
A functional basis for efficient physical-layer classical control in quantum processors

Harrison Ball,1 Trung Nguyen,2, 1 Philip H. W. Leong,2 and Michael J. Biercuk1, ∗

1ARC Centre of Excellence for Engineered Quantum Systems,
School of Physics, The University of Sydney, NSW 2006 Australia

2School of Electrical and Information Engineering, The University of Sydney, NSW 2006 Australia
(Dated: October 19, 2016)

The rapid progress seen in the development of quantum coherent devices for information processing has
motivated serious consideration of quantum computer architecture and organization. One topic which remains
open for investigation and optimization relates to the design of the classical-quantum interface, where control
operations on individual qubits are applied according to higher-level algorithms; accommodating competing
demands on performance and scalability remains a major outstanding challenge. In this work we present a
resource-efficient, scalable framework for the implementation of embedded physical-layer classical controllers
for quantum information systems. Design drivers and key functionalities are introduced, leading to the selection
of Walsh functions as an effective functional basis for both programming and controller hardware implementa-
tion. This approach leverages the simplicity of real-time Walsh-function generation in classical digital hardware,
and the fact that a wide variety of physical-layer controls such as dynamic error suppression are known to fall
within the Walsh family. We experimentally implement a real-time FPGA-based Walsh controller producing
Walsh timing signals and Walsh-synthesized analog waveforms appropriate for critical tasks in error-resistant
quantum control and noise characterization. These demonstrations represent the first step towards a unified
framework for the realization of physical-layer controls compatible with large-scale quantum information pro-
cessing.

I. INTRODUCTION

The suppression of error in quantum systems is a key con-
sideration in many studies of quantum computer architec-
ture [1–6], and emerged early in the community [7] as a sig-
nificant driver for system design. Unsurprisingly, many stud-
ies have focused on the extreme demands in quantum de-
vice performance and allocation imparted by logical encod-
ing in quantum error correction (QEC), revealing substan-
tial resource demands on the path to fault-tolerance. Simul-
taneously, open-loop dynamic error suppression (DES) tech-
niques [8–23] operating at the physical layer have widely been
identified as an important potential complement to QEC [5,
24–26]. This is in part because of their potential to im-
prove the resource-efficiency of QEC encoding by reducing
the physical-qubit error rate. We expect that in general, DES-
operations will be implemented at the physical level for effec-
tively all physical qubit manipulation.

DES techniques have now been experimentally demon-
strated to be highly effective [27–32], but are themselves com-
plex, and consideration of overhead and resource allocation
associated with their application is also necessary. For in-
stance, general DES protocols require classical control hard-
ware appropriate for the generation of precisely timed and
temporally modulated sequences of physical operations tai-
lored to the underlying hardware noise model. The perfor-
mance specifications of these classical controllers (e.g. in
timing resolution or latency [23, 33]) become increasingly de-
manding as net error suppression requirements increase.

The bulk of today’s control-hardware solutions employing
high-performance but high-cost waveform generators at the

∗ To whom correspondence should be addressed:
michael.biercuk@sydney.edu.au

benchtop are not scalable. Meanwhile, custom electronics
solutions [34, 35] have focused on reproducing conventional
control capabilities in streamlined hardware. To date, studies
in this space have not addressed the key opportunity to effi-
ciently allocate classical control hardware resources by con-
sidering how to leverage the underlying physics of the control
operations themselves.

In this manuscript we address this challenge by first propos-
ing a functional basis for physical-layer classical controllers
compatible with both conventional digital electronics and a
wide variety of quantum control protocols. Our analysis iden-
tifies the Walsh functions [36, 37] as providing a critical math-
ematical link between the physics of quantum control and
the requisite physical implementation of control timing, gate
implementation, modulation-waveform synthesis, and envi-
ronmental noise spectroscopy. We build on a growing body
of literature focusing on Walsh functions in quantum con-
trol [31, 38–46], and consider here how the use of Walsh func-
tions as a functional programming basis dramatically sim-
plifies the design of embedded classical controllers at the
physical-layer. In order to demonstrate the benefits of work-
ing within the overarching Walsh framework, we build cus-
tomized real-time electronic modules in a field-programmable
gate array (FPGA) and demonstrate critical functionality in-
cluding: Walsh-function generation, sequencing based on
Walsh-timing information, Walsh-synthesis of analog DES
modulation waveforms, and Walsh-based noise spectroscopy
and signal reconstruction. These functions demonstrate the
core capabilities of a high-efficiency classical controller at
the physical layer, and are shown to outperform generic sig-
nal synthesis in an embedded microprocessor by factors of
> 105 in terms of signal latency and required computational
resources. Our demonstrations highlight a path to realize
scalable, “lightweight,” embedded control solutions providing
high-performance quantum control capabilities.

2

The remainder of this manuscript is organized as follows.
We begin by introducing the relevance of Walsh functions
for physical-layer control of quantum information systems in
Sec. II. We then move on to articulate key Summary Require-
ments for physical-layer controller functionality in the Walsh
framework as well as Design Drivers constraining potential
solutions in Sec. III, followed by an experimental implementa-
tion of a resource-efficient real-time embedded controller ad-
dressing the desiderata laid out earlier in the manuscript. We
present the relevant controller architecture, demonstrations of
representative output, and a comparative analysis relative to a
simple microcontroller-based implementation before provid-
ing a summary and conclusion in Sec. IV.

II. WALSH FUNCTIONS A FUNCTIONAL
PROGRAMMING BASIS FOR PHYSICAL-LAYER

CONTROLLERS

Physical layer controllers have the role of implementing
control operations in a manner invisible to higher level oper-
ations, effectively constituting a type of quantum firmware.
This firmware is designed to enact manipulations on phys-
ical qubits according to sequencing determined in an ab-
stracted algorithm, and in a manner compatible with the scal-
ing demands of quantum error correction. This implies that
physical-layer controls must be robust against ambient and
control-based noise sources, and even capable of suppressing
error below fault-tolerance thresholds. Our objective here is
to understand how these functional requirements, combined
with system-level constraints, drive the design of classical
controllers at the physical level, and how such design con-
siderations in turn affect the choice of control framework.

Contemporary system-level analyses of quantum computer
architecture [5] make clear that there will be a need for ded-
icated classical control hardware, often discussed in a phys-
ically distributed hierarchy [34, 35], with dedicated local re-
sources at the physical-qubit layer. In this generalized frame-
work electronics operating at the physical level can be thought
of in the context of embedded controllers, bringing with them
a new class of specific design constraints. Such embedded
controllers must operate semi-autonomously within a hierar-
chical control architecture, applying and managing complex
physical-layer protocols on demand from a master controller
operating at higher levels of system abstraction.

In the most naive approach, one may consider implement-
ing physical-layer controllers using standard microcontrollers
generating and outputting relevant control signals. However,
achieving broad flexibility of the controller’s functionality
through such general-purpose hardware leads to degraded per-
formance; the controller effectively provides unnecessary ca-
pability to the system (e.g. not all possible signal output pat-
terns will be necessary to control qubits), and simultaneously
introduces shortcomings in terms of latency and the complex-
ity of programming the device relative to application-specific
designs.

We ask the question whether it is possible to constrain the
space of available controls in such a way as to both provide all

necessary physical-layer control and sequencing functionality
and simplify the underlying classical hardware. Our analysis
answers this question in the affirmative; the identification of
an appropriate mathematical framework can provide a critical
link between a (truncated) space of allowed quantum control
protocols and sequences and the architecture of the associ-
ated hardware. Here, we identify the Walsh functions as a
simple encoding basis for the the physical layer controller,
bridging the hardware-software interface for quantum con-
trol. This family of bi-valued piecewise-constant functions,
Fig. 1a, has seen a large variety of applications in digital signal
processing [36, 37], and has more recently been adopted in the
fields of quantum control and quantum information (see Ap-
pendix A for a full summary). In our analyses we consider the
Walsh functions as a single unifying mathematical and pro-
gramming basis for physical-layer control in quantum infor-
mation processors, leveraging the following key strengths:

Use for a diversity of applications in quantum control:
This includes dynamical decoupling for quantum memory
(Fig. 1b) [40, 46], Walsh-modulated (Fig. 1c) dynamically
protected single-qubit gates (including well known compos-
ite pulses) [31, 42, 47], dynamically protected multiqubit
gates [48, 49], noise spectroscopy and real-time quantum sig-
nal reconstruction [43], the construction of quantum algo-
rithms [39] (language therein refers to Hadamard matrices),
and the construction of quantum circuits for the implemen-
tation of unitary operators [45, 50]. Across various applica-
tions, the Walsh family of controls is shown to incorporate
previously known sequences and protocols in a single unify-
ing mathematical framework.

