Section VI, limitations
of this formulation are discussed and possible solutions are
reviewed.

II. BACKGROUND

A discrete linear time invariant (LTI) system can be
described using the following state-space model [2]:

x(t + 1) = Ax(t) + Bu(t) + Cv(t). (1)

Here, x(t) ∈ R
k is the state vector at time t ∈ [0, 1, . . . , n],

u(t) ∈ R
l is the vector of controllable inputs, v(t) ∈ R

m
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is the vector of exogenous inputs, and A ∈ R
k×k , B ∈ R

k×l ,
and C ∈ R

k×m are the system and input matrices, respectively,
and are controllable.

The objective is to find controllable inputs, u(t), to mini-
mize a quadratic cost function defined by

J =
n∑

t=1

x(t)T Qt x(t) +
n−1∑

t=0

u(t)T Pt u(t) (2)

where positive-semidefinite matrix Qt ∈ R
k×k and positive-

definite matrix Pt ∈ R
l×l are stage costs of x(t) and u(t),

respectively.

A. Matrix Form Solution

A common way to find the solution to argmin J is to
explicitly express x(t),∀t > 0 as a function of inputs through
matrix form, and then minimize J to find all u(t) in a batch
approach [2].

In matrix form, the state-space equation (1) and the cost
function (2) are represented by

X = SA x(0) + SBU + SC V

J = XT Q̄X + UT P̄U

where

X = [x(1)T x(2)T · · · x(n)T ]T

U = [u(0)T u(1)T · · · u(n − 1)T ]T

V = [v(0)T v(1)T · · · v(n − 1)T ]T

SA = [AT (A2)T · · · (An)T ]T

SB =

⎡
⎢⎢⎢⎣

B 0 · · · 0
AB B · · · 0
...

...
. . .

...

An−1B An−2B · · · B

⎤
⎥⎥⎥⎦

SC =

⎡

⎢⎢⎢⎣

C 0 · · · 0
AC C · · · 0
...

...
. . .

...
An−1C An−2C · · · C

⎤

⎥⎥⎥⎦

Q̄ = blockdiag{Q1, Q2, . . . , Qn}
P̄ = blockdiag{P0, P1, . . . , Pn−1}.

We define Y as the vector of uncontrollable variables, i.e.,
the accumulated initial state and exogenous inputs, such that
X = SB U + SC Y

Y = S†
CSA x(0) + V . (3)

Here, † is the Moore–Penrose pseudoinverse operator.
Let

JA = P̄ + ST
BQ̄SB

JB = ST
BQ̄SC

JC = Y T ST
C Q̄SC Y

H = −J†
AJB .

The optimal control input, U∗, is given by

U∗ = HY . (4)

Derivation of (4) is described in Appendix A.

Fig. 1. Prediction updates in FHC. To differentiate between predic-
tions performed at different times, the estimation of v(t + h) predicted at
time-step t is denoted with v̂t (t + h).

B. Finite Horizon Control

The goal of an FHC regulator is to dynamically minimize J
over control period t ∈ [0, 1, . . . , N]. Due to practical consid-
erations, at each time-step, (4) is solved over a finite horizon of
length n < N to obtain the optimum control sequence U , and
only the first action of this sequence is applied. As time moves
forward, the model is updated based on observations, and the
finite horizon optimization is repeated. This update allows
the better control of the system in the presence of external
disturbances and model misspecification, at the expense of
computational power required for repeated optimization at
each time-step.

Updating the horizon at the next time-step takes two major
forms in FHC: 1) the horizon is either moved forward,
becoming the receding horizon control (RHC) or 2) the same
termination time is held, resulting in the shrinking horizon
control (SHC). In this brief, both methodologies are studied.

III. CLOSED-FORM ANALYSIS OF THE FINAL COST

With the availability of the exogenous inputs V , the opti-
mal controllable inputs U∗ and consequently the optimal
(i.e., minimum) cost J ∗ = J (U∗) can be obtained from (4).
In real-world applications, the true value of V is not known in
advance, and has to be estimated with analytical or numeric
models. The inaccuracies of these models, which manifest as
prediction error, result in suboptimal control. In this section,
we formulate a closed-form equation to measure this subop-
timality, in the form of deviation of the cost from its optimal
value, that is

�J = J (U) − J (U∗).

