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Recent years have seen an explosion of machine learning applications implemented on Field-Programmable

Gate Arrays (FPGAs). FPGA vendors and researchers have responded by updating their fabrics to more ef-

ficiently implement machine learning accelerators, including innovations such as enhanced Digital Signal

Processing (DSP) blocks and hardened systolic arrays. Evaluating architectural proposals is difficult, how-

ever, due to the lack of publicly available benchmark circuits.

This paper addresses this problem by presenting an open-source benchmark circuit generator that cre-

ates realistic DNN-oriented circuits for use in FPGA architecture studies. Unlike previous generators, which

create circuits that are agnostic of the underlying FPGA, our circuits explicitly instantiate embedded blocks,

allowing for meaningful comparison of recent architectural proposals without the need for a complete infer-

ence computer-aided design (CAD) flow. Our circuits are compatible with the VTR CAD suite, allowing

for architecture studies that investigate routing congestion and other low-level architectural implications.

In addition to addressing the lack of machine learning benchmark circuits, the architecture exploration flow

that we propose allows for a more comprehensive evaluation of FPGA architectures than traditional static

benchmark suites. We demonstrate this through three case studies which illustrate how realistic benchmark

circuits can be generated to target different heterogeneous FPGAs.
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1 INTRODUCTION

The past two decades have seen major changes in the architecture of commercial Field-
Programmable Gate Arrays (FPGAs). Capacity and performance have improved by orders of mag-
nitude, while cost and energy per operation have decreased. These advances can be attributed in
part to technology scaling, but there has also been a fundamental shift in the internal architecture
of the FPGAs themselves. Traditional FPGAs consisted of a fabric of general purpose logic blocks
and routing that could be reprogrammed to implement any digital circuit. Increasingly however,
commercial FPGA architectures have evolved to include embedded blocks, specialized routing fab-
rics, and other structures optimized for implementing specific types of circuits.

In recent years, there has been particular interest in modifying FPGAs to better support machine
learning applications. Research has considered enhancing the traditional FPGA building blocks to
make them better suited to performing the tensor operations that make up the majority of Deep
Neural Network (DNN) layers [6, 8, 11, 20, 30, 31]. Adding composable hard matrix multiplication
blocks to the FPGA fabric has also been explored [2, 3, 7, 23] as a way to improve computation
efficiency while maintaining a high degree of flexibility. Such embedded tensor blocks have found
their way into commercial FPGAs such as Intel’s Stratix 10 NX architecture [7, 23].

Architectural proposals such as these need to be evaluated to determine whether the architec-
ture provides the right balance between flexibility (the ability to implement a variety of user cir-
cuits) and efficiency (in terms of density, speed, and power). Usually, this evaluation is done using
an experimental approach [5]. FPGA vendors typically use an in-house flexible CAD flow to map
suites of designs to the FPGA architectures under consideration. A similar experimental flow is
used in academia, often using publicly available benchmark suites (e.g., [27, 45]) and open-source
experimental flows such as VTR [26]. In either case, detailed area, delay, and power models can be
used to evaluate the effectiveness of the proposed architectural enhancements.

Conducting such experiments, however, is especially difficult when evaluating FPGAs optimized
for machine learning applications, for at least two reasons. Firstly, existing publicly available bench-
mark suites such as MCNC [45] and Titan [27] do not include examples of machine learning ac-
celeration. Even if machine learning circuits were added to existing benchmark suites, the rapid
evolution of the machine learning field means that any suite of benchmark circuits containing ma-
chine learning circuits may become stale if not regularly updated. A second, and more challenging
concern arises because many of these architectural enhancements involve adding or optimizing
large embedded blocks. Each of these blocks is intended to implement a significant amount of func-
tionality. For example, the AI Tensor blocks in [7, 23] contain an array of multiplication/addition
operations, which form the bulk of the processing in many machine learning workloads. Mapping
circuits to these devices requires an intelligent inference engine to find the best way to implement
each workload for each potential embedded tensor block under consideration. This mapping is
critically important, not only to evaluate the effectiveness of embedded tensor blocks, but also to
evaluate the routing fabric connected to the blocks, and their interaction with other components
(e.g., embedded memories). However, given the flexibility typically included in these blocks, and
the number of ways these sorts of applications can be “folded” onto a set of flexible blocks, such
a mapping algorithm is not trivial to create. During early architecture investigation, inference en-
gines optimized for each proposed embedded tensor block may not yet exist. Creating such an
inference engine for each potential block would be time consuming and would limit the size of the
design space that could practically be explored.

In this paper, we describe a framework which addresses both of these issues. Our framework
provides for rapid preliminary evaluation of new FPGA architectural ideas aimed at improving
the efficiency of the FPGA when implementing machine learning circuits. Rather than relying on
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a static set of benchmark circuits, we define a parameterized space that covers a wide variety of
machine learning workloads. Given a point in this space, and a description of a potential archi-
tecture to be evaluated, our framework generates a benchmark circuit and uses an optimization
algorithm to “unroll” the circuit onto the potential architecture. The generated benchmarks are
functional circuits designed to implement a given DNN workload while targeting a given FPGA
architecture. This requires a fundamentally different approach to benchmark circuit generation
than previous benchmark circuit generators, taking a description of a heterogeneous target archi-
tecture and generating a circuit that instantiates available embedded blocks. We are not aware of
any previous work on DNN circuit generation, or synthetic benchmark generation that would be
suitable in this context.

Specifically, the contributions of this paper are as follows:

(1) Problem Space Definition: We carefully define the space of architectures and workloads
that we target. This includes:
• A taxonomy of embedded tensor blocks in the context of DNN acceleration on FPGAs
• A mapping vector definition that encodes the loop-unrolling and tiling factors used to map

a DNN workload onto hardware.
(2) Benchmark Generator: We have implemented an open-source algorithm that generates

synthesizable benchmark circuits suitable for use in FPGA architecture research in conjunc-
tion with the commonly used VTR framework [26]. Each generated circuit implements one
or more DNN layers, given a mapping vector and information about the underlying archi-
tecture. The framework includes:
• A mapping algorithm to select unrolling factors given a target architecture and DNN layer

specification.
• A set of open source Python scripts and pyMTL models used to generate functional DNN

accelerator Register Transfer Level (RTL).
• A simulation flow that can be used to verify the functional correctness of each accelerator

generated, as well as a thorough test suite.
(3) Case Studies: We demonstrate that our framework can be used to examine FPGA architec-

tures and design trade-offs in a way that was not previously possible due to limitations of
existing benchmark suites and inference engines.
• We model two existing commercial FPGA architectures and generate circuits targeted to

these architectures.
• We vary several parameters of a baseline FPGA architecture to demonstrate how our

framework can be used to explore different architectural trade-offs.
• We explore different ways of accelerating multi-layer networks (as opposed to single layer

workloads) on FPGAs and the routability implications of different alternatives.

This paper is organized as follows. Section 2 provides background on FPGA architecture explo-
ration, as well as summarizing related work on automatically generating machine learning accel-
erators and more generally, synthetic benchmark circuitry. Section 3 describes our architecture
exploration framework, in particular our classification system for DNN workloads and embedded
tensor blocks and our benchmark generation tool. Section 4 presents and discusses the results of
case studies performed using our architecture exploration flow.

Finally, in Section 5 we address some key limitations of our framework and avenues for improve-
ment. Specifically, limitations include the fact that the framework is integrated with VTR and can’t
currently be used with typical commercial compilers (meaning timing delays must be estimated
and modelled in VTR). It is also important to note that in terms of performance, the generated
designs are not intended to be competitive with hand-tuned high performance accelerators, but
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rather to assist in early comparisons of architecture tradeoffs. Section 5 also describes how these
limitations could be addressed in future work

Our open-source framework is available at http://github.com/eroor8/verilog_ml_benchmark_
generator.

2 BACKGROUND

In this section, we set the context for our paper by describing recent work on FPGA architectural
enhancement, FPGA architectural exploration frameworks, and synthetic circuit generation meth-
ods. We also summarize previous work on automated DNN accelerator generation.

2.1 FPGA Architectures for Machine Learning

Increasing interest in the use of FPGAs for machine learning acceleration has motivated recent
research into updating the FPGA fabric to more efficiently perform the computations associated
with DNNs. Proposed architecture changes include adjustments to the general purpose FPGA fab-
ric. Boutros et al. have proposed changes to Intel’s Logic Array Block (LAB) architectures to allow
for denser low precision MAC operations in the FPGA fabric [6]. These changes include additional
carry chains between LUTs and a low precision multiplier in each LAB. Eldafrawy et al. [11] have
also suggested several changes to logic blocks, including adding shadow multipliers to logic clus-
ters, adding several adders to each LAB, and increasing Look-Up Table (LUT) fracturability. Sim-
ilarly, the work presented in [20, 30] focuses on improving logic element architecture for imple-
menting ultra-low precision neural networks. Other work proposes updates to embedded Digital
Signal Processing Blocks (DSPs) block architecture to improve performance of DNN workloads. In
[8], Boutros et al. explore adjustments to the DSP architecture with the goal of improving perfor-
mance for low precision multiply accumulate operations. PIR-DSP [31] also adjusts DSPs to make
them better suited to the lower-precision (or multi-precision) requirements of neural networks,
and adds DSP register files to improve local data reuse. In the work described above, evaluations
were primarily done using microbenchmarks and small hand-tuned designs, rather than using re-
alistic DNN circuits. In many cases, adjustments to the regular FPGA Computer Assisted Design
(CAD) flow were also required to ensure that the new architectures were used efficiently. For ex-
ample, in [11], the open-source CAD tools used to compile benchmark circuits (VTR and ODIN)
were customized to target the proposed logic block changes, while in [6], microbenchmarks were
mapped to logic blocks by hand.

Rather than modifying existing FPGA building blocks, another strategy is to add dedicated ma-
chine learning blocks to the FPGA fabric to efficiently perform tensor operations. Hamamu [3]
adds hardened systolic matrix multipliers to the FPGA fabric, as well as the programmable inter-
connects required to combine them into larger networks. In [2], Arora et al. also propose adding
hardened blocks to perform tensor operations, which can similarly be composed in chains or ar-
rays. Unlike Hamamu [3], these blocks can be configured to perform either matrix multiplications
or element-wise computations, and also include a local crossbar and control logic to read and write
to connected memories. Hardened tensor blocks have also been introduced to recent commercial
FPGA architect 10 NX architecture [7, 23] introduces AI Tensor Blocks, each of which contains 30
INT8 multipliers that can be configured to perform either matrix or vector operations. Intel’s AI
Tensor Blocks are arranged in columns, and adjacent tensor blocks are connected through direct
connections. Each of these works evaluate performance using a small number of hand-written
benchmark designs or a set of small matrix multiplication micro-benchmarks, written by hand to
target the available hardware.

While the Xilinx Versal architecture similarly provides an array of hardened tensor blocks, “AI
Engines”, these blocks are not embedded in the FPGA fabric. Instead, they are connected to the rest
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of the FPGA fabric through a Network on Chip. This architecture also differs from the work de-
scribed above in that each ASIC Engine includes a simple RISC processor and instruction memory,
and is programmed using a C/C++ paradigm.

2.2 FPGA Architecture Exploration

When FPGA vendors or academic researchers consider architectural ideas such as those discussed
in the previous section, they need to evaluate the impact of these enhancements on the flexibility,
speed, density, and power of the resulting FPGA. Although some strides have been made towards
analytical modeling of FPGA architectures [10], the primary way to perform these studies is to use
an experimental approach, such as that espoused in [5]. In such an approach, the FPGA architecture
is modeled, and an experimental CAD flow (such as VTR [26]) is used to map benchmark circuits
to the devices. Detailed area, delay, and power models are then used to evaluate the efficiency of
the mapping, allowing for direct comparisons between architectural alternatives.

