
JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 1

FedOrbit: Energy Efficient Federated Learning for
Orbital Edge Computing Using Block Minifloat

Arithmetic
Mohammad Reza Jabbarpour, Bahman Javadi, Senior Member, IEEE, Philip H.W. Leong, Rodrigo N. Calheiros,

David Boland

Abstract—Low Earth Orbit (LEO) satellite constellations have
diverse applications, including earth observation, communication
services, navigation, and positioning. These constellations have
evolved into a valuable data source; however, their use in a
ground station (GS) for analysis via machine learning algorithms
presents challenges due to constraints on power consumption,
communication bandwidth, and onboard computing capabilities.
While the combination of Federated Learning (FL) and Orbital
Edge Computing has been employed to address these challenges,
its heavy reliance on the GS for model aggregation and edge
resource limitations remains a research challenge. This paper
presents FedOrbit, a novel energy-efficient and decentralised FL
method to optimise communication with the GS and reduce
power consumption. FedOrbit utilises reinforcement learning for
cluster formation, satellite visiting patterns for master satellite
selection, and block minifloat arithmetic for power reduction. Ex-
tensive performance evaluation under Walker Delta-based LEO
constellation configurations and different datasets reveals that
FedOrbit can maintain high accuracy while significantly reduce
communication demand, power consumption and training time
in comparison to state-of-the-art FL approaches. The proposed
technique can also reduce the training time by 5× compared with
the centralised FL approaches. In addition, the utilisation of block
minifloat representation as low-precision arithmetic enhanced the
energy consumption by 3.5× compared with the single-precision
(FP32) format.

Index Terms—Low-Earth Orbit, Federated Learning, Orbital
Edge Computing, Energy Consumption, Block Minifloat

I. INTRODUCTION

Low Earth Orbit (LEO) satellites have become increasingly
popular in recent years due to advancements in technology
and their potential for various applications. LEO deployments
are characterised by a large network of satellites used in
applications such as internet connectivity in underserved ar-
eas [1], Earth observation [2], and weather monitoring [3].
LEO satellites generate large amounts of data, which has
driven the utilisation of artificial intelligence (AI) and machine
learning (ML) in centralised Ground Stations (GS) where the

M.R. Jabbarpour, B. Javadi and R. N. Calheiros are with the School
of Computer, Data and Mathematical Sciences, Western Sydney University,
Australia. e-mail: (see https://staff.cdms.westernsydney.edu.au/ bjavadi/).

P. Leong and D. Boland are with the School of Electrical and Information
Engineering, The University of Sydney, Australia.

data is stored. The emerging area of Orbital Edge Computing
(OEC) [3] aims to explore the processing capacity of LEO
satellites to reduce dependency on GSs for data processing.
By combining edge computing with satellite technology, OEC
aims to bring data processing capabilities closer to satellite sen-
sors and communication systems. Due to the limited number
of GSs and their intermittent connections with satellites, this
approach increases the scalability and performance of space
applications [4].

Federated Learning (FL) [5] is used in OEC for distributed
machine learning among satellites to maintain privacy and re-
duce communication. However, traditional FL relies on GS for
model aggregation, causing long training times and high power
consumption. Low SWaP (Size, Weight and Power) compo-
nents are necessary for highly efficient systems like OEC that
need to run on limited battery and solar energy. The advance-
ment of inter-satellite links (ISLs) [6] presents an opportunity
for enhanced satellite collaboration [7], [8], yet challenges
such as training time, power limitations, and accuracy persist.
Previous attempts to use ISLs for decentralised aggregation
encountered issues with accuracy and model staleness due
to data similarity within orbits [9]. Existing approaches also
suffer from satellite idleness and prolonged training times due
to the need for all satellites to upload models before global
updates [7], [10].

OEC encounters stringent limitations when it comes to
memory and computational resources for onboard machine
learning training with native floating-point representations
(FP32) and commercially available hardware. The current re-
search trends are towards narrow floating-point representations,
called minifloats, that pack more operations for a given silicon
area and consume less power on custom hardware such as
FPGA [11]. Block minifloat (BM) has emerged as a promising
solution, delivering near 32-bit floating point accuracy with
8-bit computational complexity and low memory bandwidth
requirements for low-precision training at the edge [12].

In this paper, we present an extended version of our ear-
lier work [13]. Building upon the foundations laid out in
our previous research including a decentralised FL method,
communication power consumption calculation, and cluster

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 2

formation, this extended paper delves deeper into FL training
with block minifloat (BM) arithmetic in OEC. We propose an
energy-efficient version of FedOrbit algorithm that utilises BM
to accelerate FL training on custom hardware (e.g., FPGAs).
Specifically, the new version of FedOrbit investigates channel
parallelism and employs unified BM precision in end-to-
end stochastic gradient descent (SGD)-based back-propagation
Federated Learning (FL) training, featuring task-parallelism of
error back-propagation and gradient generation. The use of this
innovative low-precision arithmetic removes the necessity for
additional computations related to layer-wise scaling factors.
To the best of our knowledge, an FPGA-based FL training
accelerator for OEC using 8-bit BM arithmetic is explored for
the first time in this paper. In summary, this paper has the
following contributions:

• It proposes FedOrbit, a novel decentralised federated
learning approach by considering both intra/inter-plane
ISLs in its cluster formation as well as block minifloat
arithmetic in its computation.

• It proposes a general power model for OEC system by
considering basic satellite functions, communication and
computation power.

• It proposes a new communication strategy based on two
algorithms for cluster determination using reinforcement
learning and Mixed-Integer Linear Programming (MILP)
based on the satellite’s visiting pattern with GS.

• It presents extensive experiments on various datasets,
including real satellite imagery datasets, to demonstrate
the performance of FedOrbit with a significant improve-
ment in training time and power consumption while
maintaining high accuracy.

The rest of the paper is organised as follows. We discuss re-
cent developments in the area of FL in space and low-precision
and quantized FL algorithms in Section II. The system model
and problem formulation are presented in Section III. The pro-
posed FedOrbit and new clustering algorithms are presented in
Section IV. Experimental results and performance evaluation
are presented in Section V. Conclusion and future works are
discussed in Section VI.

II. RELATED WORK

This section discusses recent advancements in the utilisation
of FL in the context of OEC. Furthermore, it investigates the
current low-precision and quantized methods applied in FL
with the objective of minimising power consumption.

A. FL in Orbital Edge Computing

FL is increasingly used in satellite constellations to leverage
the collective intelligence of multiple interconnected satel-
lites for improving onboard machine learning models and
enhancing mission capabilities. Recent research by Chen et
al. [14] showed the viability of FL for satellite training

compared to GS-centric methods. However, their study used
Federated Averaging (FedAvg), which is reliant on a constant
GS connection. Another study introduced a taxonomy of satel-
lite connections for FL, highlighting decentralised training’s
ability to address slow client convergence through predictable
intermittent satellite communication [15]. The FedAvgP2P
algorithm [16], an extension of FedAvg, further eliminates the
necessity of a central server, including the GS.

Razmi et al. [17] introduced FedSat, assuming an ideal setup
with a North Pole GS to address irregular satellite visits. Their
experiments showed modifying FedAvg using satellite and
GS visit patterns can effectively improve performance. FedSat
reduces training time and surpasses FedAsync in convergence
time and accuracy [18]; however, it is restricted to scenarios
where satellites communicate with the GS once per orbital
period. To extend the previous technique, FedISL [19], [20]
introduced intra-satellite links, movement prediction, and par-
tial aggregations. However, this approach involves transmitting
data to a GS each round per orbit for aggregation, causing
higher latency. Moreover, their servers’ setup is not practical
and feasible.

FedSatSchedule [21] is a scheduling FL algorithm that
reduces model staleness by assessing satellite time windows.
This enables downloading, local training, and uploading of the
global model. Insufficient time leads to delayed model uploads
for local training during long invisible intervals. FedHAP [22]
substitutes the GS with high altitude platforms (HAPs) at 20-
30 km altitude as servers, improving performance but requiring
extra hardware.

FedSpace [23] is an asynchronous FL algorithm that buffers
client models, prioritising newer ones. It requires data transfer
to the GS for aggregation. AsyncFLEO [9], another asyn-
chronous algorithm, clusters satellites from distinct orbits
based on data distribution similarity inferred from model
weights. AsyncFLEO, like FedHAP, still depends on HAPs
as additional infrastructure support.

FedLEO [8], a synchronous FL algorithm, combats slow
convergence by enhancing model propagation through intra-
plane and sink satellite-GS communication. Lin et al. [24]
introduced a synchronous FL algorithm to tackle extended
update waits in sparse satellite connections. It combines
synchronous periodic and buffered aggregation strategies to
adapt to changing satellite connections over time. While this
approach reduces training time, drawbacks include model loss
from buffered aggregation and reliance on the GS.

FedGSM [25] is another asynchronous FL algorithm that
addresses the challenges of gradient staleness and learning
instability by incorporating a compensation mechanism. It
takes advantage of the deterministic and time-varying topol-
ogy of orbits to counteract the adverse effects of staleness.
Although they provide a solution for the staleness problem,
they only consider time-dependent compensation in their FL
frameworks.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 3

Lin et al. [26] proposed FedSN framework for LEO satellite
networks aiming to enhance model training effectiveness.
FedSN includes a sub-structure scheme addressing resource
limitations, training imbalances, and intra-group model stal-
eness. To minimise the communication rounds, an approach
named LEOShot [27] has been introduced. This one-shot FL
technique aims to attain model training convergence within a
single communication round.

