
AMD Versal Implementations of
FAM and SSCA Estimators

Carol Jingyi Li∗† , Ruilin Wu∗ , Philip H.W. Leong∗
∗ Computer Engineering Lab, The University of Sydney, NSW, Australia

† Reconfigurable Computing Systems Lab , The Hong Kong University of Science and Technology, Hong Kong
{jingyi.li, ruilin.wu, philip.leong}@sydney.edu.au

Abstract—Cyclostationary analysis is widely used in signal pro-
cessing, particularly in the analysis of human-made signals, and
spectral correlation density (SCD) is often used to characterise
cyclostationarity. Unfortunately, for real-time applications, even
utilising the fast Fourier transform (FFT), the high computa-
tional complexity associated with estimating the SCD limits its
applicability. In this work, we present optimised, high-speed field-
programmable gate array (FPGA) implementations of two SCD
estimation techniques. Specifically, we present an implementation
of the FFT accumulation method (FAM) running entirely on
the AMD Versal AI engine (AIE) array. We also introduce
an efficient implementation of the strip spectral correlation
analyser (SSCA) that can be used for window sizes up to 220.
For both techniques, a generalised methodology is presented to
parallelise the computation while respecting memory size and
data bandwidth constraints. Compared to an NVIDIA GeForce
RTX 3090 graphics processing unit (GPU) which uses a similar
7nm technology to our FPGA, for the same accuracy, our
FAM/SSCA implementations achieve speedups of 4.43x/1.90x and
a 30.5x/24.5x improvement in energy efficiency.

Index Terms—AIE, FPGA, Cyclostationary, FAM, SSCA.

I. INTRODUCTION

A time series is said to be cyclostationary if its probability
distribution varies periodically with time. Cyclostationary time
series analyses are suitable for a wide range of periodic
phenomena in signal processing, including characterisation of
modulation types; noise analysis of periodic time-variant linear
systems; synchronisation problems; parameter and waveform
estimation; channel identification and equalisation; signal de-
tection and classification; autoregressive (AR) and autore-
gressive moving average (ARMA) modelling and prediction;
and source separation [1]–[3]. Cyclostationary analysis often
involves estimating the spectral correlation density (SCD),
which is the idealised temporal cross-correlation between all
pairs of narrowband spectral components.

Although the SCD reveals extensive information about cy-
clostationary processes, the high computational requirements
of the method poses problems for real-time applications.
Even though the fast Fourier transform (FFT) significantly
improves computational efficiency in the two most widely
used SCD estimators, namely the FFT accumulation method
(FAM) and strip spectral correlation analyser (SSCA) tech-
niques, practitioners still seek enhanced performance to detect
signals buried deep within noise [4], [5]. Consequently, there

The authors would like to thank the AMD/Xilinx University Program for
the generous donation of a Versal VCK5000 board.

has been significant interest in developing high-performance
implementations of the SCD method to detect and classify
cyclostationary signals using central processing units (CPUs),
graphics processing units (GPUs), and field-programmable
gate arrays (FPGAs) technologies.

Traditional implementations of SCD algorithms on CPUs
and GPUs are constrained by the fixed architectures of these
platforms and are often not energy efficient. In contrast,
FPGAs offer a flexible architecture that can be customised for
specific applications. Moreover, they provide the possibility
of integrating cyclostationary analysis with a software-defined
radio and/or other signal processing and machine learning
functionality. They also enable custom data paths that enhance
parallelism and improve computational speed.

The AMD/Xilinx Versal ACAP architecture (Versal ar-
chitecture), described in [6] merges general-purpose CPUs,
programmable logic (PL), and AI Engine (AIE) processors
optimised for AI and machine learning optimisation. With 400
AIE processors executing at a maximum 1.25 GHz, capable
of delivering 8 MACs/cycles for 32-bit floating-point data,
it has peak performance of 8 tera floating point operations
per second (TFLOPS) [7]. The SCD estimators in this work
were designed to later be integrated with an software-defined
radio (SDR) front-end and machine learning (ML) back-end to
perform radio frequency machine learning (RFML). The novel
contributions of this paper are:

• A design methodology reported for high performance
SCD estimation using the FAM and SSCA techniques on
Versal platforms. The designs and results in this paper
are reproducible1.

• The first reported FAM implementation that only uses
AIEs. Although performance is one-quarter of Ref. [8],
it only requires 35% of the AIEs available and zero
PL resources enabling future ML integration in RFML
applications.

• An SSCA implementation employing a decomposed FFT
and PL transpose unit to handle window sizes of the order
of 1M samples. To the best of our knowledge, this is the
first FPGA-accelerated SSCA implementation.

The remainder of this paper is structured as follows. Sec-
tion II provides an overview of the SCD algorithms and the
Versal architecture. In Section III, we detail the implementa-

1The code can be found in https://github.com/Jingyi-li/SCD VCK5000.

https://orcid.org/0000-0001-7638-6323
https://orcid.org/0009-0009-9927-0898
https://orcid.org/0000-0002-3923-3499
https://github.com/Jingyi-li/SCD_VCK5000


(a) A real signal x(n) with a sample period of
Ts.

time

n
frequency

Δt=1/Δα

Δf=1/T
α
f

(b) Complex demodulates of signal x(n). (c) The SCD function of signal x(n) with alpha profile.