The use of suitable benchmark circuits is critical. While the properties of individual FPGA build-
ing blocks, including maximum operating speed and power models, can be calculated for a given
architecture, these measurements alone do not capture the overall performance of complex cir-
cuits implemented on FPGAs. Maximum clock frequency, routability, and power, for example only
have meaning when applied to a particular circuit. FPGA vendors have their own large benchmark
suites and open source benchmark suites are publicly available for academic research, such as [45]
(small ciruits that do not include DSPs or Block Random Access Memory (BRAM)) and [27] which
are relatively large heterogeneous benchmark circuits that cover a wide range of different domains.
There is currently no existing benchmark suite that consists of deep learning workloads.

The experimental CAD flow used to map the benchmark circuits is critical. Mature commer-
cial CAD flows are optimized and designed for specific architectures, which makes it difficult to
use these tools during FPGA architecture research. Flexible experimental flows such as Verilog-
To-Routing (VTR) allows for different FPGA architectures to be specified and targeted. Unlike
commercial CAD software however, its flexibility means that VTR is not designed to perform
performance optimizations that target specific architectural features. In particular, new types of
embedded blocks cannot always be automatically inferred from a user’s digital logic without tool
modifications. This is especially a concern when investigating FPGAs optimized for deep learn-
ing applications, since such FPGAs may have complex flexible embedded blocks such as the AI
Tensor blocks in [7, 23]. These blocks perform significant computation, and inferring the best use
of these blocks from a benchmark circuit is difficult. It is possible to investigate architectures with
novel embedded blocks by using benchmark circuits with direct instantiations of these blocks. This
means, however, different versions of each benchmark circuit is required for each different type
of embedded block to be investigated. As will be described in Section 3, our flow solves this by
creating a flexible mapping algorithm to map high-level descriptions of deep learning workloads
to a parameterized embedded block description.

2.3 Synthetic Benchmark Circuit Generation

As discussed in Section 2.2, benchmarks are an important aspect of FPGA architecture and CAD
tools exploration and evaluation. Ideally a diverse suite of realistic benchmark circuits would be
available to evaluate new architectures and CAD flows. In practice these benchmark circuits are
time consuming to develop manually, and real customer designs are rarely publicly available. A
potential solution is using synthetic benchmark circuit generation frameworks, which generate
circuits that mimic the properties of real circuits but are not necessarily functional.

There are several approaches that have been used in previous work. One approach is to build cir-
cuits bottom up with the same structural characteristics as existing benchmark suites. Early work
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by Hutton [18] generated combinational and sequential circuits given a set of desired parameters,
including circuit size and fanout distribution. Follow up work by Kundarewich [21] improved on
this solution by generating clustered hierarchical circuits with wire lengths closer to those of real
circuits. Stroobandt’s GNL generator similarly creates circuits by recursively clustering logic while
maintaining a desired Rent parameter [37, 42].

Another technique used in later work [25, 29, 40] is to generate synthetic circuits by combin-
ing existing sub-circuits. PartGen [29] combines smaller circuits, including small combinational
circuits generated using GEN, with memory block instantiations and interconnects. Similarly, in
[40], large circuits are constructed by connecting the inputs and outputs of existing subcircuits.
In [25], subcircuits are connected through interconnects into large hierarchical designs, which are
shown to match the characteristics of actual system-on-chip designs.

A third approach is to make small modifications to existing circuits on order to generate a fam-
ily of similar circuits. Mutation-based generators include work by Ghosh [13], which randomly
replaces a percentage of netlist edges, and Perturber [15], which uses a similar approach to gener-
ate benchmarks for testing incremental place and route tools.

2.4 Automated DNN Accelerator Generation

Functional, realistic DNN accelerators are time consuming to develop manually, particularly if they
need to be carefully tuned to take full advantage of available architectural features. There are many
ways to map the computation patterns of each DNN network layer onto hardware using different
loop unrolling schemes and tiling factors; the space of possible solutions, and the optimal solution
both depend on the hardware available. To facilitate this process, several frameworks have been
developed to assist in creating functional DNN accelerators for a given network.

Automatically mapping a DNN network to FPGA hardware involves traversing the set of pos-
sible unrolling schemes and tiling factors. Early tools [46, 49] identify optimal dataflows and un-
rolling factors, which users would then implement manually. In [49], this is done using the Roofline
model, while [46] creates an analytical model of memory energy and traffic. In other work, after an
optimal mapping is identified, synthesizable accelerators can be generated automatically. In some
cases [47, 48, 51], this is done by instantiating pre-written parameterized Hardware Description
Language (HDL) modules. For example, DNNBuilder [51] includes optimized Processing Engine
(PE) templates parameterized with different unrolling factors. Other solutions [38, 41, 50] generate
HDL by taking advantage of high level synthesis tools to generate synthesizable Verilog.

A commonality of the DNN accelerator generation frameworks described above is that they gen-
erate generic soft logic, technology mapped onto traditional FPGA building blocks by FPGA CAD
flows, giving users little fine grained control over exactly how FPGA building blocks are instanti-
ated and used. This kind of implementation detail can have a significant effect on performance. For
example, carefully placing and instantiating DSPs to take advantage of cascaded DSP connections
has been shown to help maximize clock frequency of CNN accelerator implementations [32]. Some
HLS compilation software allows for embedded blocks to be explicitly instantiated. However, the
existing HLS-based accelerator generation frameworks do not make use of this capability to explic-
itly instantiate embedded tensor blocks. Given that it is not possible to target arbitrary embedded
blocks using these existing frameworks, they are therefore not suitable for generating benchmark
circuits for evaluating heterogeneous architectures.

DNNWeaver [33] and DeepBurning [43] generate accelerators using a set of provided templates
or libraries. These templates are customizable and allow users to map accelerator components to
specific hardware resources in certain cases. Neither framework can automatically target arbitrary
embedded tensor blocks however, and adapting these tools to target a specific embedded block
would require significant manual changes to the existing templates.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 33. Pub. date: May 2022.



FPGA Architecture Exploration for DNN Acceleration 33:7

Fig. 1. Overall FPGA architecture exploration framework, including automated benchmark circuit genera-

tion and simulation.

3 FPGA ARCHITECTURE EXPLORATION FRAMEWORK

In this section, we describe our architecture exploration framework. We first present an overview
of the overall framework and show how it could be used during the process of FPGA architecture
exploration. We then outline the inputs to the flow, which include a set of DNN workloads for
which a given FPGA architecture is to be evaluated, and a definition of the FPGA architecture under
evaluation, including embedded tensor blocks. Section 3.4 describes how DNN accelerators for
given DNN workload are then generated to target the available FPGA architecture. We discuss how
these generated circuits can be simulated and used as benchmarks to measure FPGA architecture
performance in Section 3.6. Section 3.7 describes how the framework handles multi-layer networks
as opposed to single DNN layers.

3.1 Overall Flow

Figure 1 shows our overall experimental framework. Given information regarding the FPGA ar-
chitecture under investigation as well as high-level workload information, our flow generates an
appropriate benchmark circuit for use with an experimental synthesis, placement and routing tool
(we use VTR due to its widespread use in the community). VTR compiles the benchmark circuit
on the target device, and uses detailed area, delay, and power models to estimate the efficiency of
the architecture. We also provide the ability to simulate our benchmark circuits at two levels: we
provide links to both a cycle-accurate simulator and an RTL simulator.

The heart of our flow, and the main contribution of this paper, is benchmark circuit generation.
Figure 2 shows a block diagram of our benchmark circuit generator. Given the high-level work-
load specification and information about the available embedded blocks, our flow identifies legal
mapping vectors which determine how the workload is implemented on the target FPGA. In each
case, the given DNN workload is mapped as efficiently as possible to the available DSPs or em-
bedded tensor blocks. This allows for the measurement of low-level FPGA architecture metrics
like routability and maximum clock frequency using realistic, targeted benchmark circuits. It also
allows for a more high-level evaluation of how efficiently different DNN workloads can be paral-
lelized on a proposed FPGA architecture. Given this mapping, PyMTL models are then generated,
from which the benchmark circuit is created. Circuit generation using pyMTL is described in more
detail in Section 2.3. Since we wish to target the VPR flow for place and route, and since the syn-
thesis front-end of VTR, ODIN, only supports a subset of modern Verilog syntax, post-processing
of the Verilog is required to ensure that it is compatible with the VTR flow.
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Fig. 2. FPGA benchmark generation framework components, including mapping selection and simulation.

Importantly, the generated circuits make use of embedded blocks by instantiating them directly
as components, rather than relying on the CAD flow to infer the use of these blocks. Many deep
leaning models can be written as a series of nested loops (as will be discussed in Section 3.2); within
our generator, we “unroll” these loops to use the available embedded blocks, and build control cir-
cuitry around the blocks to ensure proper sequencing of the arithmetic operations performed by
the block. The generated circuits then contain both the embedded block instantiations, the sur-
rounding logic, and the associated interconnect. User memories are also instantiated as necessary.
In a mature production CAD flow, this should not be necessary; a synthesis tool should be able to
instantiate the available embedded blocks to implement a circuit specified in terms of nested loops.
However, during early architecture investigation, inference engines optimized for each block may
not yet exist. Creating such an inference engine for each potential block would be time consuming
and would limit the size of the design space that could practically be explored.

It is also important to note that using our framework, the same benchmark workload may have
different cycle-to-cycle behaviour when implemented on different FPGA architectures. An FPGA
containing large embedded tensor blocks may be able to implement much more functionality in a
single cycle than an FPGA with only simple DSP blocks. This is different than many other FPGA
architecture studies (e.g., such as those in [5]) in which potential architectures all implement the
same cycle-by-cycle behaviour for each benchmark circuit, since using our framework both the
critical path and the number of cycles vary across different workloads and architectures. Ultimately,
both metrics are likely to be different for high-level accelerators optimized using commercial com-
pilation software and hand tuned by researchers. Even so, the proposed framework allows for a
more thorough preliminary assessment of design tradeoffs during the early stages of architecture
exploration than can be done using static benchmarks.
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Adjusting cycle-to-cycle behaviour depending on the available architecture has two implica-
tions. Firstly, to provide some confidence in the functionality of the generated circuits, we provide
links to a cycle-accurate simulator, as will be discussed in Section 3.6.1. The second implication
is that the benchmark circuit generation needs to understand the capabilities of the embedded
block, so it can perform the proper “unfolding” and ensure that the controlling state machine is
constructed properly. This means a specification method to describe the functionality of these
embedded blocks is required; Section 3.3 discusses our method.

More details on this flow is presented in the following subsections.

3.2 Framework Input: DNN Workload Parameterization

As described in the previous section, there are two inputs to our flow: a high level description of
the DNN workload, and a description of the embedded blocks available on the target FPGA. In this
section we describe the workload specification; in Section 3.3 we describe the manner in which
embedded blocks are described.

A DNN may include several different types of layers, including convolutional, fully connected,
pooling, normalization, and activation layers. Convolutional, fully connected and depthwise sepa-
rable layers are based on matrix multiplication (GEMM) operations. These GEMM-based layers are
particularly computation intensive, and are the primary targets of many of the embedded blocks de-
scribed in Section 2.1. However, since realistic DNNs typically include other types of non-GEMM
layers (e.g., pooling layers) and functions (e.g., ReLU functions), realistic DNN accelator bench-
marks also need to take these types of computation into consideration.

Rather than considering each type of layer individually, we use a generalized loop nest model
to encode various different types of layers based on their access patterns. As many layers have
similar properties and can be parallelized using similar techniques, this approach requires less
custom code. Using a general parameterized model also means that our framework can be more
easily extended to new types of layers as they are developed without major changes to the code
base. DNN layers can typically be formulated as a set of nested loops, although the innermost
operations and the loop bounds differ from layer to layer and network to network. We primarily
categorize each DNN layer based on (1) the nested loop bounds, and (2) the operations performed
on data within the loop nest.

The generalized nested loop model shown in Algorithm 1 includes the superset of all nested
loops required to express various common DNN layers. Each of the eight nested loop dimen-
sions accesses input activations, output activations, and weights using a different access pat-
tern. To define a given layer, loop bounds are encoded in an eight-element vector, W =

{B,C,E, PX , PY ,RX ,RY ,G}. Likewise, strides can also be encoded in an eight-element vector, al-
though strides greater than one are currently supported only in the PX, PY, RX, and RY dimensions.