The LEO Edge Selection and Clustering (LESC) approach,
proposed by Chen et al. [10], combines FL, edge server
selection and client clustering techniques to improve perfor-
mance, latency, and quality of service in LEO-based networks.
However, because it considers the connection between the LEO
edge server and the GS for server selection, the approach limits
the number of LEO edge servers and most of the satellites will
not participate in the training procedure.

Decentralised Satellite Federated Learning (DSFL) [7] is an
approach that utilises both intra and inter-plane transmissions
in its proposed algorithm. Also, an energy-aware communi-
cation strategy (EACS) is utilised to find the efficient path
among planes for model sharing. DSFL uses intra and inter-
plane communications for global aggregation, which leads to
high aggregation time and cost.

To summarise, while many existing approaches have primar-
ily addressed concerns regarding satellite idleness and model
staleness, there is a significant gap in the literature when it
comes to studying the crucial parameters of training time and
power consumption in OEC. Table I listed a summary of the
existing work as well as our proposed FedOrbit technique
to address the training time and power consumption where
cluster-based FL approaches are starred. In addition, as repre-
sented in Table I, existing approaches can be categorised into
4 categories based on their communication links, namely No
ISL, Intra-plane ISLs, Inter-HAP, and Inter/intra-plane ISLs.

B. Low-Precision and Quantised FL Methods

Transmitting a large number of updated model parameters
over the communication channel with limited throughput from
the clients (users) to the server is one of the main challenges of
FL [28]. This challenge can be tackled by reducing the num-
ber of participating users, via, e.g., scheduling policies [29].
Another approach is to reduce the data volume transmitted
by each user, achieved through techniques like sparsification
or scalar quantisation. For example, various approaches to
condense the updates transmitted from users to the server are
proposed by Konečnỳ et al. [30]. These techniques encompass
random masks, sub-sampling, and probabilistic quantisation.
The utilisation of sparsifying masks for compressing gradients
was proposed by Hardy et al. [31]. Sparse ternary compression
(STC), a new compression framework that is specifically
designed to meet the requirements of the FL environment
was developed by Sattler et al. [32]. Additional variations of
probabilistic scalar quantisation for FL were explored by many

researchers [33]–[35]. However, these methods are considered
sub-optimal from a quantisation theory point of view.

This motivates the exploration and evaluation of quantisation
techniques to streamline the transfer of updated models in FL.
The goal is to minimise the error induced by quantisation in
the aggregated global model. In this context, the UVeQFed
algorithm [36] extends scalar quantisation to vector quantisa-
tion and uses lossless compression via arithmetic coding. Li et
al. [37] introduced a quantized FL algorithm for specific loss
functions, applying stochastic quantisation to model parame-
ters instead of local gradients, finding that while convergence
rates are unaffected, error bounds increase with quantisation.
Hönig et al. [38] proposed DAdaQuant, a doubly adaptive
quantisation algorithm that dynamically adjusts quantisation
levels over time and across different clients, improving com-
pression without compromising model quality.

Although existing gradient compression algorithms are
mainly designed for data centres with high-speed networks,
a general framework, called hyper-sphere quantisation (HSQ),
was proposed by Dai et al. [39]. HSQ can be configured
to achieve a continuum of trade-offs between communication
efficiency and gradient accuracy. Most of the existing methods
assume homogeneous quantisation for all clients, disregarding
the real-world scenario where devices exhibit heterogeneity
and support varying levels of quantisation precision. Federated
Learning with Heterogeneous Quantisation (FEDHQ) [40], as-
signs distinct weights to clients by minimising the convergence
rate upper bound, which is dependent on the quantisation errors
of all clients. A new method called QuAsyncFL [41] integrates
asynchronous FL with an unbiased nonuniform quantiser to
tackle the challenge of inadequate communication efficiency.

Ji et al. [42] introduced FedQNN, a FL framework designed
to reduce computational complexity and energy consumption
for IoT devices. It employs ultra-low bit-width quantisation to
minimised energy use and incorporates sparse ternary and bi-
nary mask compression to reduce data transmission. Addition-
ally, Aketi et al. [43] proposed a low-precision decentralised
training approach in a peer-to-peer setup to further mitigate
computational and communication costs.

In summary, most existing low-precision and quantized FL
methods have focused on reducing communication costs while
overlooking computational costs. Additionally, there is a lack
of research on applying compute-efficient training techniques,
such as quantisation and low-precision methods, specifically
for FL in OEC setups. Addressing these gaps is one of the
significant contribution of this paper.

III. SYSTEM MODEL AND PROBLEM FORMULATION

The system architecture for orbital edge computing for
satellite constellations is outlined in this section as depicted
in Figure 1. Satellites establish clusters with neighbours based
on ISL range, considering both intra-plane and inter-plane
ISLs and the selection process of master satellites for GS

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 4

TABLE I: Comparison of the state of the art FL approaches in space.

Technique Ref. Server Communication Metrics Approach

- [14] GS/LEO Intra-plane ISLs Communication cost & Latency Investigated 4 possible learning strategies in SatCom
- [15] GS Inter/intra-plane ISLs Convergence & Accuracy Inter-plane ISLs are used in satellite FL
FedSat [17] GS No ISL Convergence & Accuracy Introduced satellite FL and applied FedAvg
FedISL* [19] GS/MEO Intra-plane ISLs Training time & communication cost Used satellite predictability and partial aggregation
FedSatSchedule [21] GS No ISL Convergence & model staleness Developed a scheduler to consider visit duration predictability
FedHAp* [22] HAP Intra-plane ISLs, inter-HAP Convergence & Training Time Integrated HAPs into a synchronous FL framework as servers.
FedSpace [23] GS No ISL Training time, staleness & idleness Incorporated heuristic GS update procedure and gradient buffering
AsyncFLEO* [9] HAP Intra-plane ISLs, inter-HAP Convergence & Accuracy Leveraged FedSyn to tackle straggler satellites and model staleness
FedLEO* [8] GS, Sink

Satellite
Intra-plane ISLs Convergence & Accuracy Used the predictability of satellite orbiting patterns for fast conver-

gence.
- [24] GS No ISLs Convergence & Accuracy Integrated two aggregation strategies to address the variations in

satellite connections’ heterogeneity over time.
FedGSM [25] GS No ISLs Accuracy & model staleness Leveraged the deterministic and time-varying topology of the orbits
FedSN [26] GS No ISLs Accuracy, Communication & com-

puting overhead
Utilised two components: sub-structure scheme and pseudo-
synchronous model aggregation.

LEOShot [27] GS Intra-plane ISLs Convergence & Accuracy Comprised three processes: synthetic data generation, knowledge
distillation, and virtual model retraining

FELLO* [10] GS/LEO Inter/intra-plane ISLs Latency & Accuracy Combined FL, edge server selection and client clustering techniques.
DSFL [7] GS Inter/intra-plane ISLs Training time & communication cost Proposed to find the efficient path among planes for model sharing.
FedOrbit* This

Paper
GS,LEO Inter/intra-plane ISLs Accuracy, Training time & power

consumption
Novel cluster formation based on the visiting patterns, inter/intra-
plane ISLs and reinforcement learning, and low-precision arithmetic

* Cluster-based FL approaches

Fig. 1: Orbital Edge Computing Architecture using FPGA.

communication (i.e., blue colour in Figure 1). Each satellite is
equipped with an edge device which includes a communication
unit and an FPGA board containing computing and memory
units to perform training in single-precision (FP32) and low-
precision (BM) formats. The proposed FL approach involves
four phases: model distribution, clustering, local training,
and aggregation. Initially, one satellite per orbit receives and
disseminates models from the GS to its intra-orbit neighbours,
based on the method proposed by Razmi et al. [19]. Once dis-
tributed, satellites move to the subsequent phase. To improve
readability, important notations are summarised in Table II.

Satellites are partitioned into r clusters where satellite
i ∈ {1, ...,m} in orbit o collects and stores a dataset Do,i.

This local data set is used to train an ML model via the Feder-
ating Average peer-to-peer (FedAvgP2P) algorithm [16]. Each
cluster, Cr, includes a set of satellites in which the training
process is orchestrated by one of the cluster’s satellites. This
satellite is called the master satellite and it sends a request to
other satellites within its ISL range at round t, Kt

o,i, to form
a cluster and get their updated weights for aggregation.

Once the parameter distribution and clustering phases are
completed, all satellites proceed to initiate their local training
and aggregation phases using the computation model described
in Section III-A. Subsequently, the master satellites transfer
their updated weights to the GS when the next opportunity to
communicate occurs. The GS then carries out the global ag-

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 5

TABLE II: Important notation.