A. Prediction Error

In a real system, the exogenous inputs v(t) are not observed
before time t and must be substituted by v̂(t) = v(t) + ε(t),
where v̂(t) is their prediction and ε(t) is the additive prediction
error.

In a finite horizon approach (either shrinking or receding), at
each time-step t , v̂(t + h) is reestimated (i.e., predicted again
using the latest available information) for h ∈ [1, 2, . . . , n].
We denote these reestimation and their prediction errors by
v̂t (t + h) and εt (t + h), respectively (Fig. 1).

Similarly, we define the matrix form counterpart of εt (t +h)
for the t th horizon as

Et = [εt (t + 1)T εt (t + 2)T · · · εt (t + n)T ]T .
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To denote all prediction errors over all control horizons

E = [
ET

0 ET
1 . . . ET

N−1

]T

is defined.

B. Optimal Input in the Presence of Prediction Error

The applied controllable input U , obtained from the FHC
regulator, is a linear function of the accumulated exogenous
inputs Y and their prediction errors E

U = �Y + �E (5)

where � = [�0 �1 · · · �N−1] � = ∑N−1
i=0 �i MY (i)

�i =
N−1∑

j=0

M�( j)H j�( j, i)

�(t, τ ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t > τ 0knt ×knτ

t = τ Iknt ×knt

t < τ

t−1∑

i=0

C†At−i BMU (i)Hi�(i, τ )

M�(t) = [Ki, j ]N×nt ,

{
i = t + 1, j = 1 Ki, j = Il×l

else Ki, j = 0l×l

MU (t) = [Ki, j ]nt×1,

{
i = j = 1 Ki, j = Il×l

else Ki, j = 0l×l

MY (t) = [Ki, j ]nt×N ,

⎧
⎪⎨

⎪⎩

j − i = t Ki, j = Ik×k

i = 1, j ≤ t Ki, j = C†At+1− j C

else Ki, j = 0k×k

(6)

nt is the length of horizon at time-step t , 0 f ×g and I f ×g are
f × g zero and identity matrices, respectively, and [Ki, j ] f ×g

denotes a block matrix of f ×g subblock matrices. Derivation
of (5) is detailed in Appendix B.

Here, Ht is the matrix used to derive the control law, akin
to H in (4), but considering a time-varying horizon length. For
this, the horizon length has been denoted with nt , in line with
the horizon for H, which was denoted with n. This formulation
allows (5) to be used with receding horizon, shrinking horizon,
or hybrid control schemes. For example, for a receding horizon
scheme, where the horizon length remains the same, Ht = H,
while for a shrinking horizon scheme, at each step Ht has to
be recomputed by decrementing nt .

Note that � in (5) is an extended form of H in (4).
In Section II, H was designed for a constant horizon length.
In contrast, � incorporates the effects of horizon length
variation. This is because the goal of (5) is not tocontrol,
but an accurate estimation of what would have happened
if the control was to be performed using (4) with either a
receding or shrinking horizon. For shrinking only horizons
(i.e., nt+1 = nt −1), due to the principle of optimality, � = H.

C. Effects of Prediction Error on Cost

Let U∗ = �Y be the optimal input. The increase in cost
from optimal due to prediction error E is given by

�J = ET �E + ET �Y (7)

where � = �T JA� and � = 2�T (JA� + JB). Derivation
of (7) is detailed in Appendix C.

IV. TIME SERIES PREDICTION AND FHC

The objective of time series prediction is to find a function
p(·) to estimate the future of time series v(t) over prediction
horizon h ∈ [1, 2, . . . , n] using available data, i.e., v̂t (t +h) =
p(v(t), v(t − 1), v(t − 2), . . .).

Time series prediction techniques are usually carried out in
two phases: 1) a learning phase, where for a chosen model and
its hyperparameters, the training data are fitted to minimize a
p-norm error (i.e., ||v(t) − v̂t (t)||p) [11], [12] and 2) a cross-
validation phase, where the performance of different models
and hyperparameters are compared with a separate set of
testing data [13].

Typically, when applying cross validation, an MSE error
(i.e., ET E) is used as a measure of comparison. This ignores
possible dependencies between errors and also between the
errors and the inputs. To include this knowledge of the FHC
controller, a step-by-step simulation of the FHC has to be
performed: for each discrete time step, the control law is first
applied based on predictions, and then the system states and
costs are updated according to the actual exogenous inputs.
Equivalently, (7) can be used to evaluate the final cost of the
prediction error in a single step.