In GEMM-based layers, the innermost function is a Multiply Accumulate (MAC) operation. In
a max-pooling layer this function would be a comparison to find the maximum value of a subset
of inputs. Our framework includes a library of functions, including activation functions such as
ReLU and sigmoid functions. This library can easily be extended to include more functions as re-
quired. Examples of common layer types with corresponding loop bound vectors and innermost
operations are listed in Table 1. Activation functions could be considered a separate layer in which
a function is applied to each input individually, but they are typically combined with the preceding
layer for efficiency. To support this common use case, an additional activation function can option-
ally be specified for each layer output. Input and activation bitwidth are also specified, allowing for
the generation of benchmark circuits representative of quantized and binarized neural networks.
Finally, zero-padding can optionally be applied to convolutional layers, which has a small effect
on cycle count estimates and generated circuitry.
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Table 1. DNN Layer Parameterization Examples

Layer Type Loop Bound Vector Inner Operation (finner )

2-D Convolutional < 1,C,E, PX , PY ,RX ,RY , 1 > f (o, i,w ) = o + i ×w
1-D Convolutional < 1,C,E, PX , 1,RX , 1, 1 > f (o, i,w ) = o + i ×w
Fully Connected < 1,C,E, 1, 1, 1, 1, 1 > f (o, i,w ) = o + i ×w
Depthwise < 1, 1, 1, PX , PY ,RX ,RY ,G > f (o, i,w ) = o + i ×w
Pointwise < 1,C,E, PX , PY , 1, 1, 1 > f (o, i,w ) = o + i ×w
Max Pooling < 1, 1, 1, PX , PY ,RX ,RY , 1 > f (o, i) = MAX (o, i )
Average Pooling < 1, 1, 1, PX , PY ,RX ,RY , 1 > f (o, i ) = o + i/(RX × RY )

ALGORITHM 1: Generalized Nested Loop Model

for д = 1 to G , stride=SG (groups) do

for b = 1 to B, stride=SB (batches) do

for e = 1 to E, stride=SE (output channels) do

for px = 1 to PX , stride=SPX (filter map x dimension) do

for py = 1 to PY , stride=SPY (filter map y dimension) do

for c = 1 to C , stride=SC (input channels) do

for rx = 1 to RX , stride=SRX (filter x dimension) do

for ry = 1 to RY , stride=SRY (filter y dim.) do

i = I [д][b][c][px + rx][py + ry];

w =W [д][e][c][rx][ry];

o = O[д][b][e][px][py];

O[д][b][e][px][py] = finner (i,w,o);

O[д][b][e][px][py] = fact (O[д][b][e][px][py]);

The generalized loop nest model described in this section can be used to describe the most, but
not all, common types of DNN layers. For example, three dimensional convolution is not supported,
as 3-D convolution involves additional dimensions that are not currently included in the loop
bound vector. Future work could expand this generalized nested loop model to enable these use
cases by adding additional dimensions.

Typically, a DNN consists of multiple layers. A full DNN network can be represented by a col-
lection of DNN layers, each of which is defined separately using the parameters described above.

3.3 Framework Input: Embedded Block Parameterization

A key difference between our circuit generator and previous work is that previous work generates
circuits that are agnostic of the underlying FPGA architecture. In our work, benchmark circuits
may contain explicit instantiations of embedded blocks. Here we specify the space of the under-
lying embedded block (EB) architectures that our framework supports. It is important to note
that the main purpose of our benchmark generation framework is not to generate Verilog for the
embedded blocks themselves, but rather to instantiate the existing embedded blocks in benchmark
designs. Accordingly, Embedded Block (EB) definitions are primarily used by our framework to
ensure that available EBs are instantiated and used appropriately in generated benchmark designs.
While the existing embedded blocks proposed for machine learning applications primarily
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perform multiply accumulate operations, our embedded block definition is general enough to
extend to other operations as well in order to accelerate non-GEMM based layers.

The following parameters can be used to describe the target architecture’s embedded blocks. These
parameters together describe the “design space” of embedded blocks supported by our framework.

Access Patterns: Embedded blocks can be classified based on their data access patterns, which we
have grouped into five categories. The EB’s data access pattern limits the ways in which the work-
load dimensions (as defined in Section 3.2) can be unrolled and mapped onto the EB. For example,
if an EB multiplies two inputs by two weights and adds them to produce a single output value, it
could be used to process two input channels in parallel (unrolling dimensionC in Section 3.2 by a
factor of two). A different EB may produce two outputs in parallel by multiplying a single weight
by two input streams. In this case, it could be used to compute two batches (unrolling dimension
B in Section 3.2 by a factor of two). Access pattern categories are listed below, along with the
corresponding workload dimensions from Section 3.2. Examples of circuitry that uses each access
pattern are illustrated in Figure 4. The computations performed by these layers are also shown,
assuming that the EBs perform MAC operations:

• AP1: Windowing (dimension: RX): Using windowing, the EB performs a dot product of AP1
consecutive inputs from a single input stream, with AP1 pre-loaded weights to produce a
single output on each clock cycle. This access pattern requires for weights to be pre-loaded.
Figure 4 shows an example of how this can be achieved, by passing a a sequence of input
activations through a shift register.

o =
AP1∑

t=1

W [t] × it (1)

• AP2: Dot-Product (dimensions: RY, C): AP2 parallel inputs are multiplied by AP2 weights,
and added to produce a single output on each clock cycle.

o =W [1 : AP2] · I [1 : AP2] (2)

• AP3: Single Input (dimension: E): AP3 weights are multiplied by the same input, producing
AP3 outputs per clock cycle.

O[1 : AP3] =W [1 : AP3] × i (3)

• AP4: Single Weight (dimensions: B, PX, PY): AP4 inputs are multiplied by the same weight,
producing AP4 outputs per clock cycle.

O[1 : AP4] = w × I [1 : AP4] (4)

• AP5: Element-Wise Multiplication (dimensions: G): AP5 different inputs are multiplied
by AP5 weights to produce AP5 outputs per clock cycle.

O[1 : AP5] =W [1 : AP5] � I [1 : AP5] (5)

In more complex EBs, multiple access patterns can be combined, as shown in Figure 3, meaning
that multiple workload dimensions may be unrolled within each block. A wide variety of embed-
ded blocks, from a single MAC or DSP to the embedded matrix multiplication blocks proposed
in [23],[7], and [3], can be defined using these five access patterns. Table 2 lists examples of how
several of the proposed embedded blocks and DSPs discussed in Section 2 could be modelled.

Intra-EB storage: We assume that each EB operates in either weight-stationary mode or output-
stationary mode [39]. Weight stationary blocks stream through input activations and produce one
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Fig. 3. Three EBs with different combinations of access patterns {AP1, AP2, AP3, AP4, AP5}. Access patterns

are {2, 2, 1, 2, 1}, {1, 1, 2, 1, 2}, and {1, 2, 1, 1, 1} for block A, block B, and block C, respectively.

or more output activations on each clock cycle. In this case weights are stored in registers within
the EB, which can be either be all loaded into the EB in parallel or pre-loaded serially. Output-
stationary blocks stream multiple weights and inputs in parallel and accumulate partial sums in
internal registers. How a workload can be mapped onto set of EBs depends on whether they can
operate in weight and/or output stationary modes, and therefore whether they have the capability
to store outputs and weights in internal registers.

Computation Type: Most embedded blocks proposed for DNN acceleration [3, 7, 23] consist pri-
marily of MAC units. However, to accelerate non-GEMM based layers and implement activation
functions it may also be useful to also harden other functions. To support these use cases, we in-
clude an extensible library of operations, including common activation functions, any of which
can be performed by the EB.

Data Representation: EBs also differ in terms of data bitwidth and data representation of inputs,
outputs, and weights. We assume a fixed point representation, with data width specified by the
user.

Timing: The number of cycles required by a generated benchmark circuit depends on the cycle-
level timing of embedded tensor blocks. By default we make assumptions about the capabilities
and structure of embedded tensor blocks and the clock cycles they require to operate. For example,
we assume that each multiply accumulate operation takes a single clock cycle. Alternatively, the
user can specify these embedded block properties to help ensure the accuracy of high level clock
cycle estimates.
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Fig. 4. Examples of circuitry illustrating access patterns AP1 to AP5.

Table 2. Example Definitions for Existing and Proposed Embedded Blocks

FPGA Architecture Mode Bitwidth Access

Patterns

Additional Notes

Boutros et al. [8]

MAC Mode
9-bit {1, 1, 1, 1, 4}

Additional modes include

27 × 27 and 18 × 18

multiplication

4-bit {1, 1, 1, 1, 8}

Independent
9-bit {1, 2, 1, 1, 2}

4-bit {1, 4, 1, 1, 2}

Hamamu [3] 4 × 4 × 4 Multiplier Various {1, 1, 4, 4, 1} Various other multiplier

dimensions also explored.

PIR-DSP [31]

i = 1, j = 1, k = 1 27 × 18-bit {1, 1, 1, 1, 1}

i = 1, j = 3, k = 1 9-bit {1, 3, 1, 1, 2}

i = 1, j = 3, k = 2 4-bit {1, 3, 1, 1, 4}

i = 1, j = 3, k = 4 2-bit {1, 3, 1, 1, 8}

Tensor Slices [2] Tensor Mode
16-bit {1, 1, 4, 4, 1} Note that these blocks also

contain logic that can’t be

fully modelled in our

framework, as discussed in

Section 5.1

8-bit {1, 1, 16, 4, 1}

Individual PE Mode
16-bit {1, 1, 1, 1, 16}

8-bit {1, 1, 1, 1, 64}

Intel AI Blocks [7, 23] Tensor Mode 8-bit {1, 10, 3, 1, 1} See Section 4.2.1

Xilinx UltraScale DSP48E 8-bit multiplication 8-bit {1, 10, 3, 1, 1},

{1, 10, 3, 1, 1}

See Section 4.2.1

Architectures without Embedded Blocks: In some cases it may be necessary to target FPGA architec-
tures that do not include embedded blocks or DSPs at all. For example, this may be useful in order
to measure baseline performance during an architecture study. When mapping to an architecture
without embedded blocks, we define a logical embedded block. In this case, the user can define an
embedded block as before, and the framework generates a Verilog description of the EB for syn-
thesis to soft logic. Alternatively, the user can provide a soft logic implementation of an embedded
block, which is instantiated in the generated benchmark circuits and compiled to soft logic by the
FPGA CAD flow.
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3.4 Circuit Generation and Mapping

This section describes our benchmark circuit generator, which automatically produces benchmark
circuitry given a DNN workload definition and a FPGA architecture specification. We first define
mapping vectors that describe how a DNN workload is mapped to hardware in Section 3.4.1. We
then discuss how efficient mapping vectors can be selected automatically using a constraint solver
in Section 3.4.2. Section 3.4.3 discusses how given a mapping vector, Verilog circuits are generated
using pyMTL. Finally, Section 3.5 describes the generated circuits themselves in more detail.

3.4.1 Mapping Vector Definition. A given DNN layer can be mapped to a set of EBs in many
ways, each resulting in different routing requirements and a different maximum clock speed. Our
framework uses a “mapping vector” to define how the nested loops shown in Algorithm 1 are
unrolled, tiled, and scheduled on hardware.

To implement a given workload on a set of EBs, each of the eight nested loops may be unrolled
within each EB (an EB performs multiple operations in parallel) and across EBs (multiple EBs
operate in parallel). These spatial unrolling factors are limited by the capabilities of each EB and the
number of EBs available. Operations are also typically scheduled in time, with each EB performing
several operations over the course of several clock cycles. We can formulate each possible solution
as a set of three nested 8-dimensional loops, represented by three 8-element vectors: the Intra-EB

Unrolling Factors vector (Ui = {ui0, . . . ,ui7}), describes unrolling that occurs within an EB. Inter-EB

Unrolling Factors (Uo = {uo0, . . . ,uo7}), describe how unrolling is performed between EBs. Temporal

Tiling Factors, (Ut = {ut0, . . . ,ut7}), describe how the loops are unrolled in time.
An example mapping is given in Algorithm 2. In this simple example, there are two embedded

blocks, which each performing four MAC operations. A convolutional layer is mapped onto these
two embedded blocks such that each block convolves a different two-dimensional filter over the
same input feature map. This is repeated over time for multiple pairs of filters and batches of inputs.
In this way, the computations are parallelized across a total of eight MAC units. Realistically, FPGAs
would have many more than two embedded blocks, allowing for higher degrees of parallelism.