Notation Meaning

o Orbit plane ID
i Satellite ID
So,i Satellite i in Orbit o
r Number of Clusters
Cr rth cluster
Do,i Size of local dateset of satellite i in Orbit o
D Size of the whole dataset
t Round Number
w model weight
x batch size (data point)
η Learning rate
Fr(w) Global loss function of satellites in cluster Cr

fo,i(w) Local loss function of satellite i in Orbit o
wt

o,i Model weight of satellite i in Orbit o and round t
Nt

o,i Randomly selected Cluster Neighbours of satellite
i in Orbit o and round t

Kt
o,i Cluster Neighbours of satellite i in Orbit o and

round t
k Size of aggregation neighbour list
m Cluster size
f fraction Coefficient
vo Orbit Base Speed
rE Earth Radius
µ Geocentric Gravitational Constant
Ao Orbit Altitude
Po orbit period of the satellite in orbit o
E((oa, i), (ob, j)) Euclidean distance between satellites Soa,i and

Sob,j

ET ((oa, i), (ob, j)) threshold value
fCPU/GPU(o,i)

number of CPU/GPU cycles per second

co,i required number of CPU/GPU cycles to process 1
bit of data

αe minimum elevation angle
Ro,i traffic flow through the ith satellite on oth orbit
PTP
o,i basic power of satellite laser terminal

PAP
o,i basic power of microwave antenna

Po,i Power consumption of satellite i in orbit o
To,i Computing time of satellite i in orbit o
Eo,i Energy consumption of satellite i in orbit o
Co,i Communication cost of satellite i in orbit o
z effective capacitance coefficient of the processor

gregation phase by incorporating the received updated weights
from the master satellites and broadcasts the new global model
to the satellites at the next communication interval.

A satellite constellation with a different number of orbit
planes (OPs) and satellites is considered in this paper. We
assign a unique ID to each satellite based on its OP number.
Orbit set is defined as O = {o} where o = {1,2,...,n}.
Similarly, the satellite set is defined as S = {so,i} where i
= {1,2,...,m}. In other words, each orbit o contains m equally
spaced satellites with unique IDs {so,1, so,2, ..., so,m}. The
base speed of each satellite in orbit o, vo, is calculated as

vo =

√
µ

Ao + rE
(1)

where rE is the earth radius (6371 km), µ is the geocentric
gravitational constant (3.98 × 1014m3/s2) and Ao is orbit
altitude.

The orbit period of the satellite in orbit o is computed as
follows:

Po =
2π(Ao + rE)

vo
(2)

A. Computation Model

Satellites collaboratively learn a global model in cluster Cr

by minimising a global objective function as follows:

w∗ = minFr(w) (3)

The global loss function on all the distributed datasets is:

Fr(w) =
∑
i∈S
o∈O

D(o,i)r

Dr
fo,i(w) (4)

where Do,i = |Do,i|, Dr =
∑

i∈S
o∈O

D(o,i)r
is the size of the

whole dataset in the cluster, w is the model parameter, and
fo,i(w) is the local loss function that is computed for each
dataset Do,i as follows:

fo,i(w) =
1

Do,i

∑
x∈Do,i

fo,i(w;x) (5)

where fo,i(w;x) is training loss for a data point x and model
parameter w.

Each satellite receives its own model via the first phase and
can communicate with its cluster master satellite via ISLs. All
satellites initialise their training models with the same initial
weight w0. At every round t, each satellite So,i trains the model
by carrying out Stochastic Gradient Descent (SGD) steps over
its own dataset Do,i, resulting in a model weight wt

o,i, and
updates the local version of the global model parameters as

wt+1
o,i = wt

o,i − η∇fo,i(w
t
o,i) (6)

where η is the learning rate. All satellites in a cluster will send
their updated weights to the master satellite. Then, the master
satellite aggregates the neighbour models with its local model
as follows:

wt+1
o,i = wt

o,i−η∇fo,i(w
t
o,i)+

∑
i∈Nt

o,i

(wt
o,i−η∇fo,i(w

t
o,i)) (7)

where N t
o,i is the round t’s neighbours of satellite So,i, ran-

domly sampled from the master satellite’s cluster neighbours
set, Kt

o,i, (N t
o,i ⊆ Kt

o,i, |N t
o,i| = k, |Kt

o,i| = m, k ≤ m, k =
m× f , where f is the fraction of neighbours (e.g., 0.6).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 6

Finally, GS receives the local updates wt+1
o,i from all master

satellites, and aggregates them into new global model param-
eters as follows:

wt+1 =
1

r

∑
i∈S
o∈O

Do,i

D
wt

o,i (8)

GS then advances into the next aggregation round.

B. Communication Model

This paper assumes free space optics (FSO) communication
links among satellites as a means to overcome intermittent
connectivity between satellites and GS. An FSO link is utilised
for transmitting optical signals between transmitters and re-
ceivers over the atmosphere or the vacuum environment in
space, in a clear line of sight condition [44]. These links can
be divided into four main types, namely terrestrial, aerial (non-
terrestrial), space, and deep-space. FSO links between satellites
are examples of space FSO links referred to as Laser Inter-
Satellite Links (LISLs) in the rest of the paper.

Laser links are considered in this work due to their ad-
vantages over Radio Frequency (RF) links. Higher data rates,
smaller antenna size, lesser weight, volume, and interference,
narrower beams, higher security, and lower transmission power
are some of these advantages [45]. LISLs can be divided into
two types, namely intra-orbital plane LISL, which indicates
the communication between satellites from the same OP, and
inter-orbital plane LISL, which indicates the communication
between satellites from different OPs [6]. The latter case can
be further classified into 3 types: adjacent OP LISL (AOPL),
nearby OP LISL (NOPL) and crossing OP LISL (COPL).

Although the altitude of different OPs is the same and satel-
lites in these OPs move at the same velocity, the direction of
satellites in adjacent and nearby OPs is slightly different, which
leads to different relative speeds of satellites in these OPs.
LISLs can be further divided into permanent and temporary
based on the duration of communication between satellites.
Intra-orbital plane LISL, AOPL, and NOPL are usually perma-
nent, while COPL is a temporary communication. Permanent
LISLs are easy to establish and maintain due to their stability
and long duration. Hence, these types of LISLs are considered
in this paper. The effect of varying the range of a satellite’s
LISLs on the number of permanent LISLs was studied by
Chaudhry and Yanikomeroglu [6].

By taking into account terminals, computational and power
constraints, LISL range can be different for any satellite.
Hence, the satellite cluster size could be in the range between
2 and 88 as presented by Chaudhry and Yanikomeroglu [6].
Satellites in each orbit can create a ring network via LISLs.

As mentioned above, a clear line of sight between
satellites is required for inter/intra-satellite communication.
By taking into account geometric considerations, it can
be shown that satellites soa,i and sob,j have a line of

sight view if E((oa, i), (ob, j)) < ET ((oa, i), (ob, j)) =√
(A(oa,i) + rE)2 − r2E +

√
(A(ob,j) + rE)2 − r2E , where

E((oa, i), (ob, j)) and ET ((oa, i), (ob, j)) are the Euclidean
distance between satellites soa,i and sob,j , and threshold value,
respectively.

In our proposed technique, GS communication is only
required at the initialisation phase and final aggregation at each
training step, where master satellites send their clusters’ local
updates to GS for final aggregation. For this type of communi-
cation, the satellite and GS should be visible to each other. By
considering the minimum elevation angle αe, the satellite soa,i
and GS can visit each other if π

2 −∠(pGS , p(oa,i)−pGS) ≥ αe,
where pGS and p(oa,i) indicate the position of GS and satellite
soa,i, respectively. As mentioned before, our proposed ap-
proach is designed to handle intermittent connectivity between
satellites and the GS. This technique utilises both intra-OP
LISLs and inter-OP LISLs to reach this goal.

C. Block MiniFloat Arithmetic

Block minifloat (BM) arithmetic is a specialised approach
to representing and processing floating-point numbers using
fixed-size blocks or tiles [12]. Unlike traditional floating-point
formats, block minifloats divide the bit pattern into distinct
sections, often including components such as sign bits, expo-
nents, and mantissas. This compact representation is designed
to balance precision and resource efficiency, making it partic-
ularly relevant in contexts where computational resources are
constrained. BM arithmetic is gaining attention for its ability to
perform arithmetic operations with reduced bitwidths, leading
to more efficient implementations in various applications, such
as machine learning and embedded systems [11].

The actual value of a minifloat number, with (e, m) indicat-
ing the quantity of exponent and mantissa bits in its encoding
is calculated as follows:

X⟨e,m⟩ =
{
E = 0, (−1)s × 21−β × (0 + F × 2−m) (denormal)
(otherwise,) (−1)s × 2E−β × (0 + F × 2−m) (normal)

(9)

The exponent and mantissa in their decimal representations
are non-negative integers, denoted as E and F, while s rep-
resents the sign bit, and β = 2e−1, serves as the bias for
the binary offset encoding method. These characteristics align
with IEEE-754 floating point standards, with the distinction
that minifloats are notably smaller, typically consisting of
only 4-8 bits. The key distinction between minifloat and BM
representations are depicted in Figure 2.

BM utilises an 8-bit common exponent for every group of
tiles called a block. Each block is a BM tensor a, containing
T × T minifloats, where T is the tile size1. The shared
exponent, βa, functions as a scaling factor specific to a,
guaranteeing that the highest 8-bit minifloat corresponds with

1In this paper, the value of T is set to 48

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 7

(a) Minifloat. (b) BM (Shared exp. bias).

Fig. 2: Minifloat and BM tensor representations.

the maximum floating point value. Thus the value of the i-th
element of a, is

ai = Xi⟨e,m⟩ × 2−βa (10)

and we set

βa = max(⌊log2 |a|⌋)− (2e − 1) (11)

The first term denotes the maximum exponent for the
tensor a, which changes and must be updated during training,
while the second term is fixed and refers to the maximum
exponent of X . This strategy prevents overflow and offers
more precise scaling than conventional layer-wise loss/gradient
scaling techniques.