Fig. 1: The SCD function of direct-sequence spread-spectrum (DSSS) binary phase-shift keying (BPSK) signal.

tion based on AIE of two SCD algorithms on the AMD/Xilinx
VCK5000 Versal platform (VCK5000). Section IV presents
the experimental results, followed by the conclusions in Sec-
tion V.

II. BACKGROUND

A. Spectral Correlation Density

The description of the SCD function below follows that of
Roberts et. al. [9] and Brown et. al [10]. The discrete-time
complex demodulate of a continuous time, complex-valued
signal x(t) at frequency f is

XT (n, f) =

N/2∑
r=−N/2

a(r)x(n− r)e−i2πf(n−r)Ts (1)

where a(r) is a length T = NTs second windowing function,
Ts is the sampling period and N is the number of samples.
Complex demodulates are low pass sequences with bandwidths
∆f ≈ 1/T . For inputs x(n) and y(n) of length N samples,
we correlate demodulates XT (n, f1) and YT (n, f2) separated
by α0 (f1 = f0 + α0/2, f2 = f0 − α0/2) over the time
window ∆t = NTs using a complex multiplier followed by
a low pass filter (LPF) with bandwidth approximately 1/∆t.
Thus the SCD function is given by

Sα0
xyT

(n, f0)∆t =
∑
r

XT (r, f1)Y
∗
T (r, f2)g(n− r) (2)

where the ∗ operator is a complex conjugate and g(n) is a
length ∆t = NTs windowing function. For the special case
of auto-correlation studied in this paper, y(n) is a time-delayed
value of x(n), i.e., y(n) = x(n+ d) where d is the delay.

B. FAM Technique

The direct application of Eq. (2) is computationally inef-
ficient. Decimation and the FFT can be used to reduce the
computational complexity [9]. Fig. 2 illustrates the signal flow
for the FAM method, where the first task for both methods is

Fig. 2: Dataflow for FAM and SSCA (for SSCA L = 1 and
the dashed block is omitted).

to compute the complex demodulates, XT and YT (in Eq. (2)).
We summarise the computations in this subsection, and refer
readers to references [10], [11] for a detailed derivation, with
implementation guidance in [12].

1) Complex Demodulate: For Eq. (1), the input sequence
is from N to P = N/L via decimation using an L sample
stride for the channeliser, with L = NP /4 [10]. The Eq. (1)
can be rewritten as

XT (pL, fm)

= [

NP−1∑
k=0

a(d− k)x(pL− d+ k)︸ ︷︷ ︸
x(n) windowed by a(n)

e−i2πmk/NP ]

︸ ︷︷ ︸
NP point-FFT

e−i2πmpL/NP︸ ︷︷ ︸
Down Conversion

,

(3)

where p = {0, 1..., P − 1}, d = NP /2 − 1, r = d − k, fm =
mfs/NP , fs = 1/Ts, and −NP /2 < m < NP /2 [11]. Thus,
in Eq. (3), the input is windowed via a(n), then passed through
a NP -Point FFT. A phase shift is introduced to compensate
for the down conversion from N to NP samples.



Fig. 3: AMD/Xilinx Versal ACAP Architecture.

2) FAM method: Taking Eq. (2), and substituting XT = YT

to compute at the frequency fkl = (fk + fl)/2 in P segments
(Eq. (3)), Eq. (2) becomes

Sα0
xyT

(pL, fkl)∆t =
∑
r

XT (rL, fk)X
∗
T (rL, fl)gd(p− r) (4)

where p = {0, 1, ..., P−1} and gd(r) = g(rL). Now the cycle
frequency parameter has been redefined to α0 = fl − fk + ϵ,
as the ϵ = ∆f is the introduced frequency shift.

Introducing ϵ = q∆α (∆α = fs/P and q = ∆f
∆α ) to Eq. (4)

and substituting akl = fk − fl, f0 = fkl = (fk + fl)/2, and
α0 = akl + q∆α [11], the following is obtained

Sakl+∆α
x (pL, fkl)∆t

=
∑
r

XT (rL, fk)X
∗
T (rL, fl)︸ ︷︷ ︸

Conjugate Multiplication

gd(p− r)e−i2πrq/P

︸ ︷︷ ︸
P-point FFT

.
(5)

C. SSCA Technique

Instead of multiplying two complex demodulates, the SSCA
directly multiplies complex demodulates with the original sig-
nal [13]. In Fig. 2, the difference between SSCA and FAM is
that instead of multiplying the complex demodulate XT (n, fk)
with Y ∗

T (n, fk), it is multiplied by y∗(n) to produce the
channel-data product (CDP), Xg , for k ∈ [−NP /2, NP /2−1].
To ensure consistency in the sampling rate of the two terms,
the channeliser decimation factor L is set to 1.

Xg(n+m, k) = XT (n+m, fk)x
∗(n+m)g(m) (6)

where g(m) is a length ∆t = NTs windowing function, and
m ∈ [−N/2, N/2− 1]. The centre frequencies of XT are set
to fk = k(fs/NP ).