These vectors can be specified directly by the user, or our framework can automatically select
values for these vectors based on what is supported by the EB architecture. The EB access patterns
determine which dimensions can be unrolled spatially within each EB, as discussed in Section 3.3.

3.4.2 Mapping Vector Selection. As discussed in Section 3.4.1, the way in which a DNN layer is
parallelized on hardware can be encoded using a set of unrolling vectors,Ut = {ut0, . . . ,ut7},Uo =
{uo0, . . . ,uo7} andUi = {ui0, . . . ,ui7}. A given DNN workload may be mapped to available FPGA re-
sources in many different ways, each of which would result in different routing patterns, resource
utilization, and overall performance. End-users would realistically decide on a parallelization strat-
egy depending on the available hardware and the workload to be accelerated; always assuming a
single parallelization scheme would result in sub-optimal performance.

Our framework can be used in two modes. In the first mode, the user specifies all unrolling
vectors (Ut , Uo , Ui ) directly; this manual approach enables architectural sensitivity analysis [44].
These unrolling factors must still be compatible with the available FPGA resources however, and
our framework performs validation to ensure that this is the case. In the second mode, we aim to
emulate the real process of DNN accelerator design. The user specifies only the high-level loop
dimensions of the workload (W = {B,C,E, PX , PY ,RX ,RY ,G}), and an appropriate set of unrolling
factors is found automatically using a constraint solver. At a high level, this process determines
which operations are performed in parallel and how the parallel operations are distributed across
embedded blocks.
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ALGORITHM 2: CNN Nested Loop Pseudo-code, unrolled across a total of eight MAC units in two

embedded blocks

Layer Dimensions (B,C,E, PX , PY ,RX ,RY ,G ) = < 4, 6, 6, 50, 50, 2, 2, 1 >

Temporal tiling factors, Ut = < 4, 5, 3, 50, 50, 1, 1, 1 >;

Inter-EB unrolling factors, Uo = < 1, 1, 2, 1, 1, 1, 1, 1 >;

Intra-EB unrolling factors, Ui = < 1, 1, 1, 1, 1, 2, 2, 1 >;

for bt = 0 to 3 do

for ct = 0 to 5 do

for et = 0 to 2 do

for pxt = 0 to 49 do

for pyt = 0 to 49 do
i0 = I [bt ][ct ][pxt + 0][pyt + 0]

i1 = I [bt ][ct ][pxt + 1][pyt + 0]

i2 = I [bt ][ct ][pxt + 0][pyt + 1]

i3 = I [bt ][ct ][pxt + 1][pyt + 1]

EB 0:

o = i0 ×W [2 ∗ et + 0][ct ][0][0]

o += i1 ×W [2 ∗ et + 0][ct ][1][0]

o += i2 ×W [2 ∗ et + 0][ct ][0][1]

o += i3 ×W [2 ∗ et + 0][ct ][1][1]

O[bt ][et + 0][pxt ][pyt ] = o
EB 1:

o = i0 ×W [2 ∗ et + 1][ct ][0][0]

o += i1 ×W [2 ∗ et + 1][ct ][1][0]

o += i2 ×W [2 ∗ et + 1][ct ][0][1]

o += i3 ×W [2 ∗ et + 1][ct ][1][1]

O[bt ][2 ∗ et + 0][pxt ][pyt ] = o

The constraint satisfaction problem is formulated as a list of variables V , the domain of each
variable D, and a set of constraints C . For this particular problem:

• V : The variables to solve for are the mapping vectors outlined in Section 3.4.1. These are the
spatial and temporal unrolling factors that describe how the workload is distributed across
embedded blocks and scheduled in time.

V = Ut ∪Uo ∪Ui (6)

• D: D is the domain of each unrolling factor, where each variable can take on one value from
the corresponding domain. In this case, each unrolling factor must be an integer between one
and the corresponding high-level loop dimension (wn ). For example, a loop with bound of 100
could be parallelized across one to 100 embedded blocks. To improve solver speed, domains
are further reduced to exclude unrolling factors that would lead to inefficient utilization of
embedded blocks. In the example above, it would not be efficient to unroll the loop over 51
embedded blocks since this would use more resources than an unrolling factor of 50 with
the same cycle count.

Dn = {xϵN|x ≤ wn , ceil (wn/(x − 1)) > ceil (wn/x )} (7)

• C: Constraints ensure that the spatial unrolling factors are legal given the number of EBs
(Couter ), and the EB structure (Cinner ) as discussed in Section 3.3. For example, if an embed-
ded block multiplies a single input by two different weights (AP3 = 2), then the computation
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of two output channels can be performed within the same embedded block, but not two sep-
arate batches. Additionally, the value of each high-level loop dimension must be the product
of corresponding unrolling factors (Cproduct ). Each of these constraints are listed below.

Couter :

7∏

n=0

uo_n ≤ #available embedded blocks (8)

Cinner 1 : ui_5 ≤ AP11 (9)

Cinner 1 : ui_5 ≤ AP11 (10)

Cinner 2 : ui_1 × ui_6 ≤ AP21 (11)

Cinner 3 : ui_0 × ui_3 × ui_4 ≤ AP31 (12)

Cinner 4 : ui_2 ≤ AP41 (13)

Cinner 5 : ui_7 ≤ AP51 (14)

Cproduct : uo_n × ui_n × ut_n ≥ wn ,∀nϵ[0, 7] (15)

Finally, the resulting dataflow needs to be supported by the embedded block hardware; for
example, if an embedded block can not accumulate outputs locally, then the input channel
dimension cannot be unrolled temporally. This last class of constraints is applied on a case-
by-case basis.

A Python CSP solver (python-constraint) is used to find all legal values of sets of values for Ut ,
Uo , and Ui . Solutions are ordered based on an estimate of the number of clock cycles that each
one requires, to generate a shortlist of solutions that make efficient use of the available embedded
blocks. By default, this cycle estimate is calculated using temporal tiling factors as well as the
number of cycles required to pre-load weights into the embedded blocks and to perform each
multiply accumulate operation. These cycle counts depend in turn on the latency across each
embedded block, and specific timing relationships between embedded block inputs and outputs,
which can be specified by the user to describe different embedded block implementations or to
approximate the effect of adding pipeline registers into the datapath:

Estimated Cycle Count ≈Weight_Preload_Cycles +

7∏

n=0

ut_n ∗ Cycles_per_MAC (16)

This does not account for off-chip memory accesses. However, we also provide hooks allowing
users to provide their own cost functions with which to order solutions.

In each of the case studies included in Section 4, this process could be completed within a rea-
sonable timeframe. For instance, on a five core, 32GB computer, a mapping could be found for each
individual layer within four minutes. As the number of layers, the sizes of layers and the size of
the FPGAs grow however, the size of the search space also increases, which could make solving
this problem using a constraint solver less feasible. Future work could include using heuristics to
narrow the search space, or exploring different strategies such as using dynamic programming
and other optimization algorithms.

1AP1-AP5 refer to the access patterns that describe the structure of available embedded blocks, as defined in Section 3.3.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 33. Pub. date: May 2022.



FPGA Architecture Exploration for DNN Acceleration 33:17

Fig. 5. Generated accelerator diagram.

3.4.3 RTL Generation Using pyMTL. The hierarchical structure of each circuit is modelled in pa-
rameterizable python pyMTL classes. Accelerators are modelled in Python using the pyMTL3 [19]
infrastructure. Using pyMTL, the structure of each circuit component (corresponding to a Verilog
module) is described using a python pyMTL class. PyMTL classes instantiate each other, creating
hierarchical circuit structures. Connections between sub-modules as well as combinational and se-
quential logic are specified using pyMTL constructs. In this way, each circuit component described
in Section 3.5 is described using a set of flexible parameterized pyMTL classes. Verilog circuits can
then be automatically generated by instantiating these pyMTL models with the appropriate input
parameters and generating Verilog through a call to the pyMTL API.

The “modelling towards layout” methodology of pyMTL is not yet widespread compared to ei-
ther the traditional approach of writing Verilog directly, or using HLS techniques, but the pyMTL
methodology and framework suited our purposes well for several reasons. First, compared with
using System Verilog templates, specifying the structure and functionality of the circuit in python
allows for much more complex generation logic to be integrated throughout the circuit model.
pyMTL makes it possible to adjust generated circuits based on calls to python libraries for in-
stance, or using other logic that would be extremely difficult using System Verilog parameters.
Furthermore, ODIN does not support all System Verilog syntax, so typical System Verilog tem-
plates would not be synthesizable using VTR. Using pyMTL also facilitated the development of a
comprehensive suite of unit tests in a unified framework. Our infrastructure has 97% statement
coverage through unit tests and regression tests as a result, providing confidence in its reliabil-
ity and in the functionality of the generated circuits. Finally, pyMTL allows the simulation flow
described in Section 3.6.1 to be done in a unified framework rather than through a patchwork of
scripts and proprietary simulation software.

3.5 Generated Circuit Structure

Figure 5 shows the general structure of the generated circuits. An array of interconnected embed-
ded blocks is connected to banks of memory blocks containing weights and activations. Embedded
tensor blocks, memory blocks and an external memory interface are coordinated by control logic,
consisting of several state machines. Each component is described individually in more detail in
the sections below.

3.5.1 On-chip Memory Banks. On-chip memory banks store input activations, filter weights,
and output activations in on-chip buffers. The datawidth and the length of these buffers are
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provided by the user based on the available FPGA architecture. In each generated circuit, a bank
of on-chip buffers is instantiated and connected to the external memory interface. The number of
buffers required is determined based on the number of input streams, output streams and weight
streams connected to the embedded blocks, which in turn is governed by the mapping vector.

The bank of memories containing weights can optionally be double buffered, a technique used
in many existing accelerators [1, 14, 16, 28, 36] to reduce bottlenecks associated with off-chip
memory accesses. In this case, two sets of buffers are instantiated and additional logic is inserted
to mux between them, allowing for weights to be read from one set of buffers while the second set
is populated from off-chip.

3.5.2 Embedded Tensor Block Array. The total number of embedded tensor blocks instantiated
in each generated accelerator is the product of Inter-EB unrolling factors, which specify how com-
putations are unrolled spatially across embedded blocks. As discussed in Section 3.3, each embed-
ded block could be a large embedded matrix multiplication array or as simple as a single DSP. If no
embedded blocks are available in the target architecture, logical embedded blocks are automatically
generated by our framework. Alternatively, the user can provide an equivalent soft-logic module
themselves.

In other instances, existing embedded blocks must be supplemented with additional soft logic
in order to perform the required functionality. For example, typical DNN layers include activation
functions that are applied to the output activations. On hardware, these activation functions can be
applied either in soft-logic modules, or within embedded blocks. If the available embedded blocks
do not include hardware to perform activation functions, the benchmark generation framework
generates additional soft-logic modules and connects them to embedded tensor block outputs, to
implement the required activation functions.

3.5.3 External Memory Interface. An external memory interface block (EMIF) is connected
to the on-chip memories through an Avalon Interface [9]. This external memory interface popu-
lates on-chip buffers with data from off-chip memory, and writes outputs to off-chip memory from
on-chip output activation buffers. The data-width and address space are specified by the user, as
well as the set of I/O connections between the external memory interface block and external mem-
ory. Typically EMIF IP cores are provided by the FPGA vendors, and may include both soft-logic
and internal embedded block instantiations. We assume that such a block is available, and can be
instantiated in generated benchmark circuits.

3.5.4 Interconnects. Three types of interconnect connect embedded tensor blocks with each
other and with on-chip memory: a weight interconnect, an input activation interconnect, and an
output activation interconnect. In each case, the required connections between embedded blocks
depend on how computations are distributed spatially across EBs.

