FPGA Implementation of a Microcoded Elliptic Curve
Cryptographic Processor

K.H. Leung, K.W. Ma, W.K. Wong and P.H.W. Leong
{khleung,kwma,wkwongl,phwl}@cse.cuhk.edu.hk
Department of Computer Science and Engineering

The Chinese University of Hong Kong
Shatin, N.T. Hong Kong

Abstract

Elliptic curve cryptography (ECC) has been the fo-
cus of much recent attention since it offers the highest
security per bit of any known public key cryptosystem.
This benefit of smaller key sizes makes ECC partic-
ularly attractive for embedded applications since its
implementation requires less memory and processing
power. In this paper a microcoded Xilinz Virtex based
elliptic curve processor is described. In contrast to
previous implementations, it implements curve opera-
tions as well as optimal normal basis field operations
in Fan; the design is parameterized for arbitrary n;
and it ts microcoded to allow for rapid development of
the control part of the processor. The design was suc-
cessfully tested on a Xilinz Virtex XCV800-4 and, for
n = 113 bits, utilized 1290 slices at a marimum fre-
quency of 45 MHz and achieved a thirty-fold speedup
over an optimized software implementation.

1 Introduction

Elliptic curve cryptography (ECC) was proposed
by Koblitz [1] and Miller [2] in 1985. Compared with
other commonly used public key cryptosystems such
as RSA and discrete logarithm, claims have been made
that ECC offers a smaller key length, better security,
and a smaller hardware realization than other meth-
ods.

ECC is particularly suitable for embedded applica-
tions, the benefits being

e ECC offers the highest security per bit of any
known public key cryptosystem so a smaller mem-
ory can be used

¢ ECC hardware implementations use less transis-
tors, as an example, a VLSI implementation of

0-7695-0871-5/00 $10.00 © 2000 IEEE

68

155-bit ECC has been reported which uses only
11,000 transistors [3] compared with an equiva-
lent strength 512-bit RSA processor which used
50,000 transistors [4]

e ECC is probably more secure than RSA, the
largest RSA and ECC challenges solved being
512-bit and 97-bit respectively. In cracking the
97-bit ECC problem, approximately twice the
computing power of the RSA problem was used.

Previous implementations of ECC processors have
been based on VLSI chips which implement a copro-
cessor for performing the underlying field operations.
An optimal normal basis multiplier over Fyses was re-
ported in 1988. It used 90,000 transistors and occu-
pied 0.3 inches on a side. This chip together with a
Motorola DSP 56000 was used to implement a com-
plete ECC system which could calculate 5 points a
second on a supersingular curve [3]. In 1993, the same
team developed a processor for operations in the Ga-
lois field Fiss [3] which used 11,000 transistors and
could operate at 40 MHz. This implementation was
intended to be compact yet secure.

A field programmable gate array (FPGA) based
processor for elliptic curve cryptography in a compos-
ite Galois field F(3n)m was developed by Rosner (5].
A compact super-serial multiplier for FPGAs which
trades off performance for area was reported in 1999
and its performance for field (polynomial basis) and
curve multiplications over Fgiez has also been pre-
sented [6].

In this paper, a Xilinx Virtex based FPGA imple-
mentation of an elliptic curve processor is described.
Previous implementations based on Galois field pro-
cessors have the disadvantage that a high bandwidth
interface is required to supply the coprocessor with
its data. Another limitation of previous ASIC designs
is that the field operations are restricted to certain



groups (i.e. the subfield and extension fields of Fass)
and these cannot be changed without fabricating a
new chip.

The implementation described in this paper differs

from previous implementations from that it has the

following features

o the higher level curve operations as well as the
field operations are implemented on the chip.
This makes the I/O bandwidth requirements
much lower than for chips which only implement
the field operations

e the curve operations are implemented as se-
quences of field operations which are programmed
in microcode. This allows many algorithmic op-
timizations to the design to be made without
changing the hardware

o the entire design is generated by a module gener-
ator which can generate arbitrary key size ECC
systems. Thus ECC systems of arbitrary size over
an optimal normal basis can be generated (pro-
vided they fit on the FPGA device).