A. Cost Matrix Dimensionality Reduction

Computing �J using (7) is of O(N2) time complexity,
compared with O(N) of using an MSE. Consequently, the
efficiency of computing �J has to be improved before being
used in data-intensive problems.

In many real-world problems, matrices � and � prove to be
sparse, or even diagonal. In such cases, numerical techniques
can be used to improve the efficiency of computing (7).

In other cases, assuming repeated evaluation on a fixed
system, one can precompute � and �Y , and calculate �J
efficiently for different values of E, the latter coming from
different prediction models.

With this assumption, matrix decomposition can also be
used to further reduce computational complexity by approxi-
mating matrix � ∈ R

M×M with a matrix of lower rank [14].
Here, M is the total number of predictions and is obtained
from the sum of horizon lengths and the size of the inputs
vector, i.e., M = m

∑
i ni .

Let � = V	V T , where 	 is the diagonal matrix of
eigenvalues and V is the matrix of eigenvectors of �. By only
keeping the 0 < L < M largest eigenvalues of � and
their corresponding eigenvectors, � can be approximated with
�′ = V ′	′V ′T , where V ′ ∈ R

M×L and 	′ ∈ R
L×L .

Let W = V ′√	′, where
√

	′ is the root square of the
diagonal eigenvalue matrix. An approximation to (7) is

�J ′ = ET W′W′T E + ET �Y . (8)

Exploiting the symmetric structure of the new cost function
and assuming precomputed W′ and �Y , evaluating (8) is
reduced to time complexity O(M L).
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The choice of L is problem-dependent. A general guideline
is to select L such that tr(	′) ≥ λtr(	), where tr is the trace
operator and 0 ≤ λ ≤ 1 determines how much of the matrix’s
energy is to be conserved. In practice, λ > 0.99 is commonly
used.

V. NUMERICAL EXAMPLES AND SIMULATION RESULTS

In this section, two finite horizon problems with time series
forecasting are analyzed, and the proposed error measure �J
is compared with the MSE for predictor selection. The MSE
was chosen as it offers a quadratic error function, similar to
the controller’s cost function, and is not scaled against the
magnitude of inputs.

For each problem, first the system dynamics are defined
and used to formulate an FHC control problem. The best
predictor models are then selected over a set of training data
using different error measures. Consequently, a simulation
is performed over a separate set of testing data, and the
performance results of models selected using �J and the MSE
are compared.

Implementations of these examples, written in the
R programming language, are available from http://sydney.
edu.au/engineering/electrical/cel/farzad/TCST16.

A. Preordering Problem

Inventory management and supply chain planning tech-
niques play an essential role in managing supply and demand,
and are widely studied and used in practice [15]. Recent
developments in this regard have shown that forward-looking
optimization-based policies, such as using optimal control in
combination with forecasting, significantly outperform other
rule-based decision policies [6], [16].

In this example, we study the problem of meeting a fluc-
tuating demand for a perishable commodity, similar to the
problem discussed in [17]. In this task, one can either preorder
the perishable item with different lead times and discounts, or
buy it on the spot market at a higher price. The objective is
to minimize the ordering costs by utilizing prediction.

1) Problem Formulation: We formalize this problem as
follows.

1) The demand is denoted with v(t) ∈ R
+, and the spot

price is depicted with p.
2) It is possible to preorder κ steps ahead, where at each

time-step a discount of d is applied.
3) A preorder can be adjusted at any time before delivery;

however, an adjustment penalty equal to the discounted
price is applied. Similarly, a penalty is applied for over-
supplied orders (i.e., discarded perishables).

4) Preorders are denoted with u(t) =
[ut+1(t) · · · ut+κ−1(t) ut+κ(t)]T , where ut+h(t)
is the order (or adjustment to the order) at time t for
delivery at time t + h.

5) An order book is maintained, in the form of the vector
x(t) = [xt (t) xt+1(t) · · · xt+κ(t)]T , where xt+h(t) is
the total of orders expected at time t to be delivered at
time t + h.

Fig. 2. Hybrid RHC–SHC scheme, with a maximum horizon length of 3.