Finally, the N -point FFT of each of the NP CDP values is
computed resulting in the SCD estimate

Sfk+q∆α
X (

fk
2

− q
∆α

2
)∆t =

N/2−1∑
m=−N/2

Xg(n+m, k)e−i2πqm/N

︸ ︷︷ ︸
N-point FFT

(7)
where cycle frequency α = fk + q∆α, ∆α = fs/N , q ∈
[−N/2, N/2 − 1], and f = (fk − q∆α)/2 [11], [14]. In the
implementation, both f and α are normalised based on fs = 1,
which maps Sα

X(f) to f ∈ [−0.5, 0.5] and α ∈ [−1, 1].

D. Versal Architecture

The AMD/Xilinx VCK5000 development card is powered
by AMD’s 7nm Versal™ Versal XCVC1902-2MSEVSVA2197
Adaptive SoC (VC1902), and AIE development is facilitated
by the Vitis software platform [15].

Fig. 3 presents the overall Versal architecture, emphasising
the AIE tile on the right [6]. The PL can be customised to meet
specific application requirements, with digital signal process-
ing (DSP) capabilities integrated for enhanced functionality.
Additionally, the board incorporates an ARM processor for
general-purpose processing tasks. The AIE array supports
C/C++ programmability. The PL design can be made using
RTL or C/C++ via high-level synthesis (HLS). [16]

These three components, the AIE array, ARM processor,
and PL, are integral parts of the heterogeneous SoC. They
operate independently and communicate through a network-
on-chip (NoC) to other peripherals such as PCIe and DRAM
controllers. The VCK5000 additionally features four DDR4
off-chip memory modules, each providing a peak bandwidth
of 25.6 GB/s [6].



Fig. 4: Dataflow and parallelism scheme for FAM on VCK5000.

III. METHOD

The FAM method is limited by its nonuniform frequency
resolution, making it suitable for analysing small-window sig-
nals where resolution is less critical [9], [17]. In contrast, the
SSCA method provides uniform frequency resolution, making
it appropriate for large-window signals analysis, with higher
memory requirements [9], [10]. In this section, we present
an AIE-based small-window FAM implementation optimised
for processing speed (Sec. III-A), and a large-window SSCA
implementation for applications that require accurate cycle
frequency estimates (Sec. III-B).
A. FAM Implementation

Implementing the FAM entirely within AIE tiles allows for
faster internal data transfers, avoiding a potential bottleneck
between the PL and AIE. Thus, we focus on efficient utili-
sation of the limited AIE tile memory that is available. Key
hardware constraints include:

• AIE Tile Memory Constraints. While an AIE tile can
access data memory in four directions, a maximum of
2 input AXI4-Stream interfaces are supported, limiting
the number of input buffers to two, i.e. the total input
buffer capacity is 2× 32KB = 64KB. Since each input
buffer is organised in ping–pong A/B halves to overlap
writes with computations, the actual size is halved again
to 32 KB. Therefore, the usable size for each individual
input buffer on an AIE Tile is 16 KB.

• AIE array to PL Interface Constraints. The VC1902
provides 39 columns to interface between the AIE array
and PL, with each column having 6 streams (totaling 234
stream interfaces) [6].

Fig. 4 illustrates the FAM process from input samples to the
final SCD matrix, covering three stages: Framing, Demodu-
late, and FFT2. Below, we analyse the relationships between

parameters and optimisation details for the typical settings
used in previous work [8], [12] (N = 2, 048, NP = 256)
to facilitate an effective comparison.

1) Methodology: The small-window FAM architecture sup-
ports NP values from 24 to 28, and input signal length N from
27 to 212. We define the total number of AIE tiles required to
compute XT in Eq. 3 as:

AFAM = AFraming + ADemodulate + AFFT2, (8)

where AFraming, ADemodulate and AFFT2 are the number of
tiles required for the Framing, Demodulate and FFT2 stages
respectively. The intermediate matrix XF between the demod-
ulate stage and the FFT2 stage has a size of NP ×P complex
values. Usually we set L = NP /4 [10], so it follows that
P = N/L = 4N/NP . Therefore, the total size of the inter-
mediate matrix XF becomes NPP = 4N complex numbers.
Each input buffer (up to 16 KB) stores F = 2, 048 complex
floats, needing ⌈4N/F ⌉ buffers and Fam_stage1 kernels
in the Demodulate stage, plus ⌈4N/(2F )⌉ Conv_stage1
kernels to aggregate data from the buffers, where ⌈·⌉ denotes
the ceiling function.

The Framing stage employs one norm kernel for normal-
isation and ⌈4N/(2F )⌉ Channel kernels to distribute data
to Demodulate kernels. The FFT2 stage involves conjugate
multiplications and FFT computations. With a maximum of
234 AIE-to-PL streams, if NP > 234 (e.g., 256), 128 kernels
perform NP /128×NP operations each, outputting results to
128 streams. Thus, the total tile count is:

AFAM = 1+

⌈
4N

2F

⌉
+

(⌈
4N

2F

⌉
+

⌈
4N

F

⌉)
+min(NP , 128)

(9)
Next, we will introduce the specific implementation of FAM

on AIE array when N = 2, 048, NP = 256, and P = 32.



2) Framing Stage: Before decimation, the norm kernel
normalises input x(t). According to Eq. (3), the signal of
length N is partitioned into P blocks, each containing NP

elements with offset L = NP /4. The decimated matrix
XDe ∈ RNP×P is defined as:

XDe[n, p] = x[pL+ n], 0 ≤ n < NP , 0 ≤ p < P.