Compatibility with classical digital hardware: This arises
from their bi-valued representation and composition from seg-
ments with minimum duration τ = βTc, defined as integer
multiples of an underlying digital clock cycle, Tc. The period
τ defines all other periods within a Walsh function, and gives
total sequence duration as a power-of-two multiple of τ . This
structure is compatible with both minimum-timing [33] and
timing-precision [51] constraints in DES, and is also easily
realized in hardware (see Sec. III A).

Simple programming: The error suppressing properties of
Walsh DES protocols are captured via a small number of criti-
cal parameters, such as the Paley-ordered index of the selected
Walsh function, and Walsh-synthesized DES waveforms are
sparse in the Walsh basis. For instance the red trace appearing
in Fig. 1c consists only of a weighted sum of Walsh functions
W0 and W3 (subscripts denote the Paley-ordered index, see
Sec. III A), but still provides first-order noise filtering com-
parable with more complex modulation techniques [31, 42].
As a result only limited information is required to define a
high-performance Walsh-DES protocol, minimizing the clas-
sical communication necessary to program the controller as
well as the memory required to produce and store a modula-
tion waveform.

These characteristics, and the demonstrations surveyed in
Appendix A, provide compelling evidence that Walsh func-
tions form a suitable programming basis for the implementa-
tion of the physical layer controller. In summary, if we restrict
ourselves to timing patterns and controls readily represented

3

30

28

26

24

22

20

18

16

14

12

10

8

6

4

2

0

P
al

ey
 O

rd
er

ed
 W

al
sh

 F
un

ct
io

ns

0 5 10 15 20 25 30

Time Step

31

29

27

25

23

21

19

17

15

13

11

9

7

5

3

1

4
2
0
-2

0 T/8 T/4 3T/8 T/2 5T/8 3T/4 7T/8 T

2

1

0

Time

W
al

sh
 F

ilt
er

 V
al

ue
 (a

.u
.)

1st Order

2nd Order

a)

c)

T/16 3T/16 5T/16 7T/16 9T/16 11T/16 13T/16 15T/16

Time

W12

WDD12

b)

FIG. 1. a) A finite set of the Walsh functions appearing in Paley
ordering with normalized total durations. Walsh functions high-
lighted in bold correspond to the Thue-Morse subset, possessing
Paley-ordered indices with the highest binary Hamming weight. b)
Example trace showing how Paley-order Walsh function with index
12, W12 yields the pulse locations for a WDD12 sequence via the
location of digital transitions. Vertical lines schematically indicate
control-pulse locations, normalized to total time, T . c) Example
Walsh synthesized filter waveforms providing first and second order
noise filtering. Red trace composed of Walsh functions highlighted
in red above, blue trace composed of Walsh functions highlighted in
both red and blue. Red dashed line indicates that arbitrary shapes
for individual pulse segments can be accommodated with the Walsh
waveform defining the overall amplitudes of each segment [42].

in mathematical framework of Walsh functions, we will be
able to both accomplish a wide range of relevant control tasks
and also streamline the architecture of the control hardware.
We therefore proceed by considering how the key function-
ality required of a physical layer controller may be mapped
to the design and programming of hardware using the Walsh
basis.

III. EXPERIMENTAL IMPLEMENTATION OF AN FPGA
WALSH CONTROLLER

In order to demonstrate the value of this design framework
for physical layer classical controllers we are motivated
to develop a real-time Walsh controller based on a field-
programmable gate array (FPGA). Synthesizing the practical
demands associated with the application of quantum control
operations in the Walsh framework for either algorithmic
sequencing at the physical level or DES, we define a set of
summary requirements which capture the required output
performance and characteristics of the controller. These
requirements then inform the specific experimental demon-
strations which follow. A broad overview of the use of
Walsh functions in quantum control providing justification
of these requirements is presented in Appendix A. For full
mathematical details describing the Walsh functions in the
context of DES see Refs. [40, 42].

Summary Requirements:

(1) Generate time-scaled Walsh functions to establish timing
patterns for algorithmic execution or DES application.

(2) Synthesize analog waveforms or digital programming in-
structions from weighted sums of Walsh functions and use
them to modulate a control system in time.

(3) Trigger the generation and output of an analog Walsh-
synthesized waveform or other system output syn-
chronously with the Walsh timing system.

(4) Repeat the resulting Walsh-timed sequence of operations
a user-defined number of times, meeting needs for long-
time memory storage.

(5) Employ Walsh-based signal reconstruction and spectrum
analysis using sensor inputs derived from e.g. dedicated
sensor qubits.

Even with these functional requirements in hand, there
are many approaches to realizing appropriately synthesized
outputs in an embedded FPGA controller, and we must there-
fore consider system-level design drivers that will narrow our
choice of implementation.

Design Drivers:

(1) The need for “lightweight” designs minimizing the use of
computational hardware in order to maximize scalability.

(2) Constraints on communication bandwidth to the embed-
ded controller, mandating simple programming, espe-
cially when deployed in cryogenic environments.

(3) The ability to adjust controller outputs with minimum la-
tency based on new information derived at the physical
level or from higher-level algorithmic instructions

4

Consideration of these design drivers narrows the space of
acceptable controller designs by steering implementation to-
wards real-time waveform synthesis instead of precompila-
tion of output control waveforms within the embedded con-
troller. This approach dramatically reduces hardware memory
requirements and also minimizes the latency to output of the
desired waveform. We proceed by providing an example im-
plementation meeting both the Summary Requirements and
the Design Drivers articulated above. The architecture which
we employ does not represent a unique solution, but as we will
show, achieves the desired performance with significant gains
relative to alternate approaches.

In the remainder of this section we describe and experimen-
tally demonstrate the functionality achieved for our Walsh-
programmed controller, and provide a detailed description of
the hardware implementation. We broadly divide discussion
of FPGA performance into the tasks of control-signal gener-
ation and system identification. We begin our discussion by
introducing the Walsh Generator as the fundamental module
used throughout this work, and then describe how various sub-
systems function in combination to permit a broad range of
complex outputs within the Walsh basis.

A. Architecture for controller output-stage

The performance of our FPGA controller architecture is
summarized in Figs. 2 and 3, building on modules described
in detail in Appendix B. The key element of our approach
is a hardware-efficient Walsh Generator (Fig. 2) performing
modulo-2 addition of Rademacher functions [52] according
to the binary representation of the Paley-ordered Walsh in-
dex [53], via combinatorial logic. We construct the Walsh
function of Paley order l as

Wl(x) =
m−1⊕
j=0

bjRj(x) (1)

where x ∈ [0, 1] defines the continuous domain, bj ∈
{0, 1} are bit-values in the binary representation of l, written
(bm−1bm−2...b0)2, and ⊕ denotes modulo-2 addition. The
building blocks in this construction are the Rademacher func-
tions, with the jth order Rademacher defined by

Rj(x) = [1− sgn
[
sin
(
2j+1πx

)]
]/2, j ≥ 0. (2)

This corresponds to a digital “clock” starting in the 0 state,
and switching between state values {0, 1} with frequency 2j

(period 2−j). Following Eq. 1, target Walsh functions are gen-
erated in real time via composition of the Rademacher func-
tions under modulo-2 addition. An example of this construc-
tion for Walsh function W12(x) is presented in the lower panel
of Fig. 2. All Walsh functions defined by Eq. 1 start with ini-
tial value 0, and in particular the constant-valued zeroth order
function is W0(x) = 0. For some tasks, however, it is use-
ful to redefine the Walsh basis with a non-zero value for the
zeroth-order. For this we define the complement Walsh basis

R0
R1
R2
R3
R4
R5
R6

W12
121086420

Time (µs)

Enable
Clk Expand

Out

b2

R0 R1 R2 Rm-1

Rademacher Generator

b0

b1

bm-1

. .
 .

P
al

ey
 O

rd
er

 (B
in

ar
y)

LUT
LUT

LUT

LUT

In
Out

W
al

sh
 G

en
er

at
or

. .
 .

1

5"
LUT

0
1 In

bj

Rj

Out

FIG. 2. Schematic of a high-efficiency real-time Walsh-function gen-
erator implemented in FPGA. Square-wave Rademacher functions
are summed with the binary digits of the desired Walsh function in
Paley ordering via a cascade of lookup tables (LUT), each composed
of an XOR gate and a multiplexer. Timing of the Rademacher func-
tions is set by the Clk Expand input such that the base time period
of the Walsh function is a fixed multiple of the clock period. The
Enable input begins the signal generation via an external hardware
trigger. Lower panel shows real-time oscilloscope data-capture of
Rademacher functions of various orders, with period increasing by a
factor of two with each increase in the Rademacher order. The two
light blue Rademachers (R2 and R3) undergo modular addition via
the Walsh Generator to form the output Walsh function with Paley or-
der 12 (12 = 23 + 22, or 12 → 1100, b2 = b3 6= 0), shown in dark
blue at the bottom of the figure. Additional circuitry has been con-
structed to route Rademacher functions to digital output pins for this
diagnostic measurement. In this demonstration we employ a Xilinx
Zynq 7010 as part of a Dual-core ARM Coretex A9 + FPGA system-
on-chip packaged by Red Pitaya.

via a bit-inversion of Eq. 1 as

Wl(x) = Wl(x)⊕ 1 (3)

which is also generated by the Walsh Generator module in
Fig. 2 after a trivial modification.