Notice that u(t) ∈ R
κ , and x(t) ∈ R

κ+1 as it includes a
state for the delivery at time-step t in addition to the future
preorders.

The problem can be formulated using the state-space equa-
tion (1), as updating the order book using xt+h(t + 1) =
xt+h(t) + ut+h(t) when preordering (i.e., h > 1), and
xt+1(t + 1) = xt+1(t) − v(t) during delivery.

Assuming κ = 3, the system dynamics in matrix form are

A =

⎡

⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤

⎥⎥⎦ B =

⎡

⎢⎢⎣

0 0 0
1 0 0
0 1 0
0 0 1

⎤

⎥⎥⎦ C =

⎡

⎢⎢⎣

−1
0
0
0

⎤

⎥⎥⎦.

Equation (2) is used as the cost function, with the stage cost
of u(t) (i.e., preordering prices and discounts), and the stage
cost of x(t) (i.e., the penalty for unmet demand), defined,
respectively, as

Pt =
⎡

⎣
d3 p 0 0

0 d2 p 0
0 0 dp

⎤

⎦ Qt =

⎡
⎢⎢⎣

p 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦.

For numeric simulation, the spot price was set to p = 4,
and the discount to d = 0.7.

2) Analysis of the Cost Equation: An analysis of � and �
from (7) for the current problem reveals the matrix elements
associated with the prediction of the current demand, and
the prediction of steps more than κ step ahead, are zero.
The former is a result of the observed demand (and not the
prediction) being used for spot market ordering. The latter
is because any prediction beyond κ steps is not used for
ordering in the current horizon. Consequently, choosing a
horizon length beyond the number of preorders is redundant.

Furthermore, � is a diagonal matrix for optimizations
ending with shrinking horizons (e.g., as in Fig. 2). In addi-
tion, the diagonal elements for each set of predictions decay
exponentially. For example, for κ = 3 and a horizon of n = 5,
the diagonal associated with the first block of predictions is
[0 2.98 0.35 0.13 0]. This simplifies �J to a weighted MSE.

3) Simulation and Results: The simulation was set up to
run for ten time-steps, with preordering allowed for three steps
ahead (i.e., N = 10 and κ = 3). Based on the analysis of �
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for this problem, the control horizon n was limited to the
number of preorders κ (i.e., nt ≤ κ = 3,∀t). A finite horizon
controller governs the system, with seven receding windows
of length 3, followed by three shrinking windows (Fig. 2).

The hth step in the future, v(t + h), was predicted using an
auto-regressive (AR) model

v̂t (t + h) =
q∑

i=0

φiv(t − i) (9)

where q is the model order, and values of φi are the model
parameters. For each future step in a horizon, a different model
was selected and fitted to data using ordinary least squares,
resulting in a total of three models. The range of orders was
limited to q ∈ [1, 2, . . . , 8].

To simulate real-world demand, time series from the
M3 competition data set [18] were used. Only time series
longer than 100 samples were selected for simulation. For
each time series, the first 80 values were assigned to in-sample
testing, with the starting 60 time-steps used for training the
predictor, and the next 20 values for model validation. The
last 20 were used to report out-of-sample prediction errors,
as well as the controller’s cost performance, i.e., the out-of-
sample �J .

Three different approaches were used for model order
selection through cross-validation.

1) A random search was performed to select the best orders
using an in-sample MSE. A subset of the models was
sampled from the model space using a uniform distribu-
tion, and the model with the least cross-validation error
was selected.

2) A random search using in-sample �J as the selection
criterion was performed.

3) A hybrid search was undertaken. The best model for the
first step (i.e., h = 1) was chosen independently, based
on the in-sample MSE through an exhaustive search. The
model orders for h = 2 and h = 3 were selected using
in-sample �J through a random search.

The first two methods compare MSE and �J model selec-
tion when the computational resources are limited. The design
rationale of the third technique is based on the � weights,
where the first step contributes 84% of the total error. Hence,
half of the computational capacity is solely allocated to the
first predictor’s model selection.

Also note that in the hybrid search, the first step was chosen
using MSE. Considering the lack of dependence between the
error at h = 1 and other steps, the �J for only h = 1 is
equivalent to a weighted MSE with a constant weight, i.e.,
2.98 according to the analysis of Section V-A2. We simplified
this further by removing the constant, resulting in an ordinary
MSE measure.