The dot product between two BM vectors, va and vb is
computed as

va.vb =

N∑
i=1

((XVa
i × 2−βVa)× (XVb

i × 2−βVb)) (12)

= 2−(βVa+βVb
)(XVa .XVb

). (13)

It is important to note that Equation 13 is computed as
a mostly dense minifloat dot product, improving efficiency.
Multiplication of minifloats follows the semantics of conven-
tional IEEE 754 floating point arithmetic, including gradual
underflow [46]. Infinity and NaN are not supported.

Matrix-vector and matrix-matrix operations are computed as
repeated dot products according to Equation 13. For inference
and training, all weight, activation and gradient tensors are
quantised with stochastic rounding to BM format, with 48×48
BM tiles. The specific training algorithms proposed in this
paper are described in the Section IV. More details about BM
number system and architecture can be found in the original
paper by Fox et al. [12].

D. Power Consumption Model

The power consumption of laser-based communication satel-
lites can be divided into three distinct components. The first

segment is related to the consumption of basic functions
P base
o,i , which encompass activities such as maintaining the

satellite’s altitude and rotating its solar panels. The second
segment, communication power consumption, PComm

o,i , which
includes the consumption of laser terminals PLISL

o,i , is used
to establish LISLs and the power consumption of microwave
communication antennas, PGS2S

o,i , is utilised to create links
between GSs and satellites. The third segment is the power
consumption of the on-board processor for processing the
requested task (i.e., training the model), PComp

o,i . The overall
power consumption is calculated as follows:

Po,i = P base
o,i + PComm

o,i + PComp
o,i (14)

The primary focus of this study is on communication and
computation power consumption, therefore, the basic power
consumption is considered as a constant. Ro,i is considered
as the traffic flow (data rate) through the satellite So,i and
computed as follows:

Ro,i =
∑

RLISL
o,i +

∑
RGS2S

o,i (15)

RLISL
o,i and RGS2S

o,i are data rates between satellites and
GS, respectively. The communication power consumption of
satellites is computed as follows:

PComm
o,i = PLISL

o,i + PGS2S
o,i (16)

where PLISL
o,i and PGS2S

o,i are computed as:

PLISL
o,i = PTP

o,i + a
∑

RLISL
o,i (17)

PGS2S
o,i = PAP

o,i + b
∑

RGS2S
o,i (18)

where PTP
o,i and PAP

o,i are the basic power of the satellite
laser terminal and the microwave antenna, respectively. Two
parameters a(= 1) and b(= 5) are constant coefficients
expressed in Watt/Mbps [47].

Regarding the computation power consumption of satellites
as a result of a training task, a model that captures the most
significant CPU and GPU parameters is considered [48], [49].
The power consumed during processing (computing) at the i-th
satellite in o-th LEO orbit is defined in this model as:

PComp
o,i = S(Do,i)× co,i × f2

CPU/GPU(o,i)
× z (19)

where co,i is the required number of CPU/GPU cycles to
process 1 bit of data, S(Do,i) is the size of its dataset in
bits, fCPU/GPU(o,i)

the CPU/GPU frequency (the number of
CPU/GPU cycles per second), and z is the effective capacitance
coefficient of the processor.

Regarding the computing energy consumption of satellites
as a result of a training task, an estimation model that considers
the computing time and consumed power is considered in

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 8

this study. The energy consumed during computing at the i-th
satellite in o-th LEO orbit is defined in this model as:

EComp
o,i = TComp

o,i × PComp
o,i (20)

where TComp
o,i and PComp

o,i are the computing time and con-
sumed power, respectively.

By considering that within each epoch, the forward and
backward passes are executed for each batch of data, and the
number of forward and backward paths per epoch depends on
the size of the dataset and batch size, computing time for each
epoch is calculated as follows:

T
Compepoch

o,i =
Size of training samples

Batch size
× (FP+BP) (21)

where FP and BP are the number of forward and backward
passes which are executed for each batch of data.

Despite extensive research on FL, most existing approaches
heavily depend on the GS for model aggregation. This de-
pendency not only imposes significant communication over-
head but also exacerbates the limitations of edge resources,
such as constrained power and computational capacity. These
challenges highlight a critical gap in current methodologies:
the need to optimize communication between satellites and
the GS to reduce both power consumption and training time.
This paper aims to address this problem by proposing a
novel energy-efficient and decentralised cluster-based FL for
optimizing the communication process in FL systems, thereby
enhancing overall efficiency and sustainability.

IV. THE PROPOSED FEDORBIT ALGORITHM

In this section, the proposed on-board federated learning
approach called FedOrbit and its cluster formation mechanisms
are discussed.

A. FedOrbit

FedOrbit considers intra-plane and inter-plane ISLs as well
as satellite visiting patterns for cluster formation [13]. The pro-
posed algorithm has four phases including parameter distribu-
tion, clustering, local training, and aggregation which, are ex-
plained in Algorithm 1. After the initial parameter distribution
phase, FedOrbit will perform the cluster formations (line 4)
which can be done by two new algorithms for master satellite
selection (Equation 20 and Algorithm 2). Cluster formation is
discussed in more details in Section IV-B. After master satellite
selection and cluster formation, all satellites initialise their
local training and aggregation phases (Lines 5-28) based on
the described computation model in Sections III-A and III-C.
Selection of BM or FP32 format for local training is made
in lines 5-9 before local training phase. Finally, in the global
aggregation phase (lines 29-39), master satellites send their
updated weights to the GS upon their next visit (lines 30-38).
GS execute the global aggregation phase based on the updated

weights and broadcasts the new global model to satellites in
their upcoming visits (line 39).

B. Cluster Formation

Cluster formation is one of the main steps in FedOrbit and
is formulated as an optimisation problem in this paper. Two
approaches for solving the problem are investigated, in which
minimising communication cost and maximising model accu-
racy are considered the objective functions, respectively. In
the first approach, Mixed-Integer Linear Programming (MILP)
is utilised to construct a formation (allocation) strategy to
reduce the satellites’ communication cost under the constraints
of satellite communication range and number of clusters. As
mentioned before, satellites are partitioned into c clusters
where satellite i ∈ {1, ...,m} in orbit o collects and stores
a dataset Do,i. Each cluster, Cr, includes a set of satellites
in which the training process is orchestrated by one of the
cluster’s satellites. Communication cost is defined as follows:

CComm
o,i = c1(C

LISL
o,i) + c2(C

GS2S
o,i) (22)

where c1 and c2 are constant values based on the LISL/GS
bandwidth, data rate and training round, CLISL

o,i is the cost
(number of satellites that need to connect to each other) of
intra/inter satellites communications, and CGS2S

o,i is the cost
(number of satellites that need to connect to GS) of master
satellites and GS communications. CLISL

o,i and CGS2S
o,i can

be determined based on cluster size and number of clusters,
respectively. Hence, communication cost can be considered as:

C = c1

S∑
i=1

xi + c2xj (23)

The optimisation function can be formulated as:

minimize C

subject to

S∑
i=1

xi = S,

0 ⩽ xi ⩽ 11,

xj = Sum[double((

S∑
i=1

xi) > 0)],

S

11
⩽ xj ⩽

S

3

(24)

where S is the number of the desired satellites, xi indicates
the satellite i ∈ {1, 2, ..., S} and based on the first and second
constraints its value should be between 0 to 11 (by considering
ISL ranges discussed in [6]) and the sum of the selected
satellites should be equal to the number of desired satellites.
The third constraint indicates the number of clusters (based on
the number of selected satellites and their neighbours (cluster
size)). The number of clusters is determined by the fourth

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 9

constraint. Cluster formation can be obtained by solving this
optimisation problem where the selected xi satellites will act
as master satellites.

Algorithm 1 FedOrbit Algorithm.
▷ Parameter Distribution Phase

1: initialise epoch n = E, satellite ID i, orbit plane ID o, w0, q, f, T, e, m
2: for each state s from 1 to T do
3: for each round t = 1, 2, ... do
4: Cluster formation based on Eq. 20 or Algo. 2 ▷ Clustering Phase
5: if BM = True then
6: set the weights, activations, errors, and momentum based on

BM(e,m)
7: else
8: set the weights, activations, errors, and momentum based on

FP32(8,23)
9: end if

10: All Satellite in cluster execute: ▷ Local Training Phase
11: Function LocalTraining (So,i, w)
12: x = (split Do,i into batches of size X)
13: v = |Do,i|
14: for each local epoch n from 1 to E do
15: for each batch x ∈ X do
16: wt+1

o,i = wt
o,i − η∇fo,i(w

t
o,i;x)

17: end for
18: return w and v to master Satellite
19: end for
20: Master Satellite in cluster executes: ▷ Local Aggregation Phase
21: k = max{⌈m× f⌉, 2}
22: Nt

o,i = (random set of k neighbours in cluster)
23: for each neighbour So,i ∈ Nt

o,i in parallel do
24: wt

o,i = LocalTraining(So,i, w)
25: end for
26: wt+1

o,i = wt
o,i − η∇fo,i(w

t
o,i)+∑

j∈Nt
o,i

(wt
o,j − η∇fo,j(w

t
o,j))