Leveraging the ability to generate Walsh functions of ar-
bitrary order in real time we develop complex modules for
Walsh-timing signal generation and Walsh-based waveform
synthesis, in order to deliver on the Summary Requirements
outlined above. All submodules are synchronized to the same
100 MHz system clock supplied by the FPGA hardware. First,
as represented in Fig. 3 the Walsh Timing Sequencer deter-
mines the timing of application of physical-layer control oper-
ations such as WDD, with control operations applied on rising
and falling edges of the Walsh functions scaled temporally by

5

5004003002001000
Time (a.u.)

2.50.0
Time From Trigger (a.u.)

I-DAC
Walsh

Sequences

Trigger
Walsh Timing

Repeat

0
1
2
3
4
5

4.5 Clock Cycles

a)

b) c)

Updated	8	July,	16	

weights, Xk

mode

Data valid

R

Timing
Sequencer

Walsh Mod.
Generator

start
reset

s

clk

Trigger W* I

Q
t1

clk

t2

Edge Detect
clk

Repeat Module

(WalshGenerator)n

Rademacher Gen

Walsh Filter
Synthesizer

Mode Select

2 ch
DAC

I - DAC

Q - DAC
AM QAM ΦM

Edge Detect

Walsh Generator

...

FIG. 3. Schematic of a high-efficiency real-time Walsh-based controller implemented in FPGA. a) Key subsystems used to fulfil the Summary
Requirements listed in the main text. Inputs to the Timing Sequencer include “start” which triggers the output, “reset” which resets the state
of the system, “repeat” which determines, R, the number of sequence repeats , “t1” which sets the clock expansion on signal “clk” for the
primary Walsh timing signal and “order” which selects the Paley ordered Walsh function to define the timing signal. The Walsh Modulation
Generator takes as input the “Trigger” signal output by the Timing Sequencer as well as another clock and clock-expansion parameter. The
Walsh Filter Synthesizer takes input Walsh sequences, denoted W* as well as “weights” which define the analog Walsh synthesis coefficients,
“mode” which selects the modulation protocol, and a clock. All clock signals are generated by a phase-lock-loop. We employ two clocks
with equivalent frequencies but differing by a π phase shift for the Timing Sequencer and the two subsequent modules respectively; this
results in a half-clock-cycle delay as observed in panel (c). b) Representative example outputs of the relevant main subsystems using our
FPGA implementation and captured using an oscilloscope. Red vertical dotted lines indicate trigger locations associated with Walsh timing,
here W3 repeated twice. In this example I-DAC corresponds to an AM-only Walsh noise filtering protocol highlighted in c) The modulation
waveform for each pulse provides a first-order Walsh Amplitude Modulated Filter via a weighted sum of W0 and W3. The first six Walsh
functions generated by the Walsh Modulation Generator on a trigger from the Timing Sequencer are shown. Again, in order to access signals
not typically routed directly to FPGA outputs (e.g. the synthesized Walsh functions), additional FPGA circuitry has been implemented for
diagnostics only.

parameter t1. For this task we use Walsh functions of the form
Wl(x) where the first rising edge occurs after x = 0, so it re-
mains useful as a timing trigger in real devices with (small)
finite physical delay times. Another critical task of the FPGA
is to generate, in real time and on a designated trigger, a set of
Walsh functions which are then used to form an analog wave-
form as a superposition via standard techniques in Walsh syn-
thesis. Outputs of the Walsh Timing Sequencer generated by
an Edge Detect submodule trigger a Walsh Modulation Gen-
erator module, which uses n copies of the Walsh Generator to
produce, in parallel, the first n Walsh functions in Paley or-
der. For this task we use Walsh functions of the form Wl(x)
to enable waveform synthesis with a non-zero constant-offset
component (W0(x) = 1).

The resultant Walsh functions, scaled by timing informa-
tion t2, are fed into the Walsh Filter Synthesizer where they
are combined in real time with user-defined weights, Xk. The
outputs of this module are streaming digital programming in-
structions representing a modulation waveform for a control
operation within the Walsh family. We customize solutions
for Walsh filter synthesis for three key modulation techniques
in use: amplitude modulation (AM) of a control signal im-

plementing a Pauli-x operation for suppression of dephas-
ing noise; phase modulation (ΦM) for suppression of ampli-
tude damping noise; and Quadrature Amplitude Modulation
(QAM) employed for simultaneous suppression of noise in
both quadratures. Through this approach we can realize a
wide variety of DES modulation protocols such as Walsh am-
plitude modulated filters [42].

Our controller architecture segregates pulsed-carrier syn-
thesis (resonant with the qubit transition) from baseband
modulation generation, providing a range of modulation im-
plementation options. For instance, we know that Walsh-
synthesized modulation waveforms may be used either to di-
rectly define the shape of a square pulse, or to define the
maximum-amplitude scaling of pulse segments with arbitrary
shape (e.g. Gaussian), as shown in Fig. 1c. Hence the down-
stream use of signals I and Q may be tailored to the needs
of a specific hardware system (see Fig. 5 in Appendix B for
details). In our example implementation these signals are
constructed to directly program a digital-to-analog converter
(DAC). The DAC outputs voltages that may be used to drive
the in-phase (I-DAC) and quadrature (Q-DAC) channels of an
IQ mixer which directly modulates the near-resonant carrier.

6

Example digital and analog output signals captured by a
mixed-signal oscilloscope are demonstrated in the lower panel
of Fig. 3. Here the output is a first-order Walsh-Amplitude-
Modulated Filter triggered synchronously with a repeated W3

timing pattern. This particular gate has been experimen-
tally demonstrated to provide efficient suppression of errors
induced by non-commuting dephasing noise [31]. Timing,
given by a repeated Walsh sequence, could be used for WDD
application in error suppression or system identification as de-
scribed in the next section. Total system latency from trigger
to output of the analog waveform is only 4.5 clock cycles. A
detailed performance comparison relative to programming of
a conventional microcontroller is provided in Sec. III C.

B. Real-time Walsh signal reconstruction

Another set of tasks in implementing the embedded con-
troller relates to the application of sensing and signal-
reconstruction techniques using embedded sensors at the
hardware level. We proceed by defining an approach con-
sistent with Walsh control and leveraging concepts devel-
oped in [43] for real-time signal reconstruction using Walsh-
modulated quantum sensors. The implementation of a real-
time Walsh-signal-reconstruction protocol outlined in [43] re-
quires functionality similar to that described above. This pri-
marily includes the ability to sequence WDD on multiple par-
allel sensors and then process the resulting projective mea-
surements in order to determine a decomposition of the un-
derlying noise process in the Walsh basis.

Given an ensemble of qubits, each subjected to a time-
varying dephasing field b(t), and modulated by a Walsh dy-
namic decoupling sequence of different orders defined by
Wk(t/T), each will accumulate a net dynamic phase φk(T).
This phase is linked to a measurable quantity Pk defining the
weight of each Walsh function in a decomposition as

Xk(T) =
sin−1[2Pk − 1]

γT
. (4)

With the resulting Walsh spectrum over order k in hand one
may reconstruct an approximation of the underlying noise sig-
nal as

b̂(t) =

N−1∑

k=0

XkWk(t/T). (5)

See Appendix C for full details of the measurement protocol.
With this framework in mind, we design a Walsh SID mod-

ule to calculate Walsh weights, and produce real-time recon-
structions b̂(t) from a given set of fidelity values. The input
information for this module is the vector of fidelity values,
P = (P0, P1, ..., PN−1) generically describing the measure-
ment data of the sensor array, though here generated from nu-
merical simulations (Appendix C). These values are converted
into estimates of the corresponding Walsh weights using Eq.
4, and subsequently incorporated in a Walsh waveform syn-
thesizer module to implement a real-time reconstruction b̂(t)

D

clk

Weights Estimation

. . .

S
um

 W
eights PN-1

{Pk[m:0] ,0}

S
hift register

-
14

Arcsin LUT
(214 elements) 12

γTXk

÷

14
D

14

14

13

Walsh SID

P0
P1

. . .