For a fair comparison, only 16 model evaluations were
allowed per approach. For the hybrid approach, this translated
into eight evaluations, exhaustively searching for the best first
model order, and eight additional random evaluations for the
second and third model orders.

The test was repeated for each of the 1020 selected
time series. As each time series exhibits different mean-
variance characteristics, the resulting MSE and �J are not

TABLE I

RUN-TIME AND SPEEDUP COMPARISON FOR THE PREORDERING PROBLEM

TABLE II

MEAN NORMALIZED PREDICTION ERROR FOR DIFFERENT MODEL

SELECTION METHODS IN THE PREORDERING PROBLEM

directly comparable. Consequently, these errors were normal-
ized to the MSE and �J of a naïve predictor, respectively,
where the predictor simply repeats the last observed value,
i.e., v̂t (t + h) = v(t),∀h. The normalized results were then
averaged and reported.

To reduce the computation time of �J , considering the
diagonal nature of �, (7) was also numerically implemented as
a weighted MSE. Table I compares the run-times of different
methods. It is observed that computing �J using (7), even
in its full matrix form, offers a significant speedup compared
with a step-by-step FHC simulation. Furthermore, the diagonal
only implementation is almost as efficient as an ordinary MSE,
achieving a speedup of more than 2500×.

In Table II, prediction errors for models selected using the
MSE and �J are summarized. While the models selected
using the MSE offered a better in-sample and out-of-sample
MSEs, they were outperformed over the cost performance by
the models selected using �J . Overall, a cost improvement
of 1.5% was obtained simply by prioritizing the first step’s
model selection over other steps. A paired sample t-test of
results rejected the null hypothesis of improvement not being
significant with p value of 0.0027.

Considering the independence of the three model orders
and their errors, the best global model would have minimized
both the MSE and �J . This example demonstrates that when
a global search is not possible (e.g., limited computational
resources), the search can be focused on the most influential
factor, as analyzed by the proposed cost measure, to improve
model selection.

B. Stock Portfolio Management

We extend the previous example to financial markets, where
a dealer keeps a portfolio of stocks to trade on behalf of his or
her clients. The dealer wishes to reduce the costs associated
with: 1) the market risk, i.e., the loss of portfolio value due to
market price changes and 2) trading with other dealers, when
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the client’s requests cannot be fulfilled using what is available
in the portfolio. The first issue forces the dealer to minimize
the inventory to avoid risk, while the second obligates keeping
all client trades in the portfolio, such that opposing client
trades (i.e., buys and sells) are neutralized without referring
to other dealers.

The problem of finding the optimal portfolio subject to
cost and risk considerations has been extensively researched.
Recent studies of this problem for stock options and FX mar-
ket, using FHC but neglecting the effects of time series
prediction error, can be found in [19]–[21].

1) Problem Formulation: We simplify the problem by
assuming a single-stock inventory with the following rules and
notations.

1) x(t) denotes the dealer’s inventory, interdealer trades are
determined using u(t), and the demand is denoted with
v(t).

2) Short-selling is allowed.
3) To consider market impact, the interdealer brokering cost

is modeled using a quadratic function of trades, Pt u2(t).
4) The risk is modeled using Qt x2(t), where Qt is the

market volatility, i.e., the variance of the price process
as used in modern portfolio optimization [22].

The dealer’s dynamics can be formulated using the state-
space equation (1), with A = 1, B = 1, and C = 1. The dealer
begins with a zero balance, i.e., x(0) = 0. To concentrate
on demand prediction, we assume the cost of trading with
interdealer brokers and the market volatility are available and
constant in time, Pt = 1 and Qt = 1, respectively. The
objective is to minimize the overall cost, as defined by (2).

2) Simulation and Results: Similar to Section V-A, a reced-
ing/shrinking horizon controller was designed to govern the
system for ten time-steps. The controller uses five receding
windows of length 5 followed by five windows with shrinking
lengths.

To predict vt , separate linear models described by (9) were
considered for each future time-step in the horizon. The order
of each model was limited to q ∈ [2, 3, . . . , 8].