The rest of this paper is organized as follows. Sec-
tion 2 is an introduction to some of the mathematical
concepts needed to understand elliptic curve cryptog-
raphy. The architecture and implementation details of
the elliptic curve processor is presented in Section 3.
Results are presented in Section 4 and conclusions are
drawn in Section 5.

2 Background Mathematics

In an attempt to make this section more readable to
engineers, an informal introduction to abstract algebra
and elliptic curves is presented. More rigorous treat-
ments can be found in the following books [7, 8, 9, 10].

2.1 Groups and Fields

A group (G, +) consists of a set of numbers G to-
gether with a operation + which satisfies the following
properties

e Associativity: (a +b)+ ¢ = a+ (b+ ¢) for all
a,bceG

e Identity: There is an element 0 € G such that
a+0=0+aforallaeCG

e Inverse: For every a € G there exists an element
—a € G such that —a+a=a+ —a =0.

69

The group G is said to be abelian (or commutative) if
ea+b=b+aforalla,be G

We will use the notation #G to denote the number of
elements in the group.

A field (F, +, x) is a set of numbers F together with
two operations, + and x which satisfies the following
properties

o (F,+) is an abelian group with identity 0
e X is associative

o there exists an identity 1 € F with 1 # 0 such
that Ixa=axl=aforalla€ F

o the operation X is distributive over + i.e. a x (b+
¢) = (exb)+(axc) and (b+c)xa = (bxa)+(cxa)
for all a,b,c€ F

eaxb=bxaforalabeF

e for every a # 0,a € F there exists an element
ale Fsuchthata ! xa=axal=1

If the field has a finite set of elements, it is called a
finite (or Galois) field. Let F, be the finite field with
p elements. Numbers in the field F3 can be repre-
sented by {0,1}. If p = 2", numbers in Fj» can be
represented as n-bit binary numbers.

2.2 Fjn Operations (Normal Basis)

The field F3» has particular importance in cryptog-
raphy since it leads to particularly efficient hardware
implementations. Elements of the field are represented
in terms of a basis. Most implementations either use
a polynomial basis or a normal basis. For the im-
plementation described in this paper, a normal basis
was chosen since it is believed that it leads to a more
efficient hardware implementation.

In a normal basis, an element A can be uniquely
represented in the form

n-—-1
A=Y ap?

$=0

where a; € F» and B € Fan.

2.2.1 Addition and Squaring

The addition operation over Fa» is simply a bit—wise
exclusive OR (XOR) operation. Furthermore, in a
normal basis, squaring is simply a rotate left opera-
tion.



2.2.2 Multiplication

Let
n-1 .
A = Z a;pf?,
i=0
n-1 )
B = Y bp*
=0
and
n-1 ; 2 3 4 5 6 9 10 11
C=AxB=)Y cp’ 12 14 18 23 26 28 29 30
i=0 33 3 36 39 41 50 51 52
then multiplication is defined in terms of a multipli- 53 58 60 65 66 69 T4 81
cation table \;; € {0,1} 82 8 8 8 90 95 98 99
, 100 105 106 113 119 130 131 134
n-ln-1 135 138 146 148 155 158 162 172
k=D NjGipkbjtk (1) 173 174 178 179 180 183 186 189
i=0 j=0 191. 194 196 209 210 221 226 230
231 233 239 243 245 251 254 261
An optimal normal basis (ONB) [11] is one with the 268 270 273 278 281 292 293 299
minimum number of terms in Equation 1, or equiva- 303 306 309 316 323 326 320 330
lently, the minimum possible number of nonzero A;;. 338 346 348 350 354 359 371 372
This value is 2n — 1 and since it allows multiplica- 375 378 386 388 393 398 410 411
tion with minimum complexity, such a basis would 413 414 418 419 420 426 429 431
normally lead to a more efficient hardware implemen- 438 441 442 443 453 460 466 470
tation. 473 483 490 491 495 508 509 515
Derivation of the A;; values in Equation 1 is depen- 519 522 530 531 540 543 545 546
dent on n. There exists an optimal normal basis in 554 556 558 561 562 575 585 586
Fan if 593 606 611 612 614 615 618 629
1. 2 is a primitive in F. or 638 639 641 645 650 651 652 653
’ nth 658 659 660 676 683 686 690 700