P2
WN-1

W0
W1
W2

M

M

M

M

WE

WE

WE

WE

0 T

14
Pk P*

k

1*

P

0.3

0.2

0.1

0.0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0.3

0.2

0.1

0.0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Time Segment [τ2]

V D
A

C
 [a

.u
.]

 16 Segments

 32 Segments

 Reconstruction
 b(t)

a)

b)

c)

d)

b̂(t)

FIG. 4. Schematic of Walsh-based systems identification (SID) mod-
ule implemented in FPGA. a) Here the red shaded box indicates a
protocol performed either at the qubit level, or as here, in simulation,
returning fidelities Pk from measurements M and feeding them to
Walsh Estimation modules (b). The input parameter D is respon-
sible for scaling the the arcsin function, taking the value D = γT .
The output of weight summation module is the reconstructed signal
b̂(t) for the magnetic field, represented digitally and here used to pro-
gram a DAC for signal monitoring. b) Detailed schematic of Weights
Estimation. The 13-bit binary presentation of Fidelity (Pk) doubles
its value by using a shift-left 1-bit register and then subtracts to 14-
bit binary presentation of “1” to derive arcsin(γTXk) as shown in
Eq. C4. The arcsin LUT is a 214-element look-up table which returns
TXk. A divider is used to scale the output of arcsin LUT with divisor
T and output the final result Walsh weights Xk. The selected value
of the bit-depth for the arcsin function is determined by the specific
hardware implementation employed here. c)-d) Analog waveforms
output from the DAC overlaid with applied noise signal given nu-
merically calculated values for Pk, using 16 or 32 Walsh functions
(hence, individual fidelity measurements).

on an FPGA. The central capability of the Walsh SID module
is captured in the Weights Estimation module shown in Fig. 4,
with reconstruction of an analog waveform subsequently pro-
duced by the Sum Weights module relying on the same archi-
tecture as the Walsh Filter Synthesizer described in Sec. B 3.

C. Comparative performance of the Walsh controller

The key strengths of this approach are the ability to produce
outputs in real time with limited hardware resources dedicated
to the controller. For instance on the Xilinx ZC7Z010 FPGA

7

device, one of the smallest in the System-on-Chip family, im-
plementation of the scheme in Fig. 3 for the first 8 Paley or-
ders, occupies less than 5% of the available 17,600 lookup
tables (LUTs). Moreover, devices such as the XC7Z100 have
277,400 LUTs, this being a factor of 15 larger. The direct
mapping of Walsh functions to simple digital logic construc-
tions allows for a highly autonomous system with minimal
requirements on communication bandwidth to the controller,
requiring only 345 bits for full programming. This efficiency
arises because our control solutions are sparse in the Walsh
basis.

A key performance metric for this system is hardware la-
tency, which is optimized through use of a hardware-timing
solution. In our implementation, from trigger input to the
start of signal generation requires only 4.5 clock cycles and
from changes in input variables to ready-to-output status re-
quires only two clock cycles. The system may be reset at any
time and returns to ready-to-output status in three clock cy-
cles. Key contributions to the output delay are as follows:

For comparison we built a system with similar functionality
using an embedded microcontroller (Arduino MEGA 2560).
In this implementation, because the output is compiled rather
than generated by hardware in real time, the entire output
waveform must be calculated and stored in memory before
the system is ready-to-output. This process requires nearly
1.3 M clock cycles for the waveforms demonstrated above,
and must be performed every time a variable is changed or re-
set signal received. Similarly, Walsh-sequence calculation is
8,000 times slower on the microprocessor. Other challenges
with timing resolution, synchronization, and repeatability due
to the microcontroller interpreting instructions to produce out-
put signals make this implementation far inferior relative to
the FPGA. For instance, the sequential architecture of the mi-
crocontroller requires that instructions be completed before
the system responds to a change in state; this results in delays
from trigger to output of an AM envelope of ∼ 125 clock cy-
cles, contrasted to just 4.5 in the FPGA. Similarly, any update
to variables such as the Walsh order, Walsh weighting coef-
ficients, or timing information requires full calculation of the
waveform, or∼ 1.3 M clock cycles. Importantly, these delays
would persist in the microcontroller solution regardless of the
selected functional basis for waveform creation.

Finally, because many high-performance modulation pat-
terns are sparse in the Walsh basis (e.g. the example in Fig. 1c
consisting only of a weighted sum of W0 and W3) they may be
generated in real time using simple digital logic on the FPGA,
in contrast to generating a similar modulation waveform us-
ing e.g. Fourier synthesis in either a microcontroller or an
alternate FPGA-based synthesizer. For instance, assuming a
base period τ and clock cycle, Tc, generating the same wave-
form using Fourier synthesis would require at least τ/Tc sine
functions to be combined to achieve the same timing resolu-
tion. Such an approach would lead to a significant expansion
of required memory allocation, programming complexity, and
combinatorial logic.

The Walsh SID module has similar performance charac-
teristics of reset-to-ready delay time or changes to ready-to-
output latency, with trigger-to-output requiring 5 clock cycles

to produce a valid output. This performance metric plays an
important role when we try to optimize the latency of each de-
sign module to achieve a real-time response. Low output la-
tency requires significant hardware resource allocation, with
particular focus on the arcsin LUT, which consumes ∼ 5%
of Block Ram (total 60 units) for a single instance. Other
modules remain resource efficient, maintaining hardware re-
quirements at less than 1% for FF (Flip Flops) or 6% of LUTs
(total 35,200 FFs and 17,600 LUTs). The trigger-to-output la-
tency distribution are listed as follows: The Weights Estima-
tion module generates the parameter γTXk in two clock cy-
cles. The output of this module will enable the Sum Weights
module (Fig. 4) to begin reconstruction of the digital represen-
tation of b̂(t) after two clock cycles. The final divider module
scales the output amplitude within one clock cycle.

IV. CONCLUSION

In this work we have explored the functional drivers
and system-level constraints associated with implementing
physical-layer control, and used them to identify the Walsh
functions as a useful functional basis for the programming
and design of efficient embedded classical controllers. We
have considered the requirements of dynamic error suppres-
sion and physical-layer operation sequencing in order to de-
velop a notional design for a Walsh-based controller. Follow-
ing this we have implemented this architecture on an FPGA
and demonstrated considerable performance advantages rela-
tive to approaches leveraging general-purpose signal synthesis
via microcontrollers. Alternative FPGA architectures may be
considered, but we emphasize that our approach of real-time
Walsh-signal synthesis and SID provides substantial benefits
in terms of FPGA resources and output latency – both key
drivers in the context of designing embedded physical layer
controllers in quantum information.

Overall we believe that the requirements of implementing
physical-layer control, and in particular physical-layer error
evasion, have largely been overlooked in past architectural
studies in favor of mapping physical qubit layouts to QEC-
code connectivity. This is understandable given the extraor-
dinary demands arising from consideration of QEC, but is in
our view insufficient to consider realistic quantum informa-
tion architectures at scales where logical qubit error rates will
need to be exceedingly small (comparable to the inverse prob-
lem size [54]). By showing how existing analyses may be
augmented through consideration of the design of embedded
physical-layer controllers, this work advances broad architec-
tural studies in a manner consistent with our current under-
standing of projected physical-layer error-rates and control re-
quirements. In addition, this work addresses the general ques-
tion of how to efficiently sequence and apply physical-qubit
manipulations that are required even without use of DES.
Future work will consider the integration of FPGA Walsh
controllers in quantum information experiments, and detailed
consideration of the interface between the classical controller
and logical layers [5].

8

ACKNOWLEDGMENTS

The authors acknowledge useful conversations with D.
J. Reilly, W. D. Oliver, and L. Viola. Work was par-

tially supported by the ARC Centre of Excellence for Engi-
neered Quantum Systems CE110001013, the US Army Re-
search Office under Contract W911NF-12-R-0012, the US
ODNI via the IARPA LogiQ program, the Australian Institute
for Nanoscale Science and Technology (AINST) Accelerator
Scheme, and a private grant from H. & A. Harley.