The matrix XDe is column-wise partitioned into four equal
submatrices X

(i)
De ∈ CNP×P/4 for parallel processing:

XDe =
[
X

(0)
De |X

(1)
De |X

(2)
De |X

(3)
De

]
,

each mapped to independent kernels. The channel kernel
routes data to Demodulate stage tiles.

3) Demodulate Stage: Based on Eq. (3), each column of
the matrix from the Framing stage undergoes windowing,
down conversion, and NP -point FFT. Considering memory
constraints (32KB per tile), this stage uses four Fam_stage1
kernels, each processing P/4 frames, and two Conv_stage1
kernels to broadcast data for FFT2.

Each kernel i processes frames in index set Ji:

Ji =

{
j | iP

4
≤ j < (i+ 1)

P

4

}
, i = 0, 1, 2, 3.

Kernel outputs X
(i)
T (fm) correspond to these frame subsets:

X
(i)
T (fm) = [XT (jL, fm)]j∈Ji , i = 0, 1, 2, 3,

forming the combined output:

XT (fm) = [X
(0)
T (fm)|X(1)

T (fm)|X(2)
T (fm)|X(3)

T (fm) ].

In our design, the output from the Demodulate stage forms an
NP ×P matrix, distributed across four kernels, each handling
P/4 columns. Each FAM_Stage1 kernel stores its column
data into a buffer with a P/4-element stride. Thus, every P/4-
element block in memory corresponds to P/4 points from one
matrix row. Two Conv kernels then reorganise these blocks
into four contiguous groups of P/4 points. The FAM_Stage2
kernel receives the complete P -point input through two ports.

4) FFT2 Stage: For NP = 256, 128 FAM_stage2 kernels
handle two frequency channels each:

fk1 = 2i, fk2 = 2i+ 1, i = 0, . . . , 127.

with the corresponding data XT (rL, fk1) and XT (rL, fk2)
pre-loaded from Conv_stage1 kernels. In FFT2 stage, the
complex-conjugate data X∗

T (rL, fl) is then broadcast twice to
each kernel:

1) Broadcast 1: Multiply XT (rL, fk1
) with X∗

T (rL, fl).
2) Broadcast 2: Multiply XT (rL, fk2

) with X∗
T (rL, fl).

Mathematically, this expands the original single-pair oper-
ation

{
(k, l)

}
into two passes for the pair {k1, k2}. For each

FAM_stage2 kernel, Eq. (5) becomes:

S(kj ,l)
x (pL) =

P−1∑
r=0

XT (rL, fkj )X
∗
T (rL, fl) gd(p−r)e−i2πrq/P .

By performing two broadcast passes of X∗
T (rL, fl), each

kernel can process the conjugate multiplications for its two
assigned frequency channels {fk1

, fk2
} without exceeding the

available I/O resources.

Algorithm 1: AIE-based FAM pipeline pseudocode.
Function Framing(data in):

data norm← Normalize(data in);
X ← zeros(NP , P );
for k = 0 to P − 1 do

X(:, k + 1)← data norm[k · L : k · L+NP − 1];

return X;

Function Demodulate(X):
Y ← zeros(NP , P );
for k = 0 to P − 1 do

data win← Window(chebwin[NP ], X(:, k));
data fft← NP -Point FFT(data win);
Y (:, k)← Down Conversion(data fft, k);

return Y ;

Function FFT2(Y ):
for m = 0 to NP − 1 do

for n = 0 to NP − 1 do
z ← Y (:,m) · conj(Y (:, n));
zfft ← P -point FFT(z);
zabs ← |zfft|2;
write to output(zabs[P2 ..

3P
4
− 1],

zabs[
P
4
..P

2
− 1]);

5) Implementation: We implement the FAM algorithm on
VCK5000 platform. PL fetches 2,048 complex samples (64-
bit, 8 KB) from DDR and streams them as two 32-bit AXI
streams to AIE tiles. The entire algorithm is presented in
Alg. 1.

B. SSCA Implementation

For very large SSCA windows (e.g., N = 220), intermediate
matrices Xg must be stored on- or off-chip, and the AIE
array primarily addresses computational complexity and store
temporary variables. The key challenge on the VCK5000
is implementing an N -point FFT while managing memory
bandwidth constraints.

1) SSCA 2DFFT: The strip spectral correlation analyser
utilising a decomposed FFT (SSCA 2DFFT) is a novel
approach that implements SSCA with a decomposed FFT
(2DFFT), aligning the CDP computation order with the input
sequence expected by the 2DFFT. This decomposition enables
a more efficient mapping onto the AIE array, reducing inter-
mediate matrix size and conserving memory bandwidth.