27: Set M = ∅, wt = 0
28: end for
29: Ground Station executes: ▷ Global Aggregation Phase
30: while i < len(masterNodeSet) do
31: Upon incoming connection by master satellite So,i:
32: if So,i /∈ M and received weights wt

o,i then
33: Update wt = wt + wt

o,i
34: Add So,i to M
35: else
36: Terminate Connection
37: end if
38: end while
39: Update & Broadcast wt+1 =

∑
i∈S
o∈O

Do,i

D
wt

o,i

40: end for

In the second cluster formation (Algorithm 2), the master
satellites are selected based on two main procedures: cluster
determination via Reinforcement Learning (RL) and visiting
patterns of satellites with GS. In general, satellites have
intermittent but predictable connectivity to the GS as a result of
their orbital movement. Although the visiting pattern is time-
varying, it is deterministic and can be computed based, for
example, on the method proposed by Ali et al. [50]. Hence,
in the FedOrbit cluster formation algorithm, master satellites
are selected from satellites that will visit the GS after their
cluster training is finished. At line 1, if the visiting time of
a satellite with the GS falls within the “training time” and
“training time plus predefined threshold”, it will be selected as

a master satellite candidate. Training time is predicted based on
the utilised model and dataset. Predefined threshold is a time
variable defined in minutes. When multiple satellites meet this
condition simultaneously, the satellite that visits the GS sooner
is selected. If no satellite meets the criteria within the initial
time range, the “predefined threshold” will be incrementally
increased until at least one satellite qualifies. In line 2, a num-
ber of candidate satellites are chosen as master satellites based
on the desired scenario and the cluster formation determined
by Algorithm 3. In lines 3-8, the master satellites create their
clusters based on sent and received responses from neighbours.

Algorithm 2 FedOrbit Cluster Formation.
1: CandicateMasterNodeSet = estimated local training time ≤ Satellites-GS

visit time GS ≤ estimated local training time + predefined threshold
2: masterNodeSet = Satellites ∈ CandicateMasterNodeSet that fit to deter-

mined cluster formation based on Algorithm 3
3: for each satellite So,i ∈ masterNodeSet do
4: Send neighbour request based on Oo,i

5: Wait for t(s) to receive neighbour reply
6: Create Kt

o,i based on received replies
7: m = |Kt

o,i|
8: end for

Algorithm 3 FedOrbit Cluster Determination.
1: build model(self):
2: RL model = Conv2D(64, (2, 2)), Flatten(), Dense(128)
3: return created model
4: for episode in range(number of episodes) do
5: for time step in range(number of steps) do
6: action = agent.act(state)
7: next state, reward, accuracy = env.step(action)
8: reward += 100× accuracy

((time step+1)×cluster size)
9: return reward

10: end for
11: end for
12: return determined cluster formation

To find the best cluster formation using the presented
optimisation formulation, Algorithm 3 is proposed based on
an RL algorithm. Initial state is randomly created based on
the number of selected master satellites, their communication
ranges and total number of desired satellites. The possible
actions include adding/removing a cluster, adding/removing
satellites from cluster, and doing nothing. IF the agent select
an action which is not feasible (e.g., adding a satellite to a
cluster more than its capacity), it will receive penalty (negative
reward). The Reward function based on accuracy, cluster size,
and number of steps is calculated after taking an action in
a state to guide the agent towards desirable behaviour (i.e.,
finding the best formation with high accuracy within the
lower number of steps (attempts)). As lines 1-3 show, this
algorithm uses deep Q-learning with a 2×2 convolution layer
64 channel with ReLu activation, followed by a flatten and
two fully connected layers with 128 units to build a model.
It uses Adaptive Moment Estimation (Adam) as an optimiser
with the following parameters: gamma (discounting rate) 0.95,

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 10

Fig. 3: Visiting patterns of 5 satellites and a GS in 24 hours.

epsilon (exploration rate) 1.0, epsilon min 0.01, epsilon decay
0.995 and learning rate = 0.03. Through lines 4-12, the model
trains based on the defined reward function (formulated by
considering accuracy, number of steps and cluster size in line
8) and environment and return determined cluster formation to
be used in Algorithm 3.

For more clarification, the visiting pattern between 5 satel-
lites and the GS in Canberra, Australia in 24 hours is depicted
in Figure 3. The visiting patterns of satellites vary due to orbit
specifications and the movements of both the satellites and the
Earth, as depicted in this figure. Satellites from different orbits
with the following IDs, Sat 80 (S4,20), Sat 215 (S11,15), Sat
640 (S32,20), Sat 159 (S8,19) and Sat 618 (S31,18), are plotted
in this example. Satellites 215 and 159 have their first visit
within the next 2 hours. However, satellite 80 has the first
visit after 10.5 hours. It should be noted that on average each
satellite visits the GS 5 times during 24 hours in our satellite
constellation setting.

V. PERFORMANCE EVALUATION

Experiments on various models and datasets including real
satellite imagery datasets were performed to demonstrate the
performance of the proposed FedOrbit algorithm. The model
accuracy, power consumption and training time are the eval-
uation metrics of interest in this work. We developed the
FedOrbit algorithm in the FedML framework [51] for FL
implementation. The Satellite Communications Toolbox from
Matlab is utilised to compute the visiting pattern of LEO
satellites with regard to the GS. We used m5.12xlarge Amazon
EC2 instances (includes 48 vCPUs, 192.0 GiB memory) for
most of our experiments. It is worth noting that the real-
time power consumption is measured and utilised via built-in
commands (powertop and nvidia-smi) for experiments in this
paper.

A. Experimental Setup

Satellite Constellation: Table III lists the experimental pa-
rameters in this paper. A Walker-Delta constellation (similar

TABLE III: Experimental Parameters.

Parameter Value

Constellation Walker Delta (Starlink)
Number of LEO satellites 720
Number of orbits 36
Number of LEOs per Orbit 20
Inclination 70◦

Altitude 570 km
Bandwidth of LISL/GS2S 2.5/1.25 GHz
System Loss 3 dB
Frequency 27 GHz
Gain to noise temperature ratio 5 dB/K
Data rate 16 Mbps
Power 40 Watt
Total FL rounds 40
Local training epochs 30
Batch size 10

to Starlink) consisting of 720 LEO satellites with an inclination
of 70◦, altitude of 570 km, 36 orbital planes (OPs), and
20 satellites in each OP is considered. The spacing between
OPs and satellites in each OP are 10◦(i.e., 360◦/36) and
18◦(i.e., 360◦/20), respectively. Each satellite has a unique
ID based on its own ID and OP number. In other words, 36
orbits contain 20 equally spaced satellites with 720 unique IDs
{S0,0, S0,1, ..., S35,18, S35,19}. Moreover, a GS is located in
Canberra, Australia with Latitude (-35.40139) and Longitude
(148.98167). It is worth noting that the LISL range of satellites
∈ {659, 1319, 1500, 1700} km allows the master satellite to
create a cluster with 2,4,6,10 neighbours.
Baselines: Our proposed FedOrbit is compared with a number
of the existing baseline approaches, including FedSyn [5],
FedLEO [8], and FELLO [10]. FedSyn is the traditional
version of FL where local models are sent to a central server
(GS) for aggregation. FedLEO enhances the traditional FL
star topology by using intra-plane communication pathways,
facilitating model propagation among satellites. Additionally,
it optimises the scheduling of communication between “sink”
(master) satellites and the GS by leveraging the predictability
inherent in satellite orbiting patterns. In FELLO, the GS ini-
tially identifies an LEO satellite with superior communication
link quality to serve as an FL edge server. Subsequently, this
LEO server employs a clustering mechanism and evaluates
communication capability via optical ISLs to determine its
LEO clients. FedSyn is selected since it is the most common
centralised baseline method for comparison in the literature.
For decentralised FL techniques, FedLEO and FELLO meth-
ods were selected owing to their close resemblance to our
proposed method.

The experiments utilise 40 satellites that are sampled from
the constellation. These satellites are clustered with different

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 11

formations for MILP, and RL cluster formation approaches
which are (11-11-11-7) and (5-7-3-3-5-7-3-7), respectively
(numbers represent the size of each cluster). We repeat each
experiment 3 times and use the average as the final result.
Datasets and Models: In order to conduct an extensive
comparison between our proposed algorithm and the other
approaches, we utilised diverse datasets, namely CIFAR-10,
Imagenette and EuroSat. The CIFAR-10 dataset consists of
60000 32x32 colour images in 10 classes, with 6000 images
per class. The dataset is divided into five training batches and
one test batch, each with 10000 images. Imagenette is a subset
of 10 classified classes from the Imagenet dataset [52]. EuroSat
[53] is a real satellite dataset, containing 27,000, 64×64 pixel,
13-channel images collected by Sentinel-2A satellite, is used
in this experiment. This dataset includes 10 classes, such as
river, highway or forest. The RGB channels are utilised in our
experiments. ResNet-18, ResNet-20 and VGG-11 are utilised
as a training model for EuroSat, CIFAR10 and Imagenette
datasets, respectively. Both IID and non-IID data distributions
are considered among satellites. CIFAR-10 and Imagenette
are considered in the IID distribution and EuroSat, which
is a non-IID data dataset due to its spatial correlation and
temporal variability characteristics, is used for the non-IID
data distribution. We used both 32-bit single-precision (FP32)
and 8-bit low-precision (BM8) formats in model training. For
BM8, we have (4,3) and (2,5) representations.