[1] Meter R v and Oskin M 2006 ACM Journal on Emerging Tech-
nologies in Computing Systems (JETC) 2 31–63

[2] Van Meter R, Munro W and Nemoto K 2008 Architecture of
a quantum multicomputer implementing shorâĂŹs algorithm
Theory of Quantum Computation, Communication, and Cryp-
tography (Springer Berlin Heidelberg) pp 105–114

[3] DiVincenzo D P 2009 Phys. Scr. T137 014020
[4] Devitt S J, Fowler A G, Tilma T, Munro W J and Nemoto K

2010 International Journal of Quantum Information 08 121–
147

[5] Jones N C, Van Meter R, Fowler A G, McMahon P L, Kim J,
Ladd T D and Yamamoto Y 2012 Phys. Rev. X 2 031007

[6] Fowler A G, Mariantoni M, Martinis J M and Cleland A N 2012
Phys. Rev. A 86(3) 032324

[7] Oskin M, Chong F T and Chuang I L 2002 Computer 35 79–87
[8] Viola L and Lloyd S 1998 Phys. Rev. A 58 2733–2744
[9] Viola L, Lloyd S and Knill E 1999 Phys. Rev. Lett. 83 4888

[10] Zanardi P 1999 Phys. Lett. 258 77
[11] Vitali D and Tombesi P 1999 Phys. Rev. A 59 4178
[12] Viola L and Knill E 2003 Phys. Rev. Lett. 90 037901
[13] Byrd M S and Lidar D A 2003 Phys. Rev. A 67 012324
[14] Kofman A G and Kurizki G 2004 Phys. Rev. Lett. 93 130406
[15] Khodjasteh K and Lidar D A 2005 Phys. Rev. Lett. 95 180501
[16] Yao W, Liu R B and Sham L J 2007 Phys. Rev. Lett. 98 077602
[17] Uhrig G S 2007 Phys. Rev. Lett. 98 100504
[18] Gordon G, Kurizki G and Lidar D A 2008 Phys. Rev. Lett. 101

010403
[19] Khodjasteh K and Viola L 2009 Phys. Rev. Lett. 102 080501
[20] Khodjasteh K and Viola L 2009 Phys. Rev. A 80 032314
[21] Khodjasteh K, Lidar D A and Viola L 2010 Phys. Rev. Lett.

104(9) 090501
[22] Yang W, Wang Z Y and Liu R B 2010 Frontiers Phys. 6 1–13
[23] Biercuk M J, Doherty A C and Uys H 2011 J. Phys. B 44

154002
[24] Ng H K, Lidar D A and Preskill J 2011 Phys. Rev. A 84(1)

012305
[25] Khodjasteh K and Lidar D A 2005 Phys. Rev. Lett. 95

180501/1–4
[26] Khodjasteh K and Lidar D A 2008 Physical Review A 78

012355
[27] Biercuk M J, Uys H, VanDevender A P, Shiga N, Itano W M

and Bollinger J J 2009 Nature 458 996
[28] Du J, Rong X, Zhao N, Wang Y, Yang J and Liu R B 2009

Nature 461 1265
[29] Bluhm H, Foletti S, Neder I, Rudner M, Mahalu D, Umansky V

and Yacoby A 2011 Nature Phys. 7 109–113
[30] Gustavsson S, Bylander J, Yan F, Forn-Díaz P, Bolkhovsky V,

Braje D, Fitch G, Harrabi K, Lennon D, Miloshi J, Murphy P,
Slattery R, Spector S, Turek B, Weir T, Welander P B, Yoshi-
hara F, Cory D G, Nakamura Y, Orlando T P and Oliver W D
2012 Phys. Rev. Lett. 108 170503

[31] Soare A, Ball H, Hayes D, Sastrawan J, Jarratt M C, McLough-
lin J J, Zhen X, Green T J and Biercuk M J 2014 Nat. Phys.

10
[32] Malinowski F K, Martins F, Nissen P D, Barnes E, Rudner M S,

Fallahi S, Gardner G C, Manfra M J, Marcus C M and Kuem-
meth F 2011 arXiv:1601.06677

[33] Hodgson T E, Viola L and D’Amico I 2010 Phys. Rev. A 81
062321

[34] Lamb I C, Colless J, Hornibrook J, Pauka S, Waddy S,
Frechtling M and Reilly D 2016 Review of Scientific Instru-
ments 87 014701

[35] Hornibrook J, Colless J, Lamb I C, Pauka S, Lu H, Gossard A,
Watson J, Gardner G, Fallahi S, Manfra M and Reilly D 2015
Physical Review Applied 3 024010

[36] Tzafestas S G (ed) 1985 Walsh functions in signal and systems
analysis and design (Benchmark papers in electrical engineer-
ing and computer science vol 31) (New York: Van Nostrand
Reinhold Company)

[37] Beauchamp K G 1975 Walsh Functions and their Applications
(London: Academic Press)

[38] Leung D W, Chuang I L, Yamaguchi F and Yamamoto Y 1999
Phys. Rev. A 61 042310

[39] Leung D 2002 J. Modern Optics 49 1199–1217 (Preprint quant-
ph/0107041)

[40] Hayes D, Khodjasteh K, Viola L and Biercuk M J 2011 Phys.
Rev. A 84 062323

[41] Hayes D, Clark S M, Debnath S, Hucul D, Inlek I V, Lee K W,
Quraishi Q and Monroe C 2012 Phys. Rev. Lett. 109 020503

[42] Ball H and Biercuk M 2015 EPJ Quantum Technology 2 11
[43] Cooper A, Magesan E, Yum H N and Cappellaro P 2014 Nat.

Commun. 5
[44] Green T J and Biercuk M J 2015 Phys. Rev. Lett. 114 120502
[45] Welch J, Greenbaum D, Mostame S and Aspuru-Guzik A 2014

New Journal of Physics 16 033040
[46] Khodjasteh K, Sastrawan J, Hayes D, Green T J, Biercuk M J

and Viola L 2013 Nat. Commun. 4 2045
[47] Merrill J T and Brown K R 2014 Progress in Compensat-

ing Pulse Sequences for Quantum Computation (John Wiley &
Sons, Inc.) pp 241–294 ISBN 9781118742631

[48] Hayes D, Clark S M, Debnath S, Hucul D, Inlek I V, Lee K W,
Quraishi Q and Monroe C 2012 Phys. Rev. Lett. 109 020503

[49] Green T J and Biercuk M J 2015 Phys. Rev. Lett. 114(12)
120502

[50] Welch J, Bocharov A and Svore K M 2014 arXiv:1412.5608
[51] Biercuk M J, Doherty A C and Uys H 2011 J. Phys. B 44

154002
[52] Rademacher H 1922 Math. Ann. 87 112
[53] Paley R 1932 Proceedings of the London Mathematical Society

2 241
[54] Suchara M, Faruque A, Lai C Y, Paz G, Chong F T and Kubia-

towicz J 2015 arXiv:1312.2316
[55] Green T J, Sastrawan J, Uys H and Biercuk M J 2013 New J.

Phys. 15 095004
[56] Khodjasteh K, Bluhm H and Viola L 2012 Phys. Rev. A 86

042329/1–7

9

[57] Brown K R, Harrow A W and Chuang I L 2004 Phys. Rev. A 70
052318

[58] Leibfried D, DeMarco B, Meyer V, Lucas D, Barrett M, Brit-
ton J, Itano W M, Jelenkovic B, Langer C, Rosenband T and
Wineland D J 2003 Nature 422 412–415

[59] Majer J, Chow J M, Gambetta J M, Koch J, Johnson B R,
Schreier J A, Frunzio L, Schuster D I, Houck A A, Wallraff
A, Blais A, Devoret M H, Girvin S M and Schoelkopf R J 2007
Nature 449 443–447

[60] Stengel R F 1994 Optimal Control and Estimation (Mineola,
New York: Dover)

[61] Álvarez G A and Suter D 2011 Phys. Rev. Lett. 107(23) 230501
[62] Bylander J S, Gustavsson S, Yan F, Yoshihara F, Harrabi K,

Fitch G, Cory D G, Nakamura Y, Tsai J S and Oliver W D 2011
Nature Phys. 7 565–570

[63] Norris L M, Paz-Silva G A and Viola L 2015 (Preprint
arXiv:1512:01575)

[64] Kotler S, Akerman N, Glickman Y and Ozeri R 2013 Phys. Rev.
Lett. 110(11) 110503

Appendix A: Physical layer controls in the Walsh basis

In the following subsections we provide greater detail on
the specific application of Walsh functions in the implementa-
tion of physical-layer quantum control.

1. Walsh timing in quantum control

Walsh sequences can be used to provide timing informa-
tion relevant to the sequencing of control operations on qubits
at the physical level, with rising and falling edges employed
to trigger the application of a desired operation. Generically
this can be employed for logical or physical-layer algorithmic
implementation or unitary gate construction [39, 45, 50], and
of course it may also be advantageous to apply all physical-
layer operations timed via Walsh sequences due to their dis-
crete timing structure. We therefore refer generically to Walsh
timing patterns.