I. J. Good provided [18] the theoretical foundation for
computing the Fourier transform of one-dimensional signals
via multi-dimensional Fourier transforms [19]. The N -point
discrete Fourier transform (DFT) can be computed using an
M1M2-point matrix DFT as:

x̂(m′
1,m

′
2)

=

M2−1∑
m2=0

{
M1−1∑
m1=0

x(m1,m2)e
−j2π

m1m′
1

M1 }︸ ︷︷ ︸
M1−point DFT on m2th column

e−j2π
m2m′

1
M2M1︸ ︷︷ ︸

rotate factor

e−j2π
m2m′

2
M2

︸ ︷︷ ︸
M2−point DFT on m1th row

,

(10)



Fig. 5: Reshaping Xg from [N × NP ] to [M1 × M2 × NP ],
where N = M1M2.

where M1M2 = N , 0 ≤ m1, m
′
1 < M1, and 0 ≤ m2, m

′
2 <

M2.
Fig. 5 shows how Xg is reshaped in SSCA 2DFFT to serve

as input for the decomposed FFT stages, by mapping the 1D
index to 2D coordinates for data reorganisation:

X2D
g (m1,m2, k) = Xg(m1M2 +m2, k), (11)

where 0 ≤ m1 < M1, 0 ≤ m2 < M2 and 0 ≤ k < NP .
The NP channelizer computations run in parallel within Xg

and can overlap with the 2DFFT, so the NP 2DFFTs can be
treated collectively, generating Xg only when needed.

The SSCA 2DFFT operates in two stages. Stage 1 performs
M1-point FFTs on each of the M1 rows of Xg , across all
M2 columns for NP channelizers. During this stage, Xg is
provided as required, and the outputs are then multiplied by a
rotation factor and stored. Stage 2 uses the results from Stage
1 to perform the M2-point FFT for each row and channelizer.
To achieve this, Eq. (3) becomes:

X2D
T (m1,m2, f) = XT (m1M2 +m2, f)

=

NP /2−1∑
r=−NP /2

a(r)x(η + r)e−j2πfrTs ∗ e−j2πfηTs
(12)

where η is replaced by η = m1M2 +m2. If M2 is divisible
by NP , the down conversion term becomes e−i2πfm2Ts for
all m1. After multiplying by x∗(η), the CDP is expressed as:

X2D
g (m1,m2, k) = X2D

T (m1,m2, fk)x
∗(η +m)g(m). (13)

The final SSCA 2DFFT is then obtained by computing the
2DFFT of the NP CDP values:

S2D
x (m′

1,m
′
2, k)∆t = Stage 2(Stage 1(X2D

g (m1,m2, k))),
(14)

in which the Stage 1 is

S2D
x.s1(m

′
1,m2, k)∆t

=

M1−1∑
m1=0

X2D
g (m1,m2, k)e

−j2π
m1m′

1
M1

︸ ︷︷ ︸
M1-point FFT

e−j2π
m2m′

1
M2M1︸ ︷︷ ︸

rotate factor

(15)

and the Stage 2 is

S2D
x (m′

1,m
′
2, k)∆t =

M2−1∑
m2=0

S2D
x.s1(m

′
1,m2, k)∆te

−j2π
m2m′

2
M2

︸ ︷︷ ︸
M2-point FFT

.

(16)

Fig. 6: Dataflow of SSCA 2DFFT on Versal.

Finally, S2D
x (m1,m2, k) is mapped to Sα

x (f) using:

f =
k

2NP
− M1m

′
2 +m′

1 −N/2

2N

α =
k

NP
+

M1m
′
2 +m′

1 −N/2

N
.

2) Methodology: The VCK5000 platform offers 23.9 MB
of on-chip SRAM and four 4 GB off-chip DDR. Since
an intermediate matrix in single-precision complex format
requires 8 × N × NP bytes, off-chip memory is needed if
N ×NP > 220.

Each AIE tile features eight single-port memory banks
(32KB total), sufficient to perform two-step 1K (1,024-
element) single-precision complex computations using a ping-
pong buffer scheme. In the SSCA implementation, the number
of NP channelizers ranges from 25 to 28, and the size of the
second N -point FFT spans from 212 to 220. Because each AIE
tile is efficient at processing a 1K array, we assign ACDP AIE
tiles to compute 1K/NP window sets of Xg (Eq. 6) in parallel.
Accordingly, ACDP is given by:

ACDP = 1 + ⌈log2(NP )/2⌉, (17)

with one for down conversion/conjugate multiplication, and
the rest tiles for NP -point FFT. The window function is
merged into the first FFT stage.

For the large-point FFT, the N -point FFT is decomposed
into M1 and M2 = N/M1. Thus, the number of AIE tiles
required is:

A2DFFT = ⌈log2(M1)/2⌉+ 1 + ⌈log2(M2)/2⌉, (18)

where M1, M2 < 1K. Additionally, one extra tile is allo-
cated for multiplication with the rotation factors. The design
computes 1K/M1 instances of M1-point FFT and 1K/M2

instances of M2-point FFT in parallel.
Thus, the total AIE tiles needed for SSCA 2DFFT is

ASSCA = ACDP + A2DFFT . (19)

Replicating ASSCA modules enables further parallelisation.