Input Activation Interconnect. The input activation interconnect connects on-chip buffers con-
taining input activations with EBs. Inputs may also be cascaded between adjacent EBs, in cases
where the same input channel feeds both adjacent blocks. Connections between input buffers and
EBs are slightly more complex in the case of weight stationary 2-D convolution. In this situation,
in order to convolve the stationary weight filter over different rows of the input feature map it may
be necessary to select between multiple input streams. This is achieved by adding logic to multi-
plex between input activation buffers within the input activation interconnect. Figure 6 illustrates
two examples in which convolutional DNN layers are distributed across a set of eight embedded
blocks with different Inter-EB unrolling factors.
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Fig. 6. Input interconnect examples.

Fig. 7. Weight interconnect examples. On the left, weights are loaded into embedded blocks serially while

on the right they are loaded into all embedded blocks in parallel.

Weight Interconnect. Proposed embedded blocks differ in terms of how weights are pre-
populated into embedded blocks in the case of weight-stationary operation. In some cases [7, 23],
local weights can be pre-populated through a single input port over the course of multiple cycles.
Multiple embedded blocks may also be connected in chains through direct connections, allowing
weights to be loaded serially through chains of multiple embedded blocks from a single weight
buffer. This increases the total time required to pre-load weights into embedded blocks, but re-
duces the number of connections that must be routed between memory blocks and embedded
blocks, potentially improving routability and critical path length. Alternatively, separate weight
buffers can be connected to each embedded block individually to load all weights into embedded
blocks in parallel. We support both use cases by allowing weights to be either pre-loaded serially
through chains of embedded blocks or loaded in parallel to each embedded block. Both alternatives
are illustrated in Figure 7.

Output Activation Interconnect. Output activation interconnects connect the outputs of embed-
ded blocks to on-chip output activation buffers. In weight stationary dataflows, this interconnect
also routes partial sums between embedded blocks. Figure 8 illustrates the required output inter-
connect for a set of four embedded blocks that compute two output channels in parallel.

3.5.5 State Machines. Control circuitry is generated to coordinate memory transfers between
the off-chip memory interface and embedded memories, and to drive embedded block control
signals. The layer-level control circuitry shown in Figure 5 is composed of several state machines,
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Fig. 8. Output interconnect example.

Table 3. Generated State Machines and Their Functions

Function Description

Read off-chip weights Populate on-chip weight buffers from off-chip memory through
the External Memory Interface (EMIF). The location of weights
in off-chip memory is user specified.

Read off-chip inputs Populate input activation buffers from off-chip memory through
the EMIF. The location of input activations in off-chip memory
is user specified.

Load Weights into EBs Stream weights from weight buffers into embedded tensor
blocks. This process may be repeated with multiple batches
of weights depending on the mapping vector Ut . In weight-
stationary dataflows, this process is performed before streaming
through input activations, but in output-stationary dataflows
both processes run in parallel.

Load Inputs into EBs Stream input activations from input buffers into embedded ten-
sor blocks.

Retrieve outputs from EBs Write output activations to on-chip output activation buffers. In
output-stationary dataflows this is performed after streaming
through multiple weights and inputs.

Write outputs off-chip Write output activation off-chip through the EMIF. The location
of output activations in off-chip memory is user specified.

parameterized and composed depending on the mapping vectors specified in Section 3.4.1. The
functions of these state machines are summarized in Table 3.

Limitations. The main purpose of the framework presented in this paper is to facilitate the com-
parison of throughput, routability, and other performance metrics for different FPGA architectures.
In this context, our priority is generating realistic circuits to reasonably evaluate metrics like re-
source usage, rather than generating circuits that will be reliably functional and highest possible
performance.

In particular, we make assumptions about the input control signals of embedded blocks. Actual
embedded blocks might require additional control signals that we do not take into consideration;
for example, Intel’s tensor slices may require control signals to select one of the several different
operating modes that these blocks support. In comparison with the combined widths of the input
activation, weight and output activation ports however, only a small percentage of an embedded
block’s ports are typically control signals. For example, in Xilinx’s Ultrascale DSP48E2 block, for
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which there is detailed publicly available documentation, out of a total of 399 input and output
signals, 28 (7%) are control signals, not all of which would necessarily be required. For this reason,
we assume that control signals play a smaller role in overall routability and congestion and focus
on ensuring that the generated circuits are functional given a set of simplifying assumptions about
the embedded blocks’ control signals.

The generated state machine logic is also not highly pipelined or optimized. Realistically, there
are many different ways to implement these types of state machines. State machines implementa-
tion differences could affect resource utilization or maximum clock frequency if the critical path
is within the state machine logic (which would typically be mapped to logic elements rather than
embedded blocks). Supplementing the benchmarks generated by our tool with existing benchmark
suites, which contain many different examples of soft-logic and state machines, could help to pro-
vide a full picture of the performance of this state machine circuitry. The focus our framework
is on comparing performance for circuits that primarily perform the highly-parallel tensor opera-
tions that characterize DNNs, potentially making use of embedded tensor blocks, rather than the
more generic soft logic that is already well represented in existing benchmark suites.

3.6 Processing

3.6.1 Simulation Interfaces. Simulation of benchmark circuits is often not part of architectural
studies, and even static benchmark suites are not necessarily extensively validated through simula-
tion. Simulating the generated circuits provides several advantages however. Primarily, simulation
demonstrates functionality and provides an extra level of confidence in the generated circuits. Sec-
ondly, it allows for simulation-based power estimation: power usage depends on switching behav-
ior, which can be estimated through simulation. Finally, it could enable an analysis of both DNN
accelerator accuracy (which may depend on data representation and precision) and low level per-
formance metrics within a unified framework. Although simulation-based power estimation and
accuracy evaluation are not currently part of our flow, having functional simulation makes these fu-
ture extensions to the framework possible. For these reasons, we provide two levels of simulation:

• PyMTL Cycle-Accurate Simulation: Cycle-accurate simulation can be performed on pyMTL
models directly, prior to Verilog generation. In this way, small circuits can be validated in
python without requiring RTL simulation software. This method of simulation is not feasible
for large designs but is useful for unit testing and validation.
• RTL Simulation: Generated Verilog can be simulated using a commercial RTL simulator, a

more practical choice for larger designs. To validate the framework using large realistic net-
works, we simulate generated Verilog using Modelsim. A parameterized Verilog testbench
and scripts to run Modelsim and extract output activations are provided to facilitate RTL
simulation.

Both levels of simulation require simulation models of embedded blocks: BRAMs, EMIFs, and
embedded tensor blocks. These Verilog models can be automatically generated based on the ar-
chitectural descriptions provided by the user. Alternatively, the user could replace the generated
simulation models with their own Verilog models, or with more realistic simulation models pro-
vided by vendors.

Prior to simulation, off-chip memory is populated with random input activations and filter
weights. The expected DNN outputs are computed for this set of random inputs using functional
python models (separate from pyMTL structural models) that are included as part of our frame-
work. Simulation results are compared with these expected outputs to ensure that the generated
accelerators produce the correct results.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 33. Pub. date: May 2022.



33:22 E. Roorda et al.

3.6.2 Compiler Interfaces. Academic FPGA architecture research often uses the VTR CAD suite
to synthesize, place and route designs during architecture research. VTR uses the ODIN compiler
for synthesis, which only supports a subset of modern Verilog syntax. pyMTL generates synthe-
sizable System Verilog however, including by default many System Verilog constructs that are not
currently supported by ODIN. To resolve this, generated circuits are automatically post-processed
to replace System Verilog constructs with ODIN-compatible Verilog. For example, the “logic” key-
word is replaced with “wire” or “reg” as appropriate and parameters are removed and replaced
with their values. Several other similar post-processing steps are applied to produce two versions
of the circuit, one written in System Verilog and the other in an ODIN-compatible form.

In the release version of VTR, blocks are placed by VPR using a simulated annealing algorithm.
While this placement strategy often places connected embedded blocks in nearby locations, they
are not consistently placed in adjacent positions connected through direct connections. To ensure
that embedded blocks are consistently placed in adjacent locations, taking best advantage of direct
connections, we updated VTR to take as an input a set of placement constraints mapping blocks
to locations. These placement constraints can be applied to a subset of the netlist, allowing us
to manually place embedded blocks but use the regular VTR placement algorithms to place logic
blocks. During benchmark generation, a set of placement constraints is also generated to place
connected embedded blocks in adjacent locations whenever possible. While it is also possible to use
our framework without these placement constraints and changes to VTR, they improve routability
and routing utilization significantly.

3.7 Multi-Layer Networks

Different DNN network layers have different computational requirements, and therefore different
optimal mapping vectors. A single accelerator (characterized by a single mapping vector) may
therefore not be an efficient choice for all layers of a network. Existing accelerators typically use
one of two strategies for accelerating multiple DNN layers:

• Multiple Layers Executed Concurrently on Separate Hardware: Using this strategy, different
hardware accelerators are written (or generated) and optimized on a layer-by-layer basis.
Multiple batches can then be pipelined and executed in parallel. This strategy maximizes
efficiency of hardware utilization but is not suitable for applications that require low latency.
• Layers Executed Sequentially on Single Accelerator: Executing layers sequentially on the same

hardware resources reduces latency but can lead to resource under-utilization when the
accelerator structure is not well suited to all layers. Several papers [35, 36, 52] discuss and
quantify this inefficiency. In [36], using the same unrolling scheme across all layers is found
to cause a 1.7× performance slowdown, while in [35], utilization of DSPs is found to be
only 24% on average for any given layer due to the variation in computational requirements
across layers.

Recent work has explored flexible accelerators that execute layers sequentially on the same
hardware resources while avoiding the hardware under-utilization that can be associated with
this approach. On Application Specific Integrated Circuits (ASICs), several flexible interconnects
have been proposed, allowing the accelerator dataflow to change dynamically from layer to
layer [12, 16, 22, 24, 34]. Recent work [35, 36, 52] has also begun to address this issue for FPGA-
based accelerators, proposing flexible accelerators that can adapt to the differing computational
requirements of different DNN layers.

In the context of FPGAs with embedded tensor blocks, it would be ideal to optimize the mapping
of DNN computations to available embedded blocks on a layer-by-layer basis, and to dynamically
change the connections between blocks to implement different dataflows. This type of flexible
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interconnect requires significantly more logic however, increasing resource utilization and length-
ening timing delays. To help assess the feasibility of this solution on different FPGAs architectures,
our infrastructure has the ability to generate accelerators that switch dynamically (temporally) be-
tween multiple mappings, allowing for different network layers to be mapped differently to the
same resources. Each layer shares the same set of on-chip memories and embedded tensor blocks,
but with different interconnects and state machine logic. An additional state machine is generated
to switch between interconnects and layer-level control circuitry from layer to layer, as shown in
Figure 5.

This strategy allows for different layers to reuse the same hardware resources efficiently, but
requires additional soft logic and routing between the EBs and buffers. This is a particular problem
in our current implementation, which does not take advantage of the similarities between different
layers’ connectivity requirements. There are several ways in which this could be improved to
minimize the additional routing and logic required, which could be the subject of future work. In
Section 4.5 we present data comparing the routability, congestion, and estimated latency of circuits
generated using flexible interconnects.

4 CASE STUDIES AND RESULTS

To illustrate how our benchmark generation framework can be used to draw conclusions about
FPGA architectures in the context of DNN acceleration, we present a set of case studies that use our
framework. In the first, we demonstrate how real blocks from commercial FPGAs can be modelled
and compared using our classification system. In the second, we vary different aspects of a set
of embedded blocks and discuss the effects on overall performance. Finally, we explore different
ways of mapping full DNN networks to the same FPGA resources and analyze the tradeoffs of each
method.