The clients’ trades were simulated via a fifth order
AR model

vt+1 = 2.76vt − 3.13vt−1 + 1.79vt−2 − 0.50vt−3

+ 0.05vt−4 + εt (10)

where εt∼N(0, 1) is a zero-mean unit-variance Gaussian
noise.

For each test, a time series of length 100 was generated. The
first 80 values were assigned to in-sample testing, with the
starting 60 time-steps used for training the predictor, and
the next 20 values for model validation. The last 20 were
used to report out-of-sample prediction errors, as well as the
controller’s cost performance, i.e., the out-of-sample �J . The
test was repeated ten times.

Our first concern is the dimensionality reduction for
� ∈ R

40×40. Despite its simpler formulation compared with
the problem of Section V-A, � is not diagonal, and conse-
quently the eigenvalue method has to be used. The ten largest
eigenvalues hold more than 99.9% of eigenvalue energy, and
thus a fourfold order reduction is possible using W′ ∈ R

40×10.

TABLE III

RUN-TIME AND ACCURACY COMPARISON FOR THE
STOCK PORTFOLIO MANAGEMENT PROBLEM

Fig. 3. MSE versus �J for different model orders in the stocks portfolio
problem.

Table III compares the time required for computing each
error measure and the aggregated value of errors over all
tests. It is observed that the proposed dimensionality reduction
technique results in near 5× speedup, with <0.001% loss
of accuracy. Comparing run-times of Table III, an overall
598× speedup over a step-by-step FHC simulation is observed.
While the MSE is still 2.3× faster, the difference in execution
is 1.6 s, which is negligible compared with the time spent for
training the prediction model.

Fig. 3 compares the in-sample MSE error with �J for
all models. It is evident that these errors are not strongly
correlated. The numerical value of the correlation coeffi-
cient for MSE and �J was measured to be 0.423, com-
pared with that of the MSE and the MAE being 0.893.
As a result, model selection using MSE does not necessarily
improve �J .

An exhaustive search was performed to cross validate dif-
ferent model orders over the in-sample period using MSE and
�J . For each of these measures, the model with the least in-
sample error was selected, and its performance results for both
the in-sample and out-of-sample periods were summarized
in Table IV. It can be seen that using �J as a model
selection measure has reduced the controller’s cost compared
with selections using the ordinary MSE measure. While this
reduction is not significant for in-sample �J results, the con-
troller’s cost performance improvement, from 98.18 to 94.79,
is considerable. In addition, a paired sample t-test rejected
the null hypothesis of improvement not being significant
with p = 0.0094.
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TABLE IV

MEAN PREDICTION ERROR FOR DIFFERENT MODEL SELECTION
MEASURES IN THE STOCK PORTFOLIO MANAGEMENT PROBLEM

VI. DISCUSSION ON PROBLEMS WITH CONSTRAINTS

The proposed error measure, as formulated in (7), is limited
to LQ systems without constraints. In real-world applications,
however, constraints are prevalent.

The easiest method for extending �J to such applications is
relaxing the constraints in J . Nevertheless, this will be at the
cost of reduced accuracy, as the results will no longer match
the original cost function formulation. An alternative approach
is to use multiparametric programming to obtain an explicit
solution for the FHC cost function with constraints [23]. For
an LTI LQ system, this transforms the quadratic programming
problem to a piecewise affine solution. Considering the current
affine form of H and the quadratic form of �J , one would
expect a piecewise quadratic form for the constrained �J .
While obtaining the solution in this form is computationally
intensive and may require massive memory storage, it will be
more efficient in evaluating several forecasting models’ results
compared with the repeated runs of quadratic programming in
FHC simulation.

Implementing and benchmarking this multiparametric
approach will be the subject of a future study.

VII. CONCLUSION

This brief presented several observations regarding time
series prediction used in LQ FHC regulators. Using the
proposed error measure, better model selection results were
obtained, since in contrast to MSE, �J accurately describes
the effects of prediction on the objective cost function. In addi-
tion, techniques were presented to reduce the computational
costs of this measure, in some cases even comparable to that
of MSE, and thus making �J a viable replacement in data-
intensive applications.

APPENDIX A
DERIVATION OF OPTIMAL INPUT IN PRESENCE OF ERROR

The system state in the presence of prediction error is
obtained by

X = SA x(0) + SB U + SC (V + E)

= SB U + SC Y + SC E.