Algorithm 2: AIE-based SSCA 2DFFT pseudocode.
Function CDP(datain even, datain odd):

data win, data fft, data dc, data out =
zeros(M1, 1); ▷ M1 = 16NP

xc = zeros(16, 1);
static int itr = 0;
data win, xc←

Window(chebwin[NP ], datain even, datain odd);
data fft← NP-dimensional FFT(data win);
data dc← Down Conversion(data fft, int(itr/NP ));
data out = data dc× xc;
itr = (itr == (M2 ∗NP ))? 0 : (itr + 1);
return data out;

Function FFTs1(datain even, datain odd, tow):
data fft, data out, rotate factor = zeros(M1, 1);
if itr%NP == 0 then

rotate factor ← Compute rotate factor(tow);
data fft←
M1-dimensional FFT(data even, data odd);

data out = data fft× rotate factor;
itr = (itr == (M2 ∗NP ))? 0 : (itr + 1);
return data out;

Function FFTs2(datain even, datain odd, tow):
data out = zeros(M2, 1);
data out←
M2-dimensional FFT(data even, data odd);

return data out;

3) Implementation: We developed a complete SSCA im-
plementation with N = 1, 048, 576 (i.e., an example of one
million input size), NP = 64, and M1 = M2 = 1, 024 to
balance the number of iterations between FFTs1 and FFTs2.
Fig. 6 shows the overall architecture on the VCK5000 plat-
form. The PL supports data transfer from the DDR memory
controller (DDRMC) to the AIE array, and between sections
in AIE tiles. Our implementation of a single-precision, large
N-point FFT uses ideas from Ref. [20] but: (1) loads the data
from CDP, (2) matches the bandwidth of the DDRMC, and
(3) minimises DDR access time by optimising row accesses.
Previous works such as Ref. [21] used fixed-point arithmetic.

Alg. 2 outlines the SSCA 2DFFT implementation on the
AIE array. The PL streams input to the CDP stage, which
performs windowing, NP -point FFTs, down conversion, and
conjugate multiplication. The M1 × NP output matrix is
transposed in PL and forwarded to FFTs1, where M1-point
FFTs and rotate factors are applied across M2 iterations.
Results exceeding on-chip memory capacity (NP ×M1×M2)
are stored in DDR. Then PL reads the data for FFTs2 using
a stride access pattern to achieve transpose input.

The PL manages data transfers between DDRMC and AIE
array. To fully utilise the bandwidth, a 512-bit data bus
transfers eight 64-bit complex samples per cycle. For CDP,
the PL uses a ping-pong scheme using two algernative buffers
B0 and B1 ∈ CM1×(NP+LANE), where LANE = 8. While
one buffer is filled by the PL, the other is read by the AIE,
alternating each batch. The buffer accommodates LANE ·NP

iterations for CDP per load, ensuring continuous data supply

to the CDP module with minimal stalling.
To match the input format of FFTs1, the CDP output (an

[M1×NP ] matrix) is transposed in the PL. A ping-pong buffer
enables parallel loading and forwarding, hiding latency and
maintaining continuous dataflow to FFTs1.

The PL also manages ping-pong buffers for storing FFTs1
outputs and loading inputs to FFTs2 via DDR. While storage
to DDR is sequential, loading requires transposed access. To
avoid inefficient strided reads, we allocated a larger buffer
to fetch blocks of size [M2 × CNP ] instead of [M2 × NP ],
improving access efficiency by a factor of C.

IV. RESULTS

We implement the FAM and SSCA designs described in
Sec. III on the VCK5000 platform, with AIE running at
1 GHz and PL running at 312.5 MHz. We then compare
their performance against a conventional implementation on
an Intel(R) Xeon(R) Silver 4208 CPU and NVIDIA GeForce
RTX 3090, both at 2.10 GHz under Ubuntu 22.04.4 LTS.

A. Accuracy

Accuracy was tested using a DSSS BPSK signal with
10 dB signal-to-noise ratio (SNR), processing gain of 31,
chip rate 0.25 and sample rate normalised to 1, resulting in
cycle frequencies that are multiples of the data rate (0.25/31).
We used IEEE 754 double-precision MATLAB results as a
reference for validation. When comparing the MATLAB and
VCK5000 implementations, the FAM algorithm achieves an
average relative error of 9.94e-5. We compare the VCK5000-
based SSCA 2DFFT with a CPU SSCA implementation writ-
ten in C++ that used the same FFT coefficients. Under these
conditions, the average relative error reduced to 1.08e-6.

B. Utilisation

Tab. I shows the utilisation of resources. The FAM design
does not require URAM, as buffering is managed within AIE
tiles. For the SSCA, BRAM and URAM are used, mainly
for the ping-pong buffer between the DDRMC and AIE
components.

In the FAM implementation, 3 AIE tiles are allocated for
signal normalisation and decimation in the Framing stage. The
Demodulate stage employs 6 AIE tiles to perform windowing,
NP -point FFT, and down conversion. In the final FFT2 stage,
since NP > 128, 128 AIE tiles are used to execute the
conjugate multiplication and P -point FFT. As shown in Tab. I,
the implementation of the FAM algorithm requires 137 AIE
tiles, which is consistent with the value in Eq. (9). In this
case, all computational kernels are executed on the AIE array,
making the design easily portable to AIE-only platforms.

In the SSCA implementation, the CDP module requires 4
AIE tiles that compute M1/NP sets of NP data in each
iteration, and this utilises a ping-pong buffering scheme to
exchange data between tiles. In the FFTs1 and FFTs2 mod-
ules, 5 AIE tiles are used to compute the M1-point FFT, with
an additional tile in FFTs1 for the computation of rotation
factors. This totals 15 AIE tiles (Tab. I), matching Eq. (19).