4.1 Methodology

Baseline Architecture: Our baseline FPGA architecture includes an island-style fabric of logic blocks,
memory blocks, and I/O pins arranged in columns, with unidirectional routing. The architecture
grid dimensions are 149 × 177 and channel width is 250 unless otherwise specified. Timing delay
estimates, switch-blocks, and connection blocks are based on the Stratix IV architecture. Although
this is not one of the more recent commercial FPGA devices, the Stratix IV device can be captured
accurately using VTR [26]. In comparison with more recent devices, Stratix IV timing delays are
longer and overall accelerator performance is significantly slower. We also do not have timing
models for new embedded tensor blocks that we model, and for these reasons, the maximum fre-
quencies and critical path lengths listed in our case studies are not representative of expected
results on more recent FPGAs, and do not necessarily reflect the performance benefits of exploit-
ing embedded tensor blocks. Realistically, FPGA architects would have access to accurate timing
estimates and this would not be a limitation.

Compilation: VTR 8.0.0 [26] was used to model FPGA architecture variants and to synthesize gener-
ated circuits. As outlined in Section 3.6.2, small adjustments were made to VTR to enable embedded
block placement constraints.

DNN Workloads: In each case study, we base the DNN workloads on three layers of MobileNet [17].
The first is a fully connected layer, the second performs a 1 × 1 point wise convolution, and the
third is a convolutional layer with a 3 × 3 filter. Unrolling factors are selected automatically to
minimize estimated cycle counts. Loop bound vectors (W = {B, C, E, PX, PY, RX, RY, G}) of each
layer are listed in Table 4.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 15, No. 3, Article 33. Pub. date: May 2022.



33:24 E. Roorda et al.

Table 4. DNN Workloads, Based on Three MobileNet Layers

Layer MobileNet Layer Index Layer Type Loop Bound Vector (W)

L1 20 Fully Connected {1, 1024, 1000, 1, 1, 1, 1, 1}
L2 5 Pointwise Convolution {1, 64, 128, 56, 56, 1, 1, 1}
L3 1 3 × 3 Convolution {1, 3, 32, 224, 224, 3, 3, 1}

4.2 Case Study 1: Commercial Embedded Blocks

To demonstrate how real embedded machine learning blocks can be defined using our classification
system, this case study compares a more traditional DSP block with an embedded tensor engine,
based on Xilinx’s Ultrascale DSP slices and Intel’s Stratix 10 NX AI Tensor Blocks, respectively. We
show how our framework can be used to generate accelerators for three layers of MobileNet, and
compare performance results. We do not have access to the actual timing delays of these blocks,
their area footprints, or connectivity to surrounding fabric, so it is important to note that this
case study is an example of how such a comparison might be performed rather than an accurate
evaluation of real architectures.

4.2.1 Candidate Architectures.

Tensor Block Model: Intel’s recent AI Tensor Blocks can operate in several modes. We model these
blocks operating in “tensor mode” according to our understanding of publicly available docu-
mentation [7, 23]. Assuming 8-bit precision is used, each block computes three dot products of
10-element input vectors with three 10-element weight vectors. The access patterns are therefore
{AP1, AP2, AP3, AP4, AP5} = {1, 10, 3, 1, 1}.

In this case study, weights are pre-loaded into all tensor blocks in parallel through 16-bit input
ports. Accelerators are constructed of chains of tensor blocks, with partial sums cascaded through
direct connections between adjacent blocks. We assume that input activations can also cascade
between adjacent tensor blocks through direct connections, facilitating input reuse during convo-
lution (as is the case for DSPs [32]). Otherwise, additional logic could be automatically inserted,
allowing for input reuse, but increasing logic utilization.

The structure of the resulting accelerators is very similar to the example of the intended use of
Stratix 10 NX AI tensor blocks provided in [23].

DSP Model: We base our DSP blocks on Xilinx UltraScale DSP48E2 blocks, each of which contains a
27 × 18 multiplier and a 48-bit accumulator. For 8-bit inputs, each DSP can be used to multiply one
weight by two input activations. All inputs can be registered, and the outputs can be accumulated.
The access patterns ({AP1, AP2, AP3, AP4, AP5}) are therefore {1, 1, 1, 2, 1}.

Generated circuits connect adjacent DSPs in an array of chains. The resulting accelerators are
similar to the chains of DSPs used in [32], an accelerator that aims to make use of the dedicated
interconnects between DSPs to maximize frequency using more traditional FPGA building blocks.

VTR Architecture: In the VTR architecture models used in this case study, we aim for roughly the
same resource mix as the Stratix 10 NX architecture (albeit at a quarter of the size to allow for faster
synthesis), which has 70,272 logic blocks, 6,847 M20Ks, and 3,960 AI tensor blocks. We compare
two architectures. The first has 17,657 logic blocks, 1,720 RAM blocks, and 989 AI tensor blocks. In
the second, each tensor block is replaced with two DSPs. The resulting DSP count is comparable to
other Stratix 10 devices with compute intensive resource mixes, but the total number of multiply
accumulate units is much lower than in the architecture that includes tensor blocks, since each
tensor block has 15×more multipliers than a single DSP. As shown in Figure 9, RAM blocks, DSPs
and AI Tensor Blocks are arranged in columns, which are distributed evenly across the device.
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Fig. 9. VTR architecture models with Intel S1-0-type AI tensor blocks and Xilinx Ultrascale-style DSPs.

Table 5. Implemented Accelerator Mapping Vectors and Pre-Compilation Metrics

EB type Layer Ui Uo Ut MAC

count

MAC

utiliza-

tion

Estimated

Cycle

Count

Tensor Block

1 {1, 10, 3, 1, 1, 1, 1, 1} {1, 26, 38, 1, 1, 1, 1, 1} {1, 4, 9, 1, 1, 1, 1, 1} 29640 99.9% 566

2 {1, 10, 3, 1, 1, 1, 1, 1} {3, 7, 43, 1, 1, 1, 1, 1} {1, 1, 1, 19, 56, 1, 1, 1} 27090 91.3% 1086

3 {1, 3, 3, 1, 1, 1, 3, 1} {1, 1, 11, 1, 28, 3, 1, 1} {1, 1, 1, 224, 8, 1, 1, 1} 24948 84.1% 1810

DSP

1 {1, 1, 2, 1, 1, 1, 1, 1} {1, 79, 25, 1, 1, 1, 1, 1} {1, 13, 20, 1, 1, 1, 1, 1} 3950 99.8% 1524

2 {1, 1, 2, 1, 1, 1, 1, 1} {1, 64, 5, 3, 2, 1, 1, 1} {1, 1, 13, 19, 28, 1, 1, 1} 3840 97.1% 6916

3 {1, 1, 2, 1, 1, 1, 1, 1} {1, 3, 8, 1, 9, 3, 3, 1} {1, 1, 2, 224, 25, 1, 1, 1} 3888 98.3% 11200

Table 6. Implemented Accelerator Post Compilation Metrics (Resource Utilization)

EB type Layer M20K Usage Tensor Block

Usage

LAB Usage Short

Wire

utilization

Long Wire

utilization

Average

Wire Length

Tensor Block

1 1175 (68.3%) 988 (99.9%) 1333 (7.5%) 20.9% 9.8% 22.8

2 1199 (69.7%) 903 (91.3%) 1758 (9.9%) 19.5% 9.1% 26.1

3 1242 (72.2%) 924 (93.4%) 2967 (16.8%) 14.5% 7.5% 13.0

DSP

1 1053 (61.2%) 1975 (99.8%) 1171 (6.6%) 9.6% 10.6% 22.4

2 1084 (63%) 1920 (97.1%) 1214 (6.9%) 19.1% 9.4% 33.5

3 657 (38.2%) 1944 (98.3%) 950 (5.4%) 14.7% 6.4% 22.7

4.2.2 Results. Table 5 includes the mapping vectors selected for each workload, and estimated
cycle counts, as defined in Section 3.4.2. Table 6 lists resource utilization of each design and
lower level implementation metrics. In this example, timing results (included in the Appendix in
Table 13) do not reflect the actual performance of either block, since timing delays are estimated
based on Stratix IV. For this reason, rather than including critical path delays, which are dependent
on accurate timing delays, we focus instead on wire utilization metrics and average wire length.
Average wire length is reported in terms of routing grid units.

4.2.3 Analysis. All generated accelerators have relatively high utilization of available MAC
units, with utilization over 80% for all workloads. The MAC units of DSPs are used slightly more
efficiently, since the hardened structure of the larger AI tensor blocks limits the possible spatial
unrolling factors. Despite the fact that they are less efficiently utilized, AI tensor blocks provide
a much higher number of MAC units in total (7.5×), allowing for higher spatial unrolling factors
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Fig. 10. Impact of embedded block count on total estimated clock cycles.

overall. This results in a significantly lower total estimated cycle count when AI tensor blocks are
used as opposed to DSPs.

All generated circuits are routeable, with average routing utilization under 20% for all circuits.

4.3 Case Study 2: Architectural Trade-off Analysis

This case study demonstrates the use of our framework to evaluate several different design trade-
offs for a heterogeneous FPGA architecture with embedded tensor blocks. The number of embed-
ded blocks available, input activation quantization, and embedded block layout are varied to evalu-
ate the impact of these parameters on overall performance. In each case, we use the same baseline
architecture and workloads described in Section 4.1. Embedded blocks are based on Intel’s ML
Tensor Blocks, as outlined in Section 4.2.1.

4.3.1 Resource Mix Analysis. An important architectural consideration is the mix of resources
included on the chip. Increasing the number of embedded tensor blocks could allow for more
spatial parallelism but decreases the amount of general purpose FPGA building blocks available.

We first evaluate the effect of varying the number of embedded blocks available on estimated
total cycle count and resource usage, assuming that all MAC operations are performed in embedded
blocks rather than in the FPGA fabric. As shown in Figure 10, on FPGA architectures with more
embedded blocks, workloads can be parallelized with larger unrolling factors, resulting in lower
total estimated cycle counts. Circuits using fewer embedded blocks generally use fewer memory
blocks and less general purpose logic, although the number of resources required is also dependent
on which of the DNN layer dimensions are unrolled. Resource utilization, cycle counts, and routing
metrics for each workload and architecture variant are listed in Appendix A, in Table 14, Table 15
and 16, respectively.

On an FPGA architecture with embedded tensor blocks, the FPGA user could still opt to imple-
ment some tensor operations using soft logic (in logical embedded blocks) instead of exclusively in
hardened logic. We generate five sets of circuits with 1500 MAC units but with different propor-
tions of tensor operations performed in soft logic. As shown in Figure 11, implementing compu-
tations in general purpose logic significantly increases utilization of logic blocks and of routing
resources, even for relatively small circuits. For larger circuits, implementing a significant percent-
age of tensor operations in soft logic could quickly become impossible for this reason. We expect
the high logic and routing utilization in these cases would also further decrease maximum clock
frequency, but it becomes unfeasibly time consuming to compile such large soft-logic designs using
ODIN, which is why in this case study we use relatively small designs.
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Fig. 11. Routing utilization and logic block utilization with different proportions of tensor operations imple-

mented in soft-logic.

Table 7. Maximum Clock Frequency with Logical Embedded Blocks

Layer Embedded Blocks Only 10% Soft Logic 20% Soft Logic 30% Soft Logic 40% Soft Logic

Layer 1 148.6 MHz 139.4 MHz 139.2 MHz 139.4 MHz 139.4 MHz

Layer 2 149.7 MHz 139.2 MHz 139.2 MHz 143.5 MHz 143.7 MHz

Layer 3 150.5 MHz 139.2 MHz 145.2 MHz 142.1 MHz 143.7 MHz

Implementing tensor operations in soft logic also decreases the maximum clock frequency (listed
in Table 7) although as noted previously, in our case studies the maximum clock frequency is calcu-
lated using timing delays based on Stratix IV. Timing results would realistically be quite different
for FPGA implemented on the latest process nodes.