B. Experimental Results

In this section, experimental results are discussed by consid-
ering three metrics, namely accuracy, training time and power.

1) Accuracy Analysis: Figure 4 presents the training curve
of the proposed FedOrbit as well as baseline techniques for
all datasets and models by using FP32 numbering format.
For all datasets and training models, the experiments report
that the FedSyn (centralised FL) has the highest accuracy
for CIFAR10, Imagenette and EuroSat datasets, which are
94.10%, 72.98%, and 96.36% respectively, due to more effec-
tive aggregation at the central server. The size of Imagnette
dataset is the main reason for its lower accuracy than the
others. Although in our setting, on average each satellite
visits the GS 5 times during 24 hours, the interval between
2 consequent visits may be less than one round of training
time. Based on the experiments, 2-3 training rounds can be
completed per day for FedSyn method based on the model and
dataset. So it takes almost 20-30 days for 60 training rounds
as listed in Table IV. In addition to the long training time,
communication with GS consumes more power than inter/intra
satellite communications.

FedOrbit-RL (cluster formation via RL) outperforms
FedOrbit-MILP (cluster formation via MILP), FedLEO and
FELLO in terms of accuracy for all datasets and training
models. On the other hand, although FedOrbit-MILP obtained
slightly lower accuracy compared to FedLEO, its accuracy is

(a) ResNet20-CIFAR10.

(b) VGG11-Imagenette.

(c) ResNet18-EuroSat

Fig. 4: Model accuracy of the proposed techniques vs baseline
FL techniques (FP32 format).

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 12

comparable to FELLO. The results reveal the impact of cluster
size on accuracy, where FedOrbit-RL outperforms the others
mostly due to the proper cluster number and size selection.
FedOrbit-RL is better than FedOrbit-MILP around 3 to 6
percent for different models and datasets. Figures 4a and 4c
show that although the FELLO technique has higher accuracy
at initial rounds, FedOrbit-MILP achieved higher accuracy at
final rounds. This is related to the dataset size as well as
the lower number of satellites in its cluster formation which
leads to faster convergence and lower accuracy. The reason to
utilise MILP was driven by its relatively simpler formulation
compared to RL, which translates into faster problem-solving
capabilities. This comparison represents a trade-off between
computational efficiency and training accuracy. Specifically,
the simplicity of MILP offers advantages in terms of reduced
power consumption and lower computational overhead, though
this comes with the drawback of reduced accuracy.

It is worth noting that the accuracy differences in IID
distribution are more significant that non-IID distribution. For
instance, the accuracy difference between FedOrbit-RL and
FedLEO for IID distribution (CIFAR10 & Imagenette datasets)
is almost 5%, while this difference for non-IID distribution
(EuroSat dataset) is less than 2%. This shows that although
FL techniques may reach higher accuracy in IID distribution,
accuracy improvement in non-IID distributions is more chal-
lenging. The impact of the number of contributed (clients)
satellites in the FL procedure can be seen in Figure 4a, in
which FELLO exhibits higher fluctuation due to considering
fewer satellites in its operation.

Table V presents the impact of floating point precision on
model accuracy on the proposed FedOrbit-RL and FedSyn
for all datasets and models by using both FP32 and BM8
numbering formats. FedOrbit-RL is considered in this section
due to its better performance compared to the others. Based
on the obtained results, the training curve and convergence
of BM8 was very similar to FP32 number format. From
the accuracy point of view, the accuracy degradation in
BM8 format is negligible compared with FP32. FedSyn FP32
achieved almost 0.51%, 0.34% and 0.46% higher accuracy
than FedSyn BM(2,5) for CIFAR10, Imagenette and EuroSat
datesets, respectively, as indicated in Table V.

In order to compare our proposed FedOrbit-RL BM8 with

TABLE IV: Performance Comparison of the proposed tech-
niques vs baseline FL techniques in FP32 format.

FL Approaches Accuracy (%) Training Time (Days)
CIFAR10 Imagenette EuroSat CIFAR10 Imagenette EuroSat

FedSyn 94.10 73.53 96.06 30 20 30
FedOrbit-RL 87.24 66.27 89.86 3.35 2.85 3.05

FedOrbit-MILP 84.15 60.09 85.94 3.55 3.05 3.25
FedLEO 81.79 61.01 87.88 3.3 2.8 3
FELLO 80.35 59.83 85.73 1.6 1.35 1.45

existing low precision approaches, Decentralised Low Preci-
sion Training (DLPT) approach [43] can be considered. Ac-
curacy degradation for training VGG11 model on Imagenette
dataset via DLPT approach is 2.19%, while it is only 0.54%
for our proposed method. FedOrbit-RL FP32 achieved almost
0.48%, 0.81% and 0.88% higher accuracy than FedOrbit-
RL BM(2,5) for CIFAR10, Imagenette and EuroSat datesets,
respectively, as indicated in Table V. It demonstrates that,
from an accuracy perspective, the influence of BM8 is more
pronounced in decentralised methods compared to centralised
methods. It is worth noting that although the accuracy dif-
ference among decentralised methods (i.e., FedOrbit, FedLEO
and FELLO) is significant, this difference is more considerable
in IID data distribution as illustrated in Figure 4. Hence, we
can conclude that decentralised methods are more suitable for
space applications due to the non-IID nature of space datasets.

2) Power Consumption and Training Time Analysis: The
final accuracy and average training time of the proposed
techniques and baseline FL techniques in FP32 numbering
format for 60 training rounds are presented in Table IV. The
best accuracy and worst training time are related to the FedSyn
method due to its centralised nature which requires higher
amount of communication with GS, aggregation in GS per
round and waiting to receive models from all satellites.

Based on experiments for both IID distributed datasets (i.e.,
CIFAR10 and Imagenette), and non-IID distributed dataset
(EuroSat), the FedOrbit-RL method achieved higher accuracy
(5.45%, 5.26%, and 1.98%, respectively) compared with the
FedLEO method in almost the same time (including the
waiting time for master satellites to enter the visibility zone of
GS for final aggregation). Moreover, FedOrbit-RL outperforms
FedOrbit-MILP in both accuracy and training time. This shows
the impact of cluster size and formation on accuracy, where
FedOrbit-RL reached higher accuracy due to using RL in its
cluster determination procedure.

The effect of the number of sample satellites on accuracy
and training time can be investigated by comparing FedOrbit-
RL and FELLO methods, where FedOrbit-RL uses 40 satellites
while FELLO uses 18 satellites in their training procedure. Al-
though Figure 4 shows that FedOrbit-RL has higher accuracy
compared with FELLO method, Table IV shows that FELLO
has the lowest training time among the selected approaches
due to a lower number of communications as a consequence

TABLE V: Accuracy Comparison Between FP32 and BM8.

FL Approaches Accuracy (%)
CIFAR10 Imagenette EuroSat

FedSyn FP32 94.10 73.53 96.06
FedSyn BM(2,5) 93.62 73.28 95.61
FedSyn BM(4,3) 93.46 72.96 94.88

FedOrbit-RL FP32 87.24 66.27 89.86
FedOrbit-RL BM(2,5) 86.82 65.73 89.09
FedOrbit-RL BM(4,3) 86.62 65.15 88.23

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 13

TABLE VI: Computing Time and Energy Consumption for
ResNet20 model on CIFAR10 dataset.

FL Approaches Computing Time (h) Avg. Energy Cons. (kWh)
Batch size 1 Batch size 32 Batch size 1 Batch size 32

FedSyn
BM(2,5)

16.25 – 0.14137 –

FedSyn FP32
(CPU)

197.87 90.23 0.49468 0.22558

FedSyn FP32
(GPU)

85.00 5.19 5.95 0.36367

FedOrbit-RL
FP32 (CPU)

– 33.50 – 0.08375

FedOrbit-RL
FP32 (GPU)

– 1.93 – 0.13507

of the smaller number of sample satellites.
In addition, Table IV indicates that the decentralised meth-

ods are 7-10 times faster than FedSyn due to their decentralised
structure, cluster formation, lower amount of communication
with GS and master satellite selection. Moreover, it shows that
model and dataset complexity and parameters have a direct
impact on training time (ResNet-based models require more
time than VGG-based approaches).

For a fair assessment of power consumption and training
time, these metrics are evaluated at consistent accuracy levels
across FL techniques. So, the baseline accuracy is set to
the worst-performing method for a given dataset, defined as
comparable accuracy (Comp. Acc.) in Figure 5. The power
consumption and training time of the ResNet20 model for
CIFAR10 dataset for 80% accuracy is depicted in Figure 5a.
FedOrbit-RL achieved a substantial speedup over FedSyn,
FedOrbit-MILP, FedLEO and FELLO by 56 hours (63.4%),
20 hours (38.5%), 40 hours (55.5%), and 6 hours (15.8%),
respectively. In addition, FedOrbit-RL achieved reductions
of 39.9%, 58.3%, 25.3%, and 59.9% in power consumption
compared to FedOrbit-MILP, FedLEO, FELLO, and FedSyn
methods, respectively.