TABLE I: Utilisation in VCK5000

PL AIE Array
Register LUT LUT as MEM BRAM URAM AIE tile PLIO

Total resources 1,739,432 860,336 446,367 933 463 400 -
FAM 113,686 (6.61%) 107,601 (12.73%) 960 (0.22%) 37 (3.97%) 0 (0.00%) 137 (34.25%) 130
SSCA 2DFFT 15,475 (0.89%) 11,824 (1.37%) 1,575 (0.35%) 349 (37.41%) 192 (41.47%) 15 (3.75%) 13

TABLE II: Comparison with other FAM implementations

[12] [8] Our
Platform ZCU111 ZCU111 VCK5000
Initiation Interval (ms) 0.26 0.164 0.63
Throughput (MS/s) 7.88 12.50 3.25
Computational Performance (GOPS) 60.40 460 189
Board Power (W) 12.501 35 40

1 Chip rather than board power.

TABLE III: Execution time and speedup vs CPU and GPU

FAM SSCA
Time Speedup Time Speedup

CPU 0.194 s 1 11.3 s 1
GPU 2.791 ms 69.51 217 ms 52.07
VCK5000 0.630 ms 307.94 114 ms 99.12

C. Performance

The code running on the CPU was compiled using g++
version 9.4.0 with the “-O2” optimisation flag. The GPU code
was compiled using nvcc, with the host compiler set to g++.
The compilation targeted CUDA architecture “sm 86”, using
C++17 standard with the “-O3” optimisation flag. Addition-
ally, the code is linked with the cuFFT library to support
efficient FFT operations [22].

In Tab. II we compare our implementation with existing
FPGA designs. In Ref. [12], a quarter SCD is implemented
for comparison with our implementation. To enable a fair
comparison with our full SCD, the reported initiation interval
was scaled by a factor of four.

Tab. III presents the execution times (measured on the
physical platform) for the SSCA and FAM algorithms on
CPU, GPU, and VCK5000 platforms. For FAM, the VCK5000
showed a speedup of 308x compared to CPU and 4.43x over
GPU. For SSCA, the VCK5000 achieved a speedup of 99.12x
over the CPU and 1.90x over the GPU.

As shown in the roofline plot of Fig. 7, the FAM imple-
mentation on VCK5000 achieves 189 GFLOPs, corresponding
to 8.6% of the 137-tile peak performance (2192 GFLOPs).
The SSCA implementation reaches 88.30 GFLOPs, achieving
37% of its 15-tile peak (240 GFLOPs). The relatively low
utilisation of the FAM design is attributed to its architectural
design: although 137 AIE tiles are allocated, a significant
portion of them are used solely for data movement rather than
floating-point operations. This leads to the under-utilisation
of available computational resources. The performance of
SSCA is constrained by the bandwidth between PL and
DDRMC. In our system, communication with 15 AIE tiles
saturates this available bandwidth. With increased off-chip
bandwidth, additional AIE tiles could be utilised to further

Fig. 7: Rooflines of our Implementations.

enhance performance. On the RTX 3090, both FAM and SSCA
implementations are memory-bound, achieving 20.78 GFLOPs
and 46.39 GFLOPs respectively, also far below the GPU’s
ceiling of 35 TFLOPs.

We measure power consumption on the VCK5000 and
GPU using the “xbutil” and “nvidia-smi” command-line tools,
respectively. For FAM and SSCA, the VCK5000 consumes
17 W and 8 W, respectively, on top of an idle power of 23 W.
This value is consistent with the power estimate from Xilinx
Power Design Manager which reported 13.7 W for FAM. The
GPU requires 117 W and 103 W with an idle of 33 W.
Consequently, compared to GPU, the VCK5000 achieves a
30.5x higher energy efficiency for FAM and 24.5x higher for
SSCA. Our SSCA design requires fewer AIE tiles, resulting
in lower power usage on the VCK5000.

V. CONCLUSION

This paper presents a novel design methodology for high-
speed implementations of the FAM and the SSCA on the
Versal platform. For the SSCA implementation, we take advan-
tage of the heterogeneous nature of the Versal architecture and
utilise the AIE array’s parallel compute capabilities in parallel
with the PL to minimise data transfers and manage large
intermediate matrices. Our design demonstrates the potential
of Versal devices for real-time cyclostationary signal analysis,
paving the way for future integration with SDR front-ends and
machine learning back-ends in advanced RFML applications.



REFERENCES

[1] W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: Half
a century of research,” Signal processing, vol. 86, no. 4, pp. 639–697,
2006.

[2] B. Ramkumar, “Automatic modulation classification for cognitive radios
using cyclic feature detection,” IEEE Circuits and Systems Magazine,
vol. 9, no. 2, pp. 27–45, 2009.

[3] X. Liu, C. J. Li, C. T. Jin, and P. H. W. Leong, “Wireless signal
representation techniques for automatic modulation classification,” IEEE
Access, vol. 10, pp. 84 166–84 187, 2022.

[4] W. A. Gardner, “Exploitation of spectral redundancy in cyclostationary
signals,” IEEE Signal Processing Magazine, vol. 8, pp. 14–36, Apr.
1991.

[5] W. A. Gardner, “The spectral correlation theory of cyclostationary time-
series,” Signal processing, vol. 11, no. 1, pp. 13–36, 1986.