4.3.2 Quantization Analysis. Decreasing the precision of activations and weights can allow for
more operations to be performed with the same area and power footprint. Here, we investigate
adjusting the structure of the embedded tensor blocks to operate on input activations with different
bitwidths, including binarized inputs (1-bit quantization). The baseline embedded blocks are based
on Intel’s AI Tensor blocks, which perform three dot products on the same ten-element input vector
and three different sets of weights ({AP1,AP2,AP3,AP4} = {10, 3, 1, 1, 1}). For these tensor blocks,
each input activation is an eight-bit value. The input port of each embedded block is therefore
80 bits in total. In this case study, we maintain the same input port width but change the bit-width
of individual activation values. For example, instead of operating on ten 8-bit input activations,
the embedded blocks could operate on twenty 4-bit activations without changing the width of the
input or output ports ({AP1,AP2,AP3,AP4} = {20, 3, 1, 1, 1}).

Resource and routing utilization with different input activation precisions is listed in Tables 17
and 18 of Appendix A, while Figure 12 shows estimated cycle count. In principle, decreasing
bitwidth and increasing the number of MAC units within each embedded block should allow for
more spatial parallelism and lower estimated cycle counts. As shown in Figure 12 however, this is
not always the case for Layer 1 or Layer 3.

In Layer 3, decreasing input activation bitwidth below eight does not improve performance. In
this layer, each output is produced based on only nine input activations, so changing the embedded
blocks to operate on more than nine input activations does not result in any performance improve-
ment. In Layer 1, changing the input activation has little effect on total cycle count for a different
reason. This is a fully connected layer without local weight reuse, so loading the embedded blocks
with weights consumes a large percentage of the total estimated cycle count. In this particular case,
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Fig. 12. Impact of precision on estimated cycle count.

Fig. 13. Four candidate embedded block layouts. Only the bottom-left corner of each architecture is pictured.

increasing the number of operations performed within each embedded block increases the number
of clock cycles required to load weights, offsetting the benefits of the increased MAC count.

This analysis demonstrates that quantization can have a significant effect on performance (par-
ticularly for Layer 2 and for Layer 3) but that simply decreasing bitwidth is not sufficient to improve
performance for all workloads. To fully understand the effect of these types of changes on overall
performance it is necessary to closely consider different workloads and how they could realistically
be mapped to hardware.

4.3.3 Layout Analysis. In this example, we vary how embedded tensor blocks are arranged
across the FPGA device. Since embedded tensor blocks are typically interconnected and may be
driven by the same inputs and control signals, one strategy could be to group embedded tensor
blocks as close together as possible. Routing congestion also needs to be taken into account how-
ever. In this example, we consider four different high-level layouts with the same total number of
embedded blocks (989), each of which is illustrated in Figure 13.
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Table 8. Routing Results for Different Embedded Block Layouts

Single Columns Grouped Columns Clusters Irregular Columns

Layer 1

Short Wire Utilization 16% 16% 20% 16%

Long Wire Utilization 8% 7% 10% 9%

Max Routing Utilization 50% 63% 70% 49%

Average Wire Length 21.0 20.6 26.5 21.1

Layer 2

Short Wire Utilization 15% 15% 20% 15%

Long Wire Utilization 7% 7% 8% 7%

Max Routing Utilization 46% 59% 69% 43%

Average Wire Length 22.2 22.2 28.3 22.1

Layer 3

Short Wire Utilization 11% 12% 20% 11%

Long Wire Utilization 6% 5% 10% 6%

Max Routing Utilization 45% 69% 70% 44%

Average Wire Length 10.8 20.6 26.5 10.6

In the baseline layout, embedded blocks are arranged in 23 columns, which are spaced evenly
across the device in the x-dimension. In the second, columns are combined together into groups of
four, while in the third, embedded blocks are arranged in evenly spaced clusters. In the last architec-
ture variant, single columns are spread irregularly across the device, similarly to how DSP columns
are arranged in Xilinx Ultrascale+. The internal structure of the embedded tensor blocks is the same
for each layout, with each tensor block performing up to thirty multiplications in parallel. In each
case, the activations of adjacent embedded blocks are passed between embedded tensor blocks
through direct connections, bypassing the segmented routing network. Placement constraints are
generated to ensure that blocks are placed appropriately to make use of these connections.

Routing utilization and average path length are listed in Table 8 for each proposed layout, with
a channel width of 300. On average, maximum routing utilization is significantly lower for the
baseline architecture and irregular architecture, in which embedded blocks are laid out in single
columns. In the clustered and grouped layouts, while the connected tensor blocks are in close
proximity, general purpose routing is still required to transmit activations, partial sums, weights
and control signals in cases where connected embedded blocks are not directly adjacent to each
other. In the clustered and grouped layouts, this routing is concentrated in areas around embedded
blocks, leading to high congestion and a significantly higher maximum routing utilization.

4.4 Case Study 3: Workload Comparison

While we do not support all possible workloads and layer types, as discussed further in Section 5.1,
our benchmark generation framework supports many different DNN layer types that are not repre-
sented in the previous case studies. The purpose of this case study is to demonstrate the automatic
generation of a wider variety of different workloads, and to show how both high level cycle count
and lower level metrics like routing utilization are dependent on both the available hardware and
the workload. Specifically, in addition to the workloads outlined in Section 4.1, we include depth-
wise layers, different filter dimensions, input and output channels, strides, dilation and activation
functions. Each layer workload is defined in Table 9. In each case, we use the same baseline ar-
chitecture described in Section 4.1. Embedded blocks are based on Intel’s ML Tensor Blocks, as
outlined in Section 4.2.1.

4.4.1 Results. Tables 10 lists both pre-compilation and post-compilation results for each
workload described in Table 9. These results include the estimated cycle counts, as defined in
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Table 9. Additional Workload Definitions

Layer

Name

Layer Type Workload Dimensions Additional Parameters Description

C1

Convolutional

{1, 3, 32, 224, 224, 2, 2, 1} stride = 1; dilation = 1 2 × 2 Filter

C2 {1, 3, 32, 224, 224, 3, 3, 1} stride = 1; dilation = 1 3 × 3 Filter

C3 {1, 3, 32, 224, 224, 3, 3, 1} stride = 2; dilation = 1 3 × 3 Filter, with stride

C4 {1, 3, 32, 224, 224, 3, 3, 1} stride = 1; dilation = 2 3 × 3 Filter, with dilation

C5 {1, 3, 32, 224, 224, 4, 4, 1} stride = 1; dilation = 1 4 × 4 Filter

C6 {1, 3, 32, 224, 224, 5, 5, 1} stride = 1; dilation = 1 5 × 5 Filter

C7 {1, 3, 32, 224, 224, 6, 6, 1} stride = 1; dilation = 1 6 × 6 Filter

P1

Pointwise

{1, 64, 124, 56, 56, 1, 1, 1} activation = NONE No activation function

P2 {1, 64, 124, 56, 56, 1, 1, 1} activation = RELU ReLU activation

P3 {1, 64, 124, 56, 56, 1, 1, 1} activation = CLIPPED Clipped activation

FC1

Fully Connected

{1, 1024, 1000, 1, 1, 1, 1, 1} stride = 1; dilation = 1 Fully Connected

FC2 {1, 1024, 2000, 1, 1, 1, 1, 1} stride = 1; dilation = 1 FC, more output channels

FC3 {1, 1024, 500, 1, 1, 1, 1, 1} stride = 1; dilation = 1 FC, fewer output channels

FC4 {1, 2048, 1000, 1, 1, 1, 1, 1} stride = 1; dilation = 1 FC, more input channels

FC5 {1, 512, 1000, 1, 1, 1, 1, 1} stride = 1; dilation = 1 FC, fewer input channels

D Depthwise {1, 3, 32, 224, 224, 1, 1, 4} stride = 1; dilation = 1 Depthwise

Section 3.4.2 as well as resource utilization of each design and lower level implementation metrics
such as average wire length, which is reported in terms of routing grid units.

Embedded tensor block utilization and MAC utilization is listed in Table 10, and while typically
high, it varies significantly between different layers depending on how efficiently the workload
can be implemented on the available resources. For example, the MAC utilization of workloads C1,
which performs convolution with a 2 × 2 filter, is particularly low, since in this instance it is not
possible to use more than 12 of the 30 MAC units within each embedded block.

Estimated cycle count is also highly dependent on the workload, in part because of the different
rates of tensor block utilization, but primarily because different layers involve differing numbers
of computations. Metrics like LAB Usage are also dependent on the workload. For example, ap-
plying different activation functions to otherwise identical layers results in different rates of LAB
utilization, since the activation functions are implemented using soft logic.

4.5 Case Study 4: Multi-Layer Accelerators

As discussed in Section 3.7, accelerating dissimilar DNN layers using the same mapping to hard-
ware can result in under-utilization of resources. In this case study, we illustrate this under-
utilization using Layer 1 (a fully connected layer) and Layer 3 (a convolutional layer), two par-
ticularly dissimilar workloads. Table 11 lists the optimal mappings for each individual layer, the
optimal mapping for the combined layers, and resulting estimated cycle counts in each case.

As described in Section 3.7, our framework can be used to generate circuits that reuse the same
embedded blocks between layers but with different parallelization schemes and interconnects. We
generate one accelerator that uses this strategy to dynamically switch between the two optimal
mapping vectors listed in Table 11, and one which uses the same static mapping for both layers.
The FPGA architecture used is the the same baseline architecture described in Section 4.1, with
500 embedded tensor blocks based on Intel’s Stratix 10 NX AI Tensor Blocks and a channel width
of 400. The resulting resource utilization, routing utilization, and difference in average path delay
are listed in Table 12. Dynamically changing interconnects across layers significantly increases
the soft logic required, since the generated accelerator includes more state machine logic and
additional soft logic in the input, weight, and output interconnects. Routing requirements also in-
crease dramatically since inserting additional logic between embedded blocks means that the direct
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Table 10. Implemented Accelerator Pre and Post-Compilation Measurements

Layer Tensor

Block

Usage

MAC Usage LAB Usage Estimated

Cycle Count

Short Wire

utilization

Long Wire

utilization

Average

Wire Length

C1 924 (93%) 56% 4461 (25%) 1252 16.5% 8.7% 13.1

C2 924 (93%) 84.1% 2970 (17%) 1810 14.5% 7.5% 13.0

C3 924 (93%) 84.1% 2948 (17%) 1810 14.1% 7.4% 10.9

C5 968 (98%) 88.1% 1796 (10%) 4762 15.4% 6.6% 11.5

C6 880 (89%) 80.1% 1406 (8%) 6332 8.6% 4.0% 7.0

C7 924 (93%) 84.1% 1306 (7%) 7230 11.9% 5.9% 9.2

P1 903 (91%) 91.3% 1667 (9%) 1086 18.0% 8.6% 25.2

P2 903 (91%) 91.3% 1758 (10%) 1086 19.5% 9.1% 26.1

P3 903 (91%) 91.3% 2295 (13%) 1086 18.4% 8.6% 22.8

FC1 988 (100%) 99.9% 1333 (8%) 566 20.9% 9.8% 22.8

FC2 975 (99%) 98.6% 1544 (9%) 1165 17.4% 7.1% 18.4

FC3 980 (99%) 99.1% 1606 (9%) 323 19.5% 9.9% 21.0

FC4 984 (99%) 99.5% 1673 (9%) 1161 17.7% 9.6% 19.0

FC5 988 (100%) 99.9% 1574 (9%) 314 20.4% 10.2% 21.9

D 903 (91%) 91.3% 1658 (9%) 4313 18.0% 8.7% 25.2

Table 11. Mappings and Estimated Cycle Count for Two-Layer Workload

Dynamic Layer-by-Layer Mappings Optimal Static Mapping

Uo Ui Estimated

Cycle

Count

Uo Ui Estimated

Cycle

Count

Layer 1 {1, 13, 38, 1, 1, 1, 1, 1} {1, 10, 3, 1, 1, 1, 1, 1} 1165
{1, 1, 26, 2, 1, 3, 3, 1} {1, 10, 3, 1, 1, 1, 1, 1}

21433

Layer 3 {1, 1, 11, 15, 1, 3, 1, 1} {1, 3, 3, 1, 1, 1, 3, 1} 3378 25112

Total: 4543 Total: 46545

Table 12. Implemented Accelerator Post Compilation Metrics (Resource Utilization)

Multi-layer

accelerator

type

M20K Usage Tensor

Block

Usage

LAB

Usage

Short

Wire

Utilization

Long Wire

Utilization

Maximum

Channel

Utilization

Dynamic 817 (47%) 495 (99%) 5067 (29%) 20% 18% 82%

Static 342 (20%) 468 (93.6%) 618 (4%) 3% 2% 34%

connections between adjacent blocks can not be used. Future work using our benchmark genera-
tion framework could explore different routing architecture alternatives to improve the feasibility
of these kinds of dynamic interconnects.