The simplest application of Walsh functions in the algorith-
mic application of DES specifically comes through associa-
tion of the Walsh function itself with the control propagator of
a dynamical decoupling (DD) sequence for implementation of
the identity (memory) [40]. Each digital transition in a Walsh
function corresponds to the location of a control pulse in the
resulting WDD sequence, Fig. 1b. Incredibly, a number of
familiar DD sequences can be identified as special instances
of WDD sequences: Using the Paley-ordering convention as
an index WDD0 (a WDD sequence with pulses prescribed at
the transitions in a W0 Walsh function) is free evolution and
WDD1 is the spin echo sequence. Similarly, special instances
of Walsh dynamical decoupling correspond to Periodic Dy-
namical Decoupling (PDD), CPMG, and Concatenated Dy-
namical Decoupling [40]. Changing the value of τ , the base
period of the Walsh function, changes the frequency response
of the WDD sequence [55]. Importantly, the order of error
suppression realized in a WDD sequence is determined en-
tirely by a single number, r, the Hamming weight (number

of ones) of the binary representation of the Walsh function’s
Paley-ordered index.

For generalized storage of quantum states we previously
identified that it is possible to reconcile the oppositional de-
mands for high-fidelity state storage and low access latency to
stored states protected by DD via periodic repetition of a base,
high-order DD cycle [46]. This insight led to demonstrations
that repetition of WDD sequences could result in conditions
by which a target memory fidelity could be guaranteed at long
storage times, but with access latency capped at the duration
of the base WDD cycle. Moreover repetition is a natural math-
ematical operation within the Walsh family, meaning that re-
peated sequences generally also fall within the Walsh family.

2. Walsh-synthesized modulation for noise-suppressing control
operations

The implementation of DES single and two-qubit opera-
tions requires the application of temporally modulated control
fields (e.g. frequency, phase, or amplitude of a near-resonant
carrier) which enact the qubit manipulations with added ro-
bustness against environmental or control fluctuations. Fol-
lowing the general approach of composite pulsing we con-
sider an arbitrary operation decomposed into discrete time-
segments; these modulated pulses would then be applied ac-
cording to a precise timing pattern in order to implement a
desired higher-level algorithm or protocol.

The time-domain modulation waveform defining the enve-
lope for the phase or amplitude of a near resonant carrier may
be crafted using Walsh synthesis, known to facilitate construc-
tion of arbitrary waveforms via superpositions of Walsh func-
tions. The mathematical properties of the Walsh functions es-
tablish key analytic design rules simplifying the construction
of high-performance Walsh modulation protocols for arbitrary
single-qubit gates [31, 42]. These protocols also bring the
benefit that high-performance noise-suppressing solutions are
sparse in the Walsh basis, requiring superposition of only a
few Walsh functions (Fig. 1c). In addition, a variety of well
known dynamically corrected gates [20, 21, 56] and NMR-
inspired composite pulses [47, 57] are included in the Walsh
synthesis framework (Ref. [42]).

Two-qubit gates implemented via an intermediary bosonic
mode – such as geometric phase gates in trapped ions [58]
and superconducting qubits [59] – can be modulated using
Walsh functions in order to improve robustness against fluc-
tuations in the parameters of the mediating driving field (e.g.
amplitude and frequency). This includes phase-modulation
applied to gates mediated by a single bosonic mode [48] with
error suppressing properties described as in WDD. In addi-
tion, application of a phase-modulation pattern described by
the Thue-Morse subset of the Walsh functions (i.e. those with
Paley order k = 2n − 1 for n an integer), provides a means
to decouple multiple bosonic modes from the qubit state [49].
Here, repetition of the relevant Walsh modulation pattern pro-
vides a means to improve the robustness of the gate to time-
dependent fluctuations. Remarkably, even the phase values
applied during each segment in a Walsh-timed modulation

10

pattern may be represented using the properties of Walsh func-
tions.

3. Walsh-based SID

In any control setting it is required that we have both a
model of the underlying physical system to be controlled (in-
cluding its response to external stimuli) and up-to-date infor-
mation about any disturbances that may need to be suppressed
or compensated. In control theoretic language the determina-
tion of this information is broadly referred to as “System Iden-
tification” [60], overlapping the quantum physics concept of
Hamiltonian Estimation when we are addressing the charac-
teristics of the noise processes to be suppressed via physical-
layer control. Information gained through such protocols may
then be employed to adjust or even optimize the selected phys-
ical layer controls.

Techniques for system identification in noisy quantum sys-
tems already exist and are widely employed in the community
at the physical layer. For instance, dynamical-decoupling-
based spectral reconstruction generally involves execution of
a set of repeated DD sequences followed by projective mea-
surements [61–63]. The relevant DD sequences fall within
the WDD family, and are restricted to those subsequences
which have a narrow spectral response in the Fourier do-
main [51, 64]. By appropriately modulating the temporal evo-
lution of the system-environment interaction with DD, mea-
surement outcomes on the system become maximally sensi-
tive to the corresponding spectral content of the noise. These
measurements are followed by processing and reconstruction
of data to determine the underlying noise power spectrum.

In addition to ensemble-averaged statistical information
about extrinsic noise processes, real-time estimation of the
the dominant noise processes may be derived following pro-
tocols described by e.g. [43]. Here parallel qubit sensors are
subjected to synchronized noisy evolution, while being mod-
ulated by WDD sequences of different orders, returning mul-
tiple projective-measurement outcomes. From these fidelity
measurements the underlying time-varying signal can be re-
constructed in each discrete timestep, τ , using concepts from
Walsh synthesis. In the limit that these measurement results
are not performed synchronously the same information may
be used for spectral reconstruction.

Appendix B: Detailed description of FPGA modules

In this Appendix we provide technical details of the archi-
tectural approach to realize the FPGA controller modules out-
lined in the main text. Here we focus on the Walsh Timing
Sequencer and the Walsh Synthersizer.

1. Walsh Generator

Following Eq. 1, target Walsh functions are generated in
real time via composition of the Rademacher functions under

modulo-2 addition. In our framework this is performed by
the Walsh Generator module shown in Fig. 2 which stores
the binary representation of a given Paley order l in a dedi-
cated register. Each bit is routed to a lookup table where it is
combined with the relevant Rademacher, together with the ad-
ditional input signal from the preceeding-order Rademacher.
The lookup table is comprised of an XOR gate and a one-bit
multiplexer which returns In XOR Rj if the relevant bit in l
is high, and returns In if the bit is low. The cascaded lookup
tables in the Walsh Generator combine the Rademacher Gen-
erator output with the desired l to produce the target Walsh
function. Signal propagation along this cascade forms the crit-
ical path of the design, demonstrating delays of less than one
clock cycle. An example of this construction for Walsh func-
tion W12(x) is presented in the lower panel of Fig. 2. Walsh
functions of the complement form given in Eq. 3 are similarly
generated after a trivial modification.

In hardware, Rademacher functions Rj(x) are generated
using the Rademacher Generator module shown in Fig. 2.
This employs a counter to synchronize the change of state at
integer multiples of the underlying clock’s base period, Tc.
The change-of-state is performed in real time using a com-
parator after the required number of clock cycles have elapsed.
The output is therefore effectively a square wave with period
given by “expanding” that of the underlying clock.

2. Walsh Timing Sequencer

The Walsh Timing Sequencer module shown in Fig. 3 out-
puts timing information in the form a Walsh function gener-
ated by an embedded Walsh Generator module (Summary Re-
quirement 2). We denote this “sequencing” Walsh function by

W
(1)

s (x) where s is the user-defined Paley order, which in our
implementation can be any positive 8-bit integer s ≤ 255. The
subscript (1) indicates that this Walsh function serves the ded-
icated purpose of synchronization to distinguish from the ap-
plication of Walsh functions for waveform synthesis described
in the next section.

Temporal scaling of the Walsh function is programmed by
the input scaling factor t1. In the standard Walsh basis with
normalized time domain [0, 1] the Walsh function of Payley
order s may be divided into 2m(s) piecewise-constant seg-
ments of equal duration, where m(s) is the bit width of s.
Consequently 2−m(s) is the minimum (piecewise-constant)
segment duration. In our implementation, the time domain
is rescaled such that the minimum segment duration becomes

τ1 ≡ t1Tc (B1)

where t1 is an 8-bit integer and Tc = 10 ns is the clock cy-
cle time set by the FPGA hardware. The time domain of the
rescaled Walsh basis is therefore given by [0, t1Tc2

m(s)] with
the minimum timing resolution set by the clock cycle time Tc.
Moving from continuous to discrete time, we drop the argu-
ment in our notation in Eq. 1, and the digital representation

11

takes the form

W
(1)

s =
[
~σs1, ~σs2, . . . , ~σs,2m(s)

]
(B2)

where the ith piecewise-constant segment of duration τ1 is
represented by the subsequence

~σsi ≡
[1 2 ... t1

σsi, σsi . . . σsi
]
, σsi ∈ {0, 1}, (B3)

constructed from t1 repetitions of the binary digit σsi occur-
ring once per clock cycle, implemented over the time interval
(i − 1, i]t1Tc. The binary Walsh sequence described by Eq.
B2 is generated in real time as a stream of binary data by the
embedded Walsh Generator module.