[6] AMD Xilinx, AM009 Versal AI Engine, 2021, versal ACAP AI Engine
Architecture Manual. [Online]. Available: https://www.xilinx.com

[7] ——, XMP452 Versal AI Core Series Product Selection Guide, 2024,
versal AI Core Series Product Selection Guide. [Online]. Available:
https://www.xilinx.com

[8] C. J. Li, X. Li, B. Lou, C. T. Jin, D. Boland, and P. H. W. Leong,
“Fixed-point fpga implementation of the fft accumulation method
for real-time cyclostationary analysis,” ACM Trans. Reconfigurable
Technol. Syst., vol. 16, no. 3, Jun. 2023. [Online]. Available:
https://doi.org/10.1145/3567429

[9] R. S. Roberts, W. A. Brown, and H. H. Loomis, “Computationally
efficient algorithms for cyclic spectral analysis,” IEEE Signal Processing
Magazine, vol. 8, no. 2, pp. 38–49, 1991.

[10] W. A. Brown and H. H. Loomis, “Digital implementations of spectral
correlation analyzers,” IEEE Transactions on Signal Processing, vol. 41,
no. 2, pp. 703–720, 1993.

[11] W. A. Gardner, Cyclostationarity in communications and signal process-
ing. New York: IEEE Press, 1994.

[12] X. Li, D. L. Maskell, C. J. Li, P. H. W. Leong, and D. Boland,
“A scalable systolic accelerator for estimation of the spectral
correlation density function and its fpga implementation,” ACM Trans.
Reconfigurable Technol. Syst., vol. 16, no. 1, Dec. 2022. [Online].
Available: https://doi.org/10.1145/3546181

[13] W. A. Brown, “On the theory of cyclostationary signals,” Ph.D. disser-
tation, University of California Davis, 1987.

[14] E. April, On the Implementation of the Strip Spectral Correlation
Algorithm for Cyclic Spectrum Estimation, ser. DREO technical note.
Defence Research Establishment Ottawa, 1994. [Online]. Available:
https://books.google.com.au/books?id=7QD7MwEACAAJ

[15] “Vck5000 versal development card,” https://www.xilinx.com/products/
boards-and-kits/vck5000.html, accessed: 2025-03-28.

[16] AMD Xilinx, UG1076 Versal ACAP AI Engine Programming
Environment User Guide, 2022, running Software Emulation
chapter. [Online]. Available: https://docs.amd.com/r/2022.1-English/
ug1076-ai-engine-environment/Running-the-System-in-Hardware

[17] J. Antoni, G. Xin, and N. Hamzaoui, “Fast computation of the spectral
correlation,” Mechanical Systems and Signal Processing, vol. 92,
pp. 248–277, 2017. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0888327017300134

[18] I. J. Good, “The interaction algorithm and practical fourier analysis,”
Journal of the Royal Statistical Society: Series B (Methodological),
vol. 20, no. 2, pp. 361–372, 12 2018. [Online]. Available:
https://doi.org/10.1111/j.2517-6161.1958.tb00300.x

[19] L. R. Rabiner and B. Gold, Theory and application of digital signal
processing. Englewood Cliffs, N.J: Prentice-Hall, 1975.

[20] AMD Xilinx, “1 million point float FFT @ 32 Gsps
on AI Engine,” 2024, accessed: 2025-03-28. [Online]. Avail-
able: https://github.com/Xilinx/Vitis-Tutorials/tree/2024.2/AI Engine
Development/AIE/Design Tutorials/16-1M-Point-FFT-32Gsps

[21] H. Kanders, T. Mellqvist, M. Garrido, K. Palmkvist, and O. Gustafsson,
“A 1 million-point FFT on a single fpga,” IEEE Transactions on Circuits
and Systems I: Regular Papers, vol. 66, no. 10, pp. 3863–3873, 2019.

[22] “cuFFT API reference,” https://docs.nvidia.com/cuda/cufft/, accessed:
2025-03-28.

https://www.xilinx.com
https://www.xilinx.com
https://doi.org/10.1145/3567429
https://doi.org/10.1145/3546181
https://books.google.com.au/books?id=7QD7MwEACAAJ
https://www.xilinx.com/products/boards-and-kits/vck5000.html
https://www.xilinx.com/products/boards-and-kits/vck5000.html
https://docs.amd.com/r/2022.1-English/ug1076-ai-engine-environment/Running-the-System-in-Hardware
https://docs.amd.com/r/2022.1-English/ug1076-ai-engine-environment/Running-the-System-in-Hardware
https://www.sciencedirect.com/science/article/pii/S0888327017300134
https://www.sciencedirect.com/science/article/pii/S0888327017300134
https://doi.org/10.1111/j.2517-6161.1958.tb00300.x
https://github.com/Xilinx/Vitis-Tutorials/tree/2024.2/AI_Engine_Development/AIE/Design_Tutorials/16-1M-Point-FFT-32Gsps
https://github.com/Xilinx/Vitis-Tutorials/tree/2024.2/AI_Engine_Development/AIE/Design_Tutorials/16-1M-Point-FFT-32Gsps
https://docs.nvidia.com/cuda/cufft/

	Introduction
	Background
	Spectral Correlation Density
	FAM Technique
	Complex Demodulate
	FAM method

	SSCA Technique
	Versal Architecture

	Method
	FAM Implementation
	Methodology
	Framing Stage
	Demodulate Stage
	FFT2 Stage
	Implementation

	SSCA Implementation
	SSCA_2DFFT
	Methodology
	Implementation


	Results
	Accuracy
	Utilisation
	Performance

	Conclusion
	References