The cost function can be expanded and rewritten as

J = XT Q̄X + UT P̄U

= (SB U + SC Y + SC E)T Q̄(SBU + SCY + SC E)

+ UT P̄U

= UT JAU + 2UT JB(Y + E)

+ (
Y T ST

CQ̄SC Y + 2ET ST
CQ̄SCY + ET ST

C Q̄SC E
)
.

Using the optimality condition, namely (d J/dU) = 0, the
solution to argmin J can be derived

U = −J†
AJB(Y + E) = H(Y + E).

When E = 0, the equation simplifies to U∗ = HY .

APPENDIX B
DERIVATION OF INPUT IN THE REPEATED

APPLICATION OF THE CONTROL LAW

In FHC, controllable inputs are reevaluated at each time-
step. For example, at time-step t

U t = Ht (ϒt + Et ) = Ht ϒ̂t (11)

where U t is the controllable input, optimized using informa-
tion available at time t , and ϒt ∈ R

nt m is constructed by
accumulating previous exogenous inputs [i.e., v(i), i < t] and
the initial state x(0) into the first value of Y t , the tth horizon
window of Y . Y t can be obtained by the affine mapping

Y t = MY (t)Y . (12)

ϒ̂t is the estimate (i.e., prediction) of ϒt and includes the
prediction error at time t , i.e., ϒ̂t = (ϒt + Et ).

At any time-step, ϒt+1 can be computed by accumulating
the applied input controls ui for i < t , into the Y t+1

ϒ̂t+1 = Y t+1 + Et+1 + C†
t∑

i=0

At+1−i BMU (i)U i .

Here, MU is used to extract ui by separating the first vector
of inputs from U t ; then A(t+1)−iB is used in a recursive
approach (similar to applying SB ) to accumulate its effect on
the system’s states. Finally C† is applied, similar to S†

C in
Y = S†

CSA x(0) + V , to reshape the resulting new states into
the new uncontrollable input vector.

The equation above can be rewritten in a recursive form by
replacing U i with (11)

ϒ̂t+1 = Y t+1 + Et+1 +
t∑

i=0

C†At+1−i BMU (i)Hi ϒ̂i

which can be expanded recursively and then factored to

ϒ̂t+1 =
t+1∑

i=0

�(t + 1, i)(Y i + Ei ).

The final U is constructed using M�( j), which puts the
first inputs of each U j into the j th position of U

U =
N−1∑

j=0

M�( j)U j

=
N−1∑

j=0

M�( j)H j

N−1∑

i=0

�( j, i)(Y i + Ei ).

By letting �i = ∑N−1
j=0 M�( j)H j�( j, i), substituting Y i

in (12), and considering that MU is nonzero only for i = j ,
this simplifies to

U =
N−1∑

i=0

�i (MY (i)Y + Ei ).
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Let � = ∑N−1
i=0 �i MY (i) and � = [�0 �1 · · · �N−1].

The vector U can be reorganized as

U = �Y + �E. (13)

APPENDIX C
DERIVATION OF COST DEVIATION

The objective cost of the system as a function of controllable
and exogenous inputs U and Y is realized by

J (U) = UJAU + 2UJBY + JC .

Let Ue = U − U∗ = �E be the difference of the
controllable input computed based on predictions, and the opti-
mal input (i.e., without prediction error). The cost difference
between minimum cost using U∗ [i.e., J (U∗)] and the cost
with prediction error using U [i.e., J (U)], is given by

�J = J (U) − J (U∗)
= UT JAU + 2UJBY − U∗T JAU∗ − 2U∗JBY .

Expanding U = U∗ + Ue results in

�J = (U∗ + Ue)
T JA(U∗ + Ue) − U∗T JAU∗

+ 2(U∗ + Ue)
T JBY − 2U∗T JBY

= UT
e JAUe + 2UT

e JAU∗ + 2UT
e JBY .

By replacing U∗ with its definition from (13), considering
E = 0, we can simplify the above to

�J = UT
e JAUe + 2UT

e JA(�Y) + 2UT
e JBY

= UT
e JAUe + 2UT

e (JA� + JB)Y .

Let � = �T JA� and � = 2�T (JA� + JB). Replacing
Ue = �E, the above transforms to

�J = ET (�T JA�)E + 2ET �T (JA� + JB)Y

= ET �E + ET �Y .
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