Figure 5b depicts the power consumption and training time
for the VGG11 model on the Imagenette dataset. The figure
shows that FedOrbit-RL is 4 times faster than FedSyn due to its
decentralised structure, prediction-based cluster formation and
master satellite selection. Power consumption for FedOrbit-
RL, FedOrbit-MILP, FedLEO, FELLO, and FedSyn is 24.85,
34.45, 31.35, 17.5, and 90.07 kW, respectively. This results
in a 72.41% reduction by FedOrbit compared to FedSyn for
achieving 60% accuracy. Similarly, Figure 5c illustrates that
FedOrbit performs better in terms of power consumption and
training time of ResNet18 model for the EuroSat dataset, due
to considering the GS visiting pattern as well as RL prediction
in its master satellite selection.

3) Energy Optimisation Analysis: As mentioned before,
BM8 is integrated with FL to reduce the satellites’ energy
consumption. As Equation 16 shows, consumed energy is
calculated based on computing time and consumed power.

(a) ResNet20-CIFAR10 (Comp. Acc: 80%).

(b) VGG11-Imagenette (Comp. Acc: 60%).

(c) ResNet18-EuroSat (Comp. Acc: 85%).

Fig. 5: Training time and power consumption of the proposed
techniques vs baseline FL techniques.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 14

Based on the experiments conducted by Guo et al. [11], the
required computing time and consumed power for a batch size
of 1, including the forward and backward paths for training the
ResNet20 model on CIFAR10 dataset using BM(2,5) is 1.3 ms
and 8.7 W, respectively. Given these results, we can estimate
the computing time and energy consumption for FedSyn due
to the similarity of the training model and process.

Based on our experimental results, the computing time for
the ResNet20 model on the CIFAR10 dataset with a batch size
of 1, and for FedSyn using FP32 on GPU and CPU are 6.8
and 15.83 ms, respectively. We also obtained the same results
with a batch size of 32 for both FedSyn and FedOrbit-RL
techniques. In this case, the computing time for FedSyn using
FP32 on GPU and CPU are 13.3 and 231 ms, respectively.
Moreover, the computing time for FedOrbit-RL using FP32
on GPU and CPU are 4.94 and 85.76 ms, respectively. The
number of the forward and backward paths for each epoch is
calculated by dividing the number of data samples (60,000 for
CIFAR10) by the batch size (1 or 32). The computing time
for each epoch is calculated by Equation 17. In addition, the
consumed power on GPU and CPU are 70 W and 2.5 W,
respectively.

Table VI shows the computing time and average energy con-
sumption for the ResNet20 model on the CIFAR10 dataset for
FP32 and BM(2,5) for 30 epochs and 25 training rounds. For
the batch size of 1, BM(2,5) obtained significant improvement
in both computing time and energy consumption compared
with training on CPU and GPU. The results show that the
utilisation of BM(2,5) as low-precision arithmetic enhanced
the energy consumption by 3.5× compared with FP32 format
on the CPU for the FedSyn method.

Although both CPU and GPU can handle batch size one,
there are additional overheads associated with smaller batch
sizes. This overhead includes the time it takes to load data onto
the device and initialise computations. The experiments show
that CPU (due to advanced vectorization units) and GPU (due
to parallel processing) excel with larger batch sizes (i.e., 32),
while, FPGA along with BM8 offers enhanced performance for
low-latency, batch size one scenarios. In other words, Table VI
shows that the energy consumption for BM8 with a batch
size of one is more efficient than the CPU and GPU, and
comparable with a batch size of 32.

VI. CONCLUSION AND FUTURE WORK

We proposed a novel decentralised federated learning ap-
proach, FedOrbit, designed specifically for Low Earth Orbit
(LEO) satellite constellations. FedOrbit addresses the intricate
challenges arising from intermittent connectivity among satel-
lites, as well as the constraints posed by limited satellite power.

FedOrbit comprises a GS visiting pattern prediction algo-
rithm, an RL-based cluster formation algorithm, and block
minifloat arithmetic for model training to enhance training
time and reduce power consumption. Our experimental results

indicate that FedOrbit significantly improves training time and
power consumption compared to both centralised and other
decentralised FL techniques, with minimal impact on model
accuracy. Furthermore, it achieves higher accuracy when com-
pared to existing decentralised FL approaches for a range of
datasets and machine learning models.

Future studies might focus on optimising cluster forma-
tion and inter-cluster communications/aggregations to further
bolster model accuracy. Comparing existing cluster-based and
quantisation-based approaches with our proposed BM-based
FedOrbit-RL approach can be considered another future work.
Additionally, validating our proposed power model through
real-testbed implementation and hardware power measure-
ments stands as a consideration for future studies.

ACKNOWLEDGMENT

We thank the Defence Innovation Network and NSW State
Government for financial support of this project through grant
DIN Pilot Project grant 2022-23.

REFERENCES

[1] T. Pfandzelter, J. Hasenburg, and D. Bermbach, “Towards a computing
platform for the leo edge,” in Proceedings of the 4th International
Workshop on Edge Systems, Analytics and Networking, ser. EdgeSys
’21. ACM, 2021, p. 43–48.

[2] M. M. Gost, I. Leyva-Mayorga, A. Pérez-Neira, M. A. Vázquez, B. Soret,
and M. Moretti, “Edge computing and communication for energy-
efficient earth surveillance with leo satellites,” in 2022 IEEE Inter-
national Conference on Communications Workshops (ICC Workshops),
2022, pp. 556–561.

[3] B. Denby and B. Lucia, “Orbital edge computing: Machine inference in
space,” IEEE Computer Architecture Letters, vol. 18, no. 1, 2019.

[4] C. Wu, Y. Li, M. Xu, C. Guo, Z. Yin, W. Gao, and C. Xi, “A
comprehensive survey on orbital edge computing: Systems, applications,
and algorithms,” arXiv preprint arXiv:2306.00275, 2023.

[5] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics. PMLR, 2017, pp. 1273–
1282.

[6] A. U. Chaudhry and H. Yanikomeroglu, “Laser intersatellite links in
a starlink constellation: A classification and analysis,” IEEE Vehicular
Technology Magazine, vol. 16, no. 2, pp. 48–56, 2021.

[7] C. Wu, Y. Zhu, and F. Wang, “Dsfl: Decentralized satellite federated
learning for energy-aware leo constellation computing,” in 2022 IEEE
International Conference on Satellite Computing (Satellite). IEEE,
2022, pp. 25–30.

[8] M. Elmahallawy and T. Luo, “Optimizing federated learning in leo satel-
lite constellations via intra-plane model propagation and sink satellite
scheduling,” arXiv preprint arXiv:2302.13447, 2023.

[9] ——, “Asyncfleo: Asynchronous federated learning for leo satellite
constellations with high-altitude platforms,” 2022 IEEE International
Conference on Big Data (Big Data), pp. 5478–5487, 2022.

[10] C.-Y. Chen, L.-H. Shen, K.-T. Feng, L.-L. Yang, and J.-M. Wu, “Edge
selection and clustering for federated learning in optical inter-leo satellite
constellation,” arXiv preprint arXiv:2303.16071, 2023.

[11] C. Guo, B. Lou, X. Liu, D. Boland, P. H. Leong, and C. Zhuo, “Boost:
Block minifloat-based on-device cnn training accelerator with transfer
learning,” in 2023 IEEE/ACM International Conference on Computer
Aided Design (ICCAD). IEEE, 2023, pp. 1–9.

[12] S. Fox, S. Rasoulinezhad, J. Faraone, P. Leong et al., “A block mini-
float representation for training deep neural networks,” in International
Conference on Learning Representations, 2020.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 15

[13] M. R. Jabbarpour, B. Javadi, P. H. Leong, R. N. Calheiros, D. Boland,
and C. Butler, “On-board federated learning in orbital edge computing,”
in The 29th IEEE International Conference on Parallel and Distributed
Systems (ICPADS 2023). IEEE, 2023.

[14] H. Chen, M. Xiao, and Z. Pang, “Satellite-based computing networks
with federated learning,” IEEE Wireless Communications, vol. 29, no. 1,
pp. 78–84, 2022.

[15] B. Matthiesen, N. Razmi, I. Leyva-Mayorga, A. Dekorsy, and
P. Popovski, “Federated learning in satellite constellations,” IEEE Net-
work, 2023.

[16] D. Mäenpää, “Towards peer-to-peer federated learning: Algorithms
and comparisons to centralized federated learning,” Master’s thesis,
Linköpings University, 2021.

[17] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “Ground-
assisted federated learning in leo satellite constellations,” IEEE Wireless
Communications Letters, vol. 11, no. 4, pp. 717–721, 2022.

[18] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimization,”
OPT2020: 12th Annual Workshop on Optimization for Machine Learn-
ing, pp. 1–11, 2020.

[19] N. Razmi, B. Matthiesen, A. Dekorsy, and P. Popovski, “On-board
federated learning for dense leo constellations,” in ICC 2022-IEEE
International Conference on Communications. IEEE, 2022, pp. 4715–
4720.

[20] ——, “On-board federated learning for satellite clusters with inter-
satellite links,” arXiv preprint arXiv:2307.08346, 2023.

[21] ——, “Scheduling for ground-assisted federated learning in leo satel-
lite constellations,” 2022 30th European Signal Processing Conference
(EUSIPCO), pp. 1102–1106, 2022.

[22] M. Elmahallawy and T. Luo, “Fedhap: Fast federated learning for
leo constellations using collaborative haps,” in 2022 14th International
Conference on Wireless Communications and Signal Processing (WCSP).
IEEE, 2022, pp. 888–893.