We also include a Repeat Module (Fig. 3a) to extend the
timing signal by sequential repetition of the basic timing se-

quence W
(1)

s an integer number of times R, yielding the con-

catenated signal denoted [W
(1)

s]R. In our framework R is
specified by a 4-bit integer, supporting up to 15 repetitions,
however this be extended as required. The number of repeats
is monitored by a counter and comparator, and controlled by
an enable signal which is high when the counter value is less
than or equal to R and low for values beyond R. For R = 0,
the system output is disabled.

The output of this module serves as a trigger signal to
synchronize control operations with the transitioning edges

(bit-flip events) in the concatenated signal [W
(1)

s]R. This is
achieved using the Edge Detect module (Fig. 3), which uses a
D-type flip flop (DFF) configured to register bit-flip events in

[W
(1)

s]R coinciding with the falling edge of the system clock.

3. Walsh synthesis for control modulation waveforms

Another critical task of the FPGA is to generate, in real time
and on a designated trigger, a set of Walsh functions which
are then used to form an analog waveform as a superposition
via standard techniques in Walsh synthesis. Through this ap-
proach we can realize a wide variety of DES modulation pro-
tocols [42], where for efficiency we have implicitly segregated
the task of carrier synthesis (resonant with the qubit transition)
from baseband modulation generation.

Using the same general architecture outlined above, the
Walsh Modulation Generator module (Fig. 3) addresses this
task by generating the first n Paley-ordered Walsh functions
in parallel to serve as a truncated basis for Walsh synthesis.
Our implementation accommodates a basis consisting of Pa-
ley orders specified by 8-bit integers, namely n ≤ 255. This
basis is scaled in time such that the minimum segment dura-
tion is given by τ2 ≡ t2Tc where the input scaling factor t2
is a 4-bit integer. The time-domain therefore spans the du-
ration [0, t2Tc2

m(n)] where m(n) is the bit width of n. All
basis functions are generated simultaneously using the same
Rademacher Generator and n independent instances of the
Walsh Generator module, each streaming binary sequences in
real time over n parallel channels. All n Walsh Generators

are triggered simultaneously (after a delay of one clock cycle),
using a DFF. The completion time for all n Walsh sequences
is tracked by an auxiliary bit in the counter of the associated
Rademacher Generator module.

The kth Walsh function output of this module is represented
by the digital sequence

W(2)
k =

[
~σk1, ~σk2, . . . , ~σk,2m(n)

]
(B4)

where the jth piecewise-constant segment of duration τ2 is
represented by the subsequence

~σkj ≡
[1 2 ... t2

σkj , σkj . . . σkj
]
, σkj ∈ {0, 1}, (B5)

constructed from t2 repetitions of the binary digit σkj occur-
ring once per clock cycle, implemented over the time interval
(i − 1, i]t2Tc. The superscript (2) indicates that these basis
functions serve the purpose of modulation-waveform synthe-
sis.

These Walsh functions must now be combined in real time
in the Walsh Filter Synthesizer with user-defined weights to
produce waveforms appropriate for enacting a modulation
protocol on the near-resonant carrier. This superposition is
represented as

ΣW ≡
n−1∑

k=0

[Xk ×W(2)
k], W(2)

k ∈ {±1} (B6)

where Xk is weight of the kth Walsh sequence, and the quan-
tity ΣW is implicitly defined to be time-dependent and piece-
wise constant. The bit width of these weights is 14 bits,
selected for compatibility with the underlying hardware em-
ployed for this demonstration, and includes a single bit to en-
code the sign of Xk and the remainder for encoding the am-
plitude.

This superposition is executed in the Sum Weights submod-
ule illustrated in Fig. 5, in which each weight, Xk is con-
verted to a signed value ±Xk depending on the real-time
state of W(2)

k using a multiplexer. The output bit width is
d14 + log2(n)e, where n is highest Paley-order used in the
Walsh synthesis protocol. These digital outputs are then added
together, checked against an overflow value, and sent to other
subsystems.

We customize solutions for Walsh filter synthesis for the
three key modulation techniques in use: amplitude modu-
lation (AM) of a control signal implementing a Pauli-x op-
eration for suppression of dephasing noise; phase modula-
tion (ΦM) for suppression of amplitude damping noise; and
Quadrature Amplitude Modulation (QAM) employed for si-
multaneous suppression of noise in both quadratures. A 2-bit
signal is used to indicate the mode of modulation (Fig. 5).

In AM mode, Walsh functions corresponding to negative
weights Xk are inverted. The summation of all converted
weights are linked to the input of the mode selector before
being registered by DFFs to feed downstream hardware.

In ΦM mode, the modulated control signal may be con-
veniently represented in the IQ basis through the following

12

7

00

01

11

7

W*

clk

mode
weights, Xk

Walsh Filter
Synthesizer

5	Xk 0

1

±Xk 15
-Xk

14

+

15

1’b1

+Xk 15

Wk

17

Overflow

Sum Weights

ΦM Arbitrator

14

11

01

00

I

14 bit
DDS

0

⌦7

⌦
Multiplier

14

14

⌃
(1)
W

⌃
(2)
W

14

cos[⌃
(2)
W]

sin[⌃
(2)
W]

Sum Weights

14

14

QAM
Arbitrator

mode

mode

I(t) = ⌃
(1)
W sin[⌃

(2)
W]

Q(t) = ⌃
(1)
W cos[⌃

(2)
W]

I(t) = sin[⌃
(2)
W]

Q(t) = cos[⌃
(2)
W]

I(t) = ⌃
(1)
W

Q(t) = 0

AM ΦM QAM

5	Xk 0

1

±Xk 15
-Xk

14

+

15

1’b1

+Xk 15

Wk

X1
W1

Xn
Wn

X0
W0

. . .

+

±X1 ±Xn

16 Sum
Weights

±X0

AM Arbitrator

{sign, ampl[12:0]}

a)

b)

Data_valid

DFF

Q

14
DFF

en
ab

le

Added	features:	
1.  Data_valid	signal	for	14-bit	DDS	
2.  DDS	generates	“enable”	signal	to	avoid	glitches	
*DFF	=	D-FlipFlop		

data_valid

17

I(t) = cos
h
⌃

(2)
W

i

Q(t) = sin
h
⌃

(2)
W

i
I(t) = ⌃

(1)
W cos

h
⌃

(2)
W

i

Q(t) = ⌃
(1)
W sin

h
⌃

(2)
W

i

FIG. 5. Schematic of the Walsh Filter Synthesizer employed in the
Walsh controller. bit widths of relevant signals are indicated. AM,
ΦM, or QAM modulation are selected by the mode input, activat-
ing the relevant subunits. We distinguish the outputs of the AM and
ΦM arbitrators using superscripts on Σ

(1,2)
W . The ΦM subsystems

relies on in-built DDS blocks in the FPGA to directly rotate outputs
to the appropriate basis. The QAM Arbitrator takes 14-bit inputs and
uses only the seven most-significant bits prior to multiplication. This
DDS is enabled by the “data valid” input generated by the Walsh
Modulation Generator (Fig. 3). Relationships of outputs under vari-
ous modulation protocols, indicated by the mode input, are indicated
at the bottom of the panel. b) Within the AM and ΦM modules we
construct the Sum Weights submodule (blue dashed box). Red boxes
are highlighted in the inset and demonstrate the bitwise selection of
±Xk depending on the value of W(2)

k .

form:

mΦM (t) = cos [ΣW] cos(ωt)− sin [ΣW] sin(ωt) (B7)
= I(t) cos(ωt)−Q(t) sin(ωt) (B8)

where ΣW represents the required phase as a function of time,
and ω is the frequency of the carrier signal. A dedicated arbi-
trator calculates the total phase shift ΣW , and we then convert
to the IQ basis. This process is accomplished in hardware by
exploiting the trigonometric form of the in-phase and quadra-
ture modulation coefficients, using an in-built Direct Digital
Synthesis (DDS) module to function as a look-up table with
13(14)-bit input (output) (one-bit for sign, 13 for amplitude).
Here, a “data valid” signal is employed as a trigger derived
from the composite architecture as detailed in the following
section. The DDS also outputs an “enable ” signal control-
ling DFFs to prevent glitches due to a different clock period
between the DDS and FPGA core. From trigger to output re-
quires one clock cycle in the DDS.

The AM and ΦM arbitrators are used synchronously for
QAM, with outputs multiplied within a dedicated QAM ar-
bitrator. DFFs are added to account for a one-clock-cycle de-
lay between the AM and ΦM arbitrator outputs, and an out-
put data valid signal from DDS is used to enable the latch-
ing of output to suppress glitches. The use of multipliers in
the QAM arbitrator adds another two-clock-cycle delay to the
output when this mode is selected.