5 CONCLUSIONS AND FUTURE WORK

Deep Neural Networks are machine learning applications with computation demands that cannot
be met efficiently by conventional Central Processing Unit (CPU)-based platforms. FPGAs-based
hardware accelerators present an attractive solution; FPGAs provide high-performance and power
efficiency as well as reconfigurability, an important consideration in the quickly evolving field of
deep learning. For this reason, DNN acceleration is increasingly a focus of FPGA research, includ-
ing architectural studies that aim to design FPGAs that are better suited to these workloads.

In this paper, we have discussed how the evaluation of FPGA architectures in the context of
DNN acceleration is challenging, due in part to a lack of suitable benchmark circuits. Not only do
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publicly available DNN benchmark circuits not exist, the types of static benchmark suites typically
used in FPGA research are not sufficient in this context. Static benchmark circuitry and existing
benchmark circuit generators do not target the types of embedded blocks that have been proposed
for improving performance of FPGA-based DNN accelerators. This is a practical impediment for
FPGA architects, who need to hand write benchmark circuits as a result, which can be very time
consuming. This also makes it difficult to evaluate architecture tradeoffs and compare different
proposals in a unified framework.

We propose an architectural exploration flow in which benchmark circuits are generated to tar-
get the architecture under consideration, which we presented in Section 3. In Section 4 we also
provide case studies that use our FPGA architecture exploration flow to evaluate design trade-
offs and to explore the relationships between FPGA architecture, DNN workload, and resulting
performance.

5.1 Limitations and Future Work

Through our case studies we demonstrate how our framework can be used to explore several
different aspects of FPGA architecture design. However, the current framework has limitations
that currently restrict its applicability in some areas, and which could be improved to make this
work more broadly useful. These limitations and potential improvements are summarized below.

Flexibility and Support for Different Use Cases: Our taxonomy of embedded blocks covers a wide
range of different tensor operations and our framework supports the majority of embedded tensor
blocks proposed to date. There are types of embedded blocks that cannot be modelled using our
parameterized definition however. In [2] for example, the proposed embedded blocks include logic
to read and write to on-chip memory, whereas in our benchmark generation flow, we assume that
this type of logic is implemented using the reconfigurable FPGA fabric instead of within embedded
blocks. Future extensions to the framework could expand the embedded block definition to better
handle this particular case.

Similarly, while we consider the most common types of DNN layers, there are activation func-
tions and DNN layer types that are not currently supported. New activation functions can be
easily added to the existing library of activation functions. In other cases however, such as for
3-D convolutions and transposed convolution, our workload definition is not sufficient and sup-
port would require more extensive changes to the workload definition presented in Section 3.2.
Another current limitation is the ability of our framework to efficiently handle sparse networks.
Many high performance accelerators exploit the sparsity of weights and activations values using
various different optimization strategies, including several different ways of compressing weights
and/or activations and eliding zero-value multiplications, each of which would require different
adjustments to either the generation framework or manual changes to the benchmarks themselves.
Ongoing work aims to improve the modularity of the generated benchmarks and the framework
itself to facilitate adding additional custom logic to generated circuits, facilitating the implemen-
tation of sparsity optimizations.

Generated Accelerator Quality and Performance: Circuits generated through the proposed bench-
mark generation tool are designed to make realistic use of embedded blocks in functional circuits,
to estimate the performance of real user designs. The focus was not to generate circuits that com-
pete with hand-written accelerators in terms of performance. In particular, while we pay particu-
lar attention to different dataflows and unrolling factors, since these determine how the embedded
blocks are connected and the overall structure of the circuit, we focus less on other aspects of DNN
accelerator design, such as efficiently reading and writing from off-chip memory. For example, se-
lectively keeping some inter-layer activations on-chip between layers has been shown to improve
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performance [4], but this kind of optimization does not affect the connections between embedded
blocks and memory. Further, the state machines generated are functional but are not optimized to
minimize clock frequency through hyper-pipelining, as discussed in Section 3.5.5.

Existing DNN circuit generators [41, 47, 48, 51] typically focus more on the performance and
practical reliability of the generated circuits. These generators are intended to reduce development
time of FPGA users, and are not intended for FPGA architecture exploration. Improving the frame-
work proposed in this work to take into consideration other common performance optimizations
would allow for it to be used for DNN circuit generation outside of the context of FPGA archi-
tecture research. Significant practical improvements to the code base would be required, but our
conceptual framework and problem space definition could be a good starting point for this work.
In particular, using HLS instead of pyMTL to generate circuits could allow us to take advantage
of performance optimizations performed in HLS software, provided it is possible to model and
instantiate embedded blocks with sufficient low-level control. For example, using HLS for circuit
generation would allow us to take advantage of existing HLS pipelining optimizations.

Case Study Limitations: While our case studies effectively demonstrate how our framework could
be used by FPGA designers to compare different architecture candidates and evaluate design trade-
offs, the results themselves are highly dependent on assumptions about timing delays and the
baseline architecture. Realistically, during FPGA architecture exploration, vendors and researchers
would calculate timing delays of each FPGA building block based on detailed models. We do not
have access to these types of timing models, or detailed information about all components of the
latest commercial FPGA architectures and frequency measurements are therefore not representa-
tive of modern devices. On these grounds, the provided case studies focus primarily on resource
utilization, routability and average wire length, although frequency can also be measured if accu-
rate timing delays are available. VTR also does not support all architectural features of the latest
commercial devices, such as pipeline registers in the routing fabric, so it is not possible to fully and
accurately model the latest commercial architectures in VTR. For these reasons, our case studies
are intended to provide a blueprint for how FPGA vendors could evaluate architectural proposals,
rather than to draw concrete conclusions about which architecture performs best.

Ideally it would be possible to compare performance of generated circuits against existing
benchmark circuit suits and circuit generation frameworks. This would allow us to check the
accuracy of low level metrics like clock frequency as well as clock cycle counts. At this time
however, existing benchmark suites (and circuits produced by existing generators) do not
explicitly instantiate embedded blocks, and compilers cannot automatically infer these blocks.

APPENDIX

A CASE STUDY RESULTS - EXTENDED

Table 13. Case Study 1 – Maximum Frequency with

Different Embedded Tensor Blocks

Workload Tensor Block DSP

Layer 1 146.0 MHz 146.7 MHz
Layer 2 139.2 MHz 147.7 MHz
Layer 3 150.5 MHz 146.0 MHz
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Table 14. Case Study 2.1 – Resource Utilization with Different Numbers of Embedded Blocks

Available

Embedded

Blocks

1000 900 800 700 600 500 400 300 200 100

Layer 1 Tensor Block Usage 988 896 784 668 588 494 392 300 196 100

LAB usage 1333 1561 1442 2250 1109 888 790 631 456 297

M20K usage 1175 1104 987 1179 749 616 511 405 273 155

Layer 2 Tensor Block Usage 903 882 770 693 539 462 378 280 196 98

LAB usage 1758 2240 1818 2244 1788 1233 1461 1648 1388 1270

M20K usage 1199 1351 988 1081 875 716 708 750 630 560

Layer 3 Tensor Block Usage 924 825 759 693 594 495 396 297 198 99

LAB usage 2967 2663 2451 2249 1954 1643 1331 1024 722 412

M20K usage 1242 1116 1032 948 822 696 570 444 318 192

Table 15. Case Study 2.1 – Cycle Count with Different Numbers of Embedded Blocks

Available Embedded

Blocks

1000 900 800 700 600 500 400 300 200 100

Layer 1 566 632 727 834 967 1165 1447 1919 2887 5717

Layer 2 1086 1202 1381 1511 1844 2158 2636 3592 5100 10193

Layer 3 1810 2034 2258 2482 2930 3378 4274 5618 8530 16818

Table 16. Case Study 2.1 – Routing Utilization with Different Numbers of Embedded Blocks

Available

Embedded

Blocks

1000 900 800 700 600 500 400 300 200 100

Layer 1 Short Wire Util 20.9% 15.4% 13.5% 14.1% 10.3% 8.6% 7.3% 5.4% 3.9% 2.1%

Long Wire Util 9.8% 5.2% 4.3% 4.4% 3.6% 3.5% 2.4% 2.7% 1.5% 0.9%

Avg Wire Length 22.8 17.3 17.1 18.1 17.4 17.7 18.2 18.3 19.1 19.5

Layer 2 Short Wire Util 19.5% 42.6% 28.1% 24.8% 21.9% 10.8% 21.6% 12.1% 8.9% 4.5%

Long Wire Util 9.1% 35.1% 11.8% 12.7% 10.4% 4.7% 16% 6.8% 3.8% 1.4%

Avg Wire Length 26.1 54.2 39.8 38.7 43.4 24.9 54.6 57.1 50 35.1

Layer 3 Short Wire Util 14.5% 18.6% 16.8% 13.1% 12.8% 9.03% 7.8% 5.7% 3.6% 1.8%

Long Wire Util 7.5% 8.9% 7.8% 6.72% 6.1% 3.95% 3.1% 2.4% 1.5% 0.9%

Avg Wire Length 13 16 15.6 13.5 15.2 12.82 13.6 13.4 12.4 12.2

Table 17. Case Study 2.2 – Resource Utilization with Different Input Activation Bitwidth

Input Bitwidth 1 2 3 4 5 6 7 8 10 13 16

Inputs Per EB 80 40 26 20 16 13 11 10 8 6 5

Layer 1 Tensor Blocks 611 988 960 988 896 960 987 988 988 986 984

Lab Usage 928 1492 1421 1523 1460 1521 1733 1569 1772 1772 1747

M20K Usage 689 1133 1089 1147 1048 1132 1254 1175 1232 1233 1261

Layer 2 Tensor Blocs 903 860 902 860 860 860 924 903 960 946 975

Lab Usage 3357 2468 2604 2390 2614 2007 2191 1940 2261 2133 1861

M20K Usage 593 675 899 847 1189 1146 1146 1199 920 1314 940

Layer 3 Tensor Blocks 924 924 924 924 924 924 924 924 924 924 924

Lab Usage 2303 2474 2557 2622 3068 3118 2879 2968 2023 2131 1881

M20K Usage 266 381 640 668 1242 1242 1242 1242 762 762 576
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Table 18. Case Study 2.2 – Routing Utilization with Different Input Activation Bitwidth

Input

Bitwidth

1 2 3 4 5 6 7 8 10 13 16

Inputs Per

EB

80 40 26 20 16 13 11 10 8 6 5

Layer 1 Short Wire Util (%) 10.7 20.1 16.3 20.2 14.9 16.7 28.5 20.4 20.8 19.5 17.9

Long Wire Util (%) 6.1 9.1 8.4 10.3 5.4 8.3 25.8 10.4 10.8 10.1 10.2

Avg Wire Length 19.2 21.7 18.2 21.9 17.1 18.4 32.2 21.9 22 20.7 19.1

Layer 2 Short Wire Util (%) 19.8 21.0 17.6 16.8 19.0 18.7 18.5 19.5 39.5 25.6 38.1

Long Wire Util (%) 8.9 8.2 8.1 8.0 8.6 8.4 10.6 8.6 25.5 10.7 22.3

Avg Wire Length 28.2 27.7 22.0 22.2 24 23.8 22.4 23.7 45.1 28.6 43

Layer 3 Short Wire Util (%) 5.8 7.3 8.8 9.4 10.8 11.6 12.7 13.7 11 12.7 14

Long Wire Util (%) 4.5 5.5 5.7 6.1 6.4 6.9 7.4 7.6 5.2 5.5 6.5

Avg Wire Length 5.4 6.5 7.5 7.9 8.9 9.4 10.1 10.6 8.8 9.8 11.6
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