[23] J. So, K. Hsieh, B. Arzani, S. Noghabi, S. Avestimehr, and R. Chandra,
“Fedspace: An efficient federated learning framework at satellites and
ground stations,” arXiv preprint arXiv:2202.01267, 2022.

[24] J. Lin, J. Xu, Y. Li, and Z. Xu, “Federated learning with dynamic aggre-
gation based on connection density at satellites and ground stations,” in
2022 IEEE International Conference on Satellite Computing (Satellite).
IEEE, 2022, pp. 31–36.

[25] L. Wu and J. Zhang, “Fedgsm: Efficient federated learning for
leo constellations with gradient staleness mitigation,” arXiv preprint
arXiv:2304.08537, 2023.

[26] Z. Lin, Z. Chen, Z. Fang, X. Chen, X. Wang, and Y. Gao, “Fedsn: A
general federated learning framework over leo satellite networks,” arXiv
preprint arXiv:2311.01483, 2023.

[27] M. Elmahallawy and T. Luo, “One-shot federated learning for leo
constellations that reduces convergence time from days to 90 minutes,”
arXiv preprint arXiv:2305.12316, 2023.

[28] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE signal processing
magazine, vol. 37, no. 3, pp. 50–60, 2020.

[29] H. H. Yang, Z. Liu, T. Q. Quek, and H. V. Poor, “Scheduling policies
for federated learning in wireless networks,” IEEE transactions on
communications, vol. 68, no. 1, pp. 317–333, 2019.

[30] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and
D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[31] C. Hardy, E. Le Merrer, and B. Sericola, “Distributed deep learning on
edge-devices: feasibility via adaptive compression,” in 2017 IEEE 16th
international symposium on network computing and applications (NCA).
IEEE, 2017, pp. 1–8.

[32] F. Sattler, S. Wiedemann, K.-R. Müller, and W. Samek, “Robust and
communication-efficient federated learning from non-iid data,” IEEE
transactions on neural networks and learning systems, vol. 31, no. 9,
pp. 3400–3413, 2019.

[33] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd:
Communication-efficient sgd via gradient quantization and encoding,”
Advances in neural information processing systems, vol. 30, 2017.

[34] A. Reisizadeh, A. Mokhtari, H. Hassani, A. Jadbabaie, and R. Pedarsani,
“Fedpaq: A communication-efficient federated learning method with

periodic averaging and quantization,” in International Conference on
Artificial Intelligence and Statistics. PMLR, 2020, pp. 2021–2031.

[35] S. Horváth, D. Kovalev, K. Mishchenko, P. Richtárik, and S. Stich,
“Stochastic distributed learning with gradient quantization and double-
variance reduction,” Optimization Methods and Software, vol. 38, no. 1,
pp. 91–106, 2023.

[36] N. Shlezinger, M. Chen, Y. C. Eldar, H. V. Poor, and S. Cui, “Uveqfed:
Universal vector quantization for federated learning,” IEEE Transactions
on Signal Processing, vol. 69, pp. 500–514, 2020.

[37] Y. Li, W. Li, and Z. Xue, “Federated learning with stochastic quantiza-
tion,” International Journal of Intelligent Systems, vol. 37, no. 12, pp.
11 600–11 621, 2022.

[38] R. Hönig, Y. Zhao, and R. Mullins, “Dadaquant: Doubly-adaptive quan-
tization for communication-efficient federated learning,” in International
Conference on Machine Learning. PMLR, 2022, pp. 8852–8866.

[39] X. Dai, X. Yan, K. Zhou, H. Yang, K. K. Ng, J. Cheng, and Y. Fan,
“Hyper-sphere quantization: Communication-efficient sgd for federated
learning,” arXiv preprint arXiv:1911.04655, 2019.

[40] S. Chen, C. Shen, L. Zhang, and Y. Tang, “Dynamic aggregation for
heterogeneous quantization in federated learning,” IEEE Transactions
on Wireless Communications, vol. 20, no. 10, pp. 6804–6819, 2021.

[41] Y. Liu, P. Huang, F. Yang, K. Huang, and L. Shu, “Quasyncfl: Asyn-
chronous federated learning with quantization for cloud-edge-terminal
collaboration enabled aiot,” IEEE Internet of Things Journal, 2023.

[42] Y. Ji and L. Chen, “Fedqnn: A computation–communication-efficient
federated learning framework for iot with low-bitwidth neural network
quantization,” IEEE Internet of Things Journal, vol. 10, no. 3, pp. 2494–
2507, 2022.

[43] S. A. Aketi, S. Kodge, and K. Roy, “Low precision decentralized
distributed training over iid and non-iid data,” Neural Networks, vol.
155, pp. 451–460, 2022.

[44] H. Kaushal and G. Kaddoum, “Optical communication in space: Chal-
lenges and mitigation techniques,” IEEE communications surveys &
tutorials, vol. 19, no. 1, pp. 57–96, 2016.

[45] V. W. Chan, “Free-space optical communications,” Journal of Lightwave
technology, vol. 24, no. 12, pp. 4750–4762, 2006.

[46] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2019 (Revi-
sion of IEEE 754-2008), pp. 1–84, 2019.

[47] Y. Jing, Z. Yang, Y. Zhao, H. Wang, W. Wang, S. Rahman, and J. Zhang,
“Energy-efficient routing based on a genetic algorithm for satellite laser
communication,” Optics Express, vol. 31, no. 5, pp. 8682–8695, 2023.

[48] Y. Wang, J. Zhang, X. Zhang, P. Wang, and L. Liu, “A computation
offloading strategy in satellite terrestrial networks with double edge
computing,” in 2018 IEEE international conference on communication
systems (ICCS). IEEE, 2018, pp. 450–455.

[49] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
communications surveys & tutorials, vol. 19, no. 4, pp. 2322–2358, 2017.

[50] I. Ali, N. Al-Dhahir, and J. E. Hershey, “Predicting the visibility of
leo satellites,” IEEE Transactions on Aerospace and Electronic Systems,
vol. 35, no. 4, pp. 1183–1190, 1999.

[51] C. He, S. Li, J. So, X. Zeng, M. Zhang, H. Wang, X. Wang,
P. Vepakomma, A. Singh, H. Qiu et al., “Fedml: A research li-
brary and benchmark for federated machine learning,” arXiv preprint
arXiv:2007.13518, 2020.

[52] J. Howard et al., “Imagenette,” URL https://github. com/fastai/ima-
genette, vol. 5, p. 11, 2020.

[53] P. Helber, B. Bischke, A. Dengel, and D. Borth, “Eurosat: A novel dataset
and deep learning benchmark for land use and land cover classification,”
IEEE Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, vol. 12, no. 7, pp. 2217–2226, 2019.

JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, XXX 16

Mohammad Reza Jabbarpour is currently a re-
search fellow at Western Sydney University, Aus-
tralia. Prior to this appointment, he was Assistant
Professor in the ICT department of Niroo Research
Institute (NIR), Tehran, Iran. He also served as an
Assistant Professor in the Department of Computer
Engineering, Islamic Azad University North Tehran
Branch, Iran, from 2016 to 2018. He has received
various awards including WiC 2015: Asia Invention
Association Grand Award, Gold medal, PECIPTA
2015: Bronze Medal, Singapore Challenge: Merit

award for his patented idea. His current research interests include Blockchain,
Satellite Resiliency, Vehicular Network and Connected Vehicles, Federated
Learning, and Machine learning.

Bahman Javadi is a Full Professor in Networking
and Cloud Computing at Western Sydney University,
Australia. He has received multiple national awards
including the IoT Impact Awards and InnovationAUS
Awards for Excellence for his research projects. His
research interests include Cloud computing, Edge
Computing, performance evaluation of large-scale
distributed computing systems, and reliability and
fault tolerance. He is a Senior Member of ACM, Se-
nior Member of IEEE, Executive Committee Mem-
ber of the IEEE Technical Committee on Cloud

Computing (TCCLD), and Senior Fellow of the Higher Education Academy
of UK.

Philip H.W. Leong received the B.Sc., B.E. and
Ph.D. degrees from the University of Sydney. In
1993 he was a consultant to ST Microelectronics
in Milan, Italy working on advanced flash memory-
based integrated circuit design. From 1997-2009 he
was with the Chinese University of Hong Kong.
He is currently Professor of Computer Systems in
the School of Electrical and Computer Engineering
at the University of Sydney, Visiting Professor at
Imperial College, Chief Technology Advisor to Clus-
terTech and Chief Technology Officer at CruxML.

Rodrigo N. Calheiros is an Associate Professor
in the School of Computer, Data and Mathematical
Sciences, Western Sydney University, Australia. He
has worked in the field of Cloud computing and re-
lated areas since 2008, and since them he carried out
R&D supporting research in the area. His research
interests also include Big Data, Internet of Things,
Fog Computing, and their application.

David Boland received the M.Eng. degree (Hons.)
in information systems engineering and the Ph.D. de-
gree from Imperial College London, London, U.K.,
in 2007 and 2012, respectively. From 2013 to 2016,
he was at Monash University, Melbourne, VIC, Aus-
tralia, as a Lecturer before moving to The University
of Sydney, Sydney, NSW, Australia. His current
research interests include numerical analysis, opti-
misation, design automation, and machine learning.