4. Clocking

To demonstrate how we may reduce latency between the
output of the Timing Sequencer and the Walsh Modulation
Generator our architecture employs two distinct clock signals.
These are generated with minimal skew by a phase-locked

FIG. 6. Waveforms illustrating timing and latency distribution for
generating output signals via the FPGA modules. Clock signals (first
two waveforms) are generated by a phase lock loop to minimise clock
skew. These generated clocks take one of two forms: “clk” (used
for the Timing Sequencer) or the complement form “clk” (used for
the Walsh Mod. Generator & Walsh Filter Synthesizer). Latency
distribution of internal signals “start”, “trigger”, “W ∗” and output
signal “I” are also indicated in terms of the number of clock cycles
(see Fig. 3).

13

loop. As indicated in Fig 6, the Timing Sequencer relies on
a clock of the form designated by “clk”, to drive an internal
“Trigger” signal with one clock cycle delay after the start sig-
nal. The subsequent modules use clock signals of the comple-
mentary form clk, phase shifted by π relative to “clk”. This
results in a delay of 1.5 and 2 clock cycles for Walsh Mod-
ulation Generator and Walsh Filter Synthesizer respectively.
In total, latency from receiving a start signal to output is 4.5
clock cycles.

Appendix C: Walsh SID

The experimental protocol referenced in [43] is summarised
as follows. At t = 0 the qubit sensor is prepared in its initial
state |ψ(0)〉 ≡ |0〉. A resonant π/2 pulse is applied about the
σ̂x axis, rotating the Bloch vector to the equatorial plane, co-
inciding an equal superposition of eigenstates, 1√

2
(|0〉+ |1〉).

During the subsequent time window t ∈ [0, T] the qubit evolu-
tion is governed by a Hamiltonian term γb(t)σ̂z describing an
interaction with a dephasing field b(t) (e.g. fluctuating mag-
netic field), with γ an experimentally-determined coupling
strength. During this time window the noisy evolution is mod-
ulated by a control field implementing a sequence of π-pulses
about σ̂x. These control-modulation pulses are synchronized
with the switching times of a target Walsh function Wk(t/T),
where inclusion of the argument of the Walsh function here
indicates continuous time. At the end of the acquisition time,
t = T , a final π/2 rotation is implemented about the −σ̂y
axis, resulting in the final state |ψ(T)〉.

Evolution due strictly to the Walsh-modulated control (i.e.
ignoring the interaction with the dephasing field) results in
the final state |ψ(T)〉 = |ψ(0)〉 = |0〉. In this case final state
readout (i.e. projective measurement along the initial state
direction) yields unit fidelity, Pk = |〈ψ(T)|ψ(0)〉|2 = 1. The
dephasing field interaction introduces dephasing errors due to
the accumulation of a dynamical phase φk(T). The reduction
in fidelity due to these errors results in the general condition
Pk = |〈ψ(T)|ψ(0)〉|2 ∈ [0, 1] where, for sufficiently weak
noise, the characteristic value taken by the observable Pk is
related to the dynamical phase by

Pk =
1 + sin[φk(T)]

2
. (C1)

Under the digital modulation imparted by Wk(t/T), the phase
takes the form

φk(T) = γ

∫ T

0

Wk(t/T)b(t)dt = TγXk(T) (C2)

where we define

Xk(T) ≡ 1

T

∫ T

0

Wk(t/T)b(t)dt ≡ 〈Wk(t/T), b(t)〉, (C3)

expressing the coefficient of Wk(t/T) in a Walsh decomposi-
tion of b(t) over the interval t ∈ [0, T]. Thus, from Eqs. C1,
C2 & C3, the Walsh coefficients are derived from the mea-

sured probability according to

Xn(T) =
sin−1[2Pn − 1]

γT
. (C4)

Note that for k = 0 there is no control modulation, since
W0(t/T) = 1 does not switch its value. In this case we re-
cover the well-known Ramsey experiment, for which the ac-
cumulated quantum phase is φ0(T) = γ

∫ T
0
b(t)dt, for Ram-

sey time T .

The resulting Walsh spectrum X = (X0, X1, ..., XN−1),
obtained over the single experimental window [0, T], may
then be used to produce a time-resolved reconstruction

b̂(t) =

N−1∑

k=0

XkWk(t/T) (C5)

of the stochastic signal b(t). Considering the discretization
of time due to the use of a fixed maximum Walsh order (cor-
responding to a maximum number of parallel qubit sensors),
the reconstruction in Eq. C5 is more correctly expressed in
the digital representation as

b̂ =

N−1∑

k=0

[Xk ×W(2)
k] (C6)

where the Walsh sequence W(2)
k is defined in Eq. B4, and

b̂ (argument omitted) denotes the reconstructed data stream,
with consecutively streamed bits occuring once per clock cy-
cle.

Using this prescription, we compute the fidelities Pk by nu-
merically solving the qubit time evolution. The control proto-
col employed in these simulations is conveniently represented
in the form of a control matrix listing all relevant control op-
erations in sequence. As an example, returning to the digital
representation used in the main text, consider the Walsh se-
quence W3 = (11000011) expressed as a binary-valued 8-bit
data stream executed over a time window [0, T]. The mini-
mum segment duration (time interval between consecutively
streamed bits) is therefore τ = T/8, with two bit-flip events
occurring at t = 2τ, 6τ . The corresponding control matrix
takes the form

Γ3 =




π
τπ

τπ
2 σ̂x

0 τ − τπ
2 Î

0 τ Î
π
τπ

τπ σ̂x
0 τ − τπ Î
0 τ Î
0 τ Î
0 τ Î
π
τπ

τπ σ̂x
0 τ − τπ Î
0 τ Î
π
τπ

τπ
2 −σ̂y




(C7)

14

Each row specifies the control variables associated with a uni-
tary rotation of the Bloch vector. The first column specifies
the Rabi rate of each sequential unitary, with the value 0 cor-
responding to a zero rotation (no control applied). The second
column specifies the durations of each rotation. The third col-
umn specifies the Pauli operator associated with the axis or ro-
tation in each unitary, with the identity Î corresponding to no
control applied. The variable τπ denotes the π-time of the sys-
tem (time required to rotate the Bloch vector through an angle
π). In the limit τπ → 0 the protocol reduces to the regime
of instantaneous qubit operations assumed in Ref. [43]. The
π pulses (shown in blue) occur at times t = 2τ and t = 6τ ,
corresponding to the bit-flip events in W3.

This Walsh-modulated control protocol is enacted in the
presence of the fluctuating dephasing field, corresponding to
the stochastic Hamiltonian term γb(t)σ̂z . The total Hamilto-
nian associated with this system is then substituted into the
Schrodinger equation which is numerically integrated using
a PDE solver package. The resulting qubit state evolution is
thereby derived, enabling the computation of state fidelities
Pk at the end of the control protocol. These fidelity values are
then treated as inputs for the Walsh SID module described in
the main text to demonstrate its functionality.

The Weights Estimation module employed in the Walsh
SID system computes the values Xk(T) by implementing Eq.
4. The measured probabilities, derived from simulation as
above, are first converted to digital using a 13-bit sub-register

of the 14-bit DAC. Each value Pk is therefore resolution-
limited to an integer multiple (from 0 to 213 − 1) of the mini-
mum increment ∆P = 1/(213−1) ≈ 1.2×10−8. The 13-bit
probability values are doubled using a shift register, which
shifts the binary string to the left, adding a ‘0’ to the least sig-
nificant bit. Implementing this on the FPGA does not cost any
additional logic or create any delay. Input parameters need to
be sampled by registers in the FPGA with the use of the sys-
tem clock to synchronize the whole structure. This sampling
register doubles as a shift register in the actual implementa-
tion. The shift operation, however, requires at least an α-bit
register to transform an (α− 1)-bit number (hence the choice
to represent the Pk in 13-bits, given a 14-bit DAC). Follow-
ing the bit shift, we subtract 1 and pass the resulting 14-bit
number as the input for an arcsine function on the FPGA, tak-
ing the form of a 214-element LUT embedded in the Verilog
code. This operation generally consumes vast memory on the
FPGA, however this method provides the highest speed solu-
tion for the arcsine function, since it consumes only one clock
cycle to complete the operation. The result is a value for the
numerator in Eq. 4. The output of the arcsine function is fed
into the divider to adjust the amplitude due to the change of
coupling strength coefficient (γ) and acquisition time frame
(T). The divider will adjust the amplitude of dividend γTXk

with the divisor γT and can handle up to 14 bits of both div-
idend and divisor. The quotient is in form of 14-bit output
integer. This output integer is thereafter the input data for the
DAC.