708 713 719 723 725 726 741 743
746 749 755 756 761 765 771 772
774 779 783 785 786 791 796 803
809 810 818 820 826 828 831 833

2. 2 is a primitive in Fa,4;, or

3. n is odd and 2 generates the quadratic residues

in Zz,.+1.

834 846 852 8d8 866 870 873 876
An ONB exists in Fan for 23% of all possible values of 879 882 891 893 906 911 923 930
n < 1000 [11]. Table 1 lists these values. 933 935 938 939 940 946 950 953

The multiplication table is derived differently for 965 974 975 986 989 993 998

the three different types of ONB described above. As :
an example, for the second type of ONB, A;; =1 iff ¢ Table 1: Values of n with an optimal normal basis.
and j satisfy one of the four congruence 2° + 2/ = +1

[11].
The design presented in this paper assumes an n .
which has an ONB.

2.2.3 Inversion

The algorithm used for inversion is based on the iden-
tity

al= az"—z — (az"-‘—1)2

70



for all @ # 0 in Fy~. Itoh and Tsujii [12] proposed
a method which minimizes the number of multiplica-
tions (squarings are much cheaper in a normal basis).
It is based upon the following identities

n=—1
a2’ "l {

and can be computed using the following algorithm.

n—=1 n-~1 n—1
(@7 127 @27 -1 podd

n—=1
a(a? ? —1)2 n even

INPUT: &k € Fa
OUTPUT:l = k™!

1. Set s+logyn—1
2. Setp+k
3. For ¢ from s downto 0
Set r « shift n to right by s bit(s)
Set g < p
Rotate ¢ to left by r bit(s)
Set ¢ + multiply p by ¢
If last bit of r is set then
Rotate ¢ to left by 1-bit
p + multiply ¢t by k
else
p+t
s¢—s—1
Rotate p to left by 1-bit
Setl+—p
Return !

o oon

The total number of multiplies M required to per-
" form an inversion in F3» using the above algorithm
is

M(n)=logy(n-1)+rv(n-1)-1

where v(z) is the number of nonzero bits in the binary
representation of z.

2.3 Elliptic Curves over Fjn

A nonsupersingular elliptic curve E over Fon,
E(F3») is the set of all solutions to the following equa-
tion with coordinates in the algebraic closure of E [7]

(2)

where a2, a6 € Fan and as # 0. Such an elliptic curve
is a finite abelian group [7]. The number of points in
this group is denoted by #FE(Fan).

y2+:cy= 22 + agz? + as.

2.3.1 Curve Addition

If P = (z1,y1) and Q = (z2,y2) are points on the el-
liptic curve (i.e. satisfy Equation 2) and P # —@Q then

71

(z3,43) = R = P + Q can be defined geometrically.
In the case that P # @, a line intersecting the curve
at points P and (Q must also intersect the curve at a
third point —R = (z3,—y3). If P = Q, the tangent
line is used.

Alegebraically, if P # Q

A = y1+y2,
z1+ 22
T3 /\2+/\+z1+z‘2+a2,
Y3 (z1+z3) A+ 23+ y1.
IfP=Q
A= y_1+x1)
z
r3 = A2+A+02,
Y3 (z1+ z3)A + 23+ 1.

2.3.2 Curve Multiplication
Multiplication is defined by repeated addition, i.e.

Q kP

P+P+...+P
(L

k times

This can be computed using the following “double and
add” algorithm.

INPUT: P € E(F3») and k € Fyn

OUTPUT: kP
1. k=Y o525 €0,1,b =1
2. Q=P
3. For i from m — 1 downto 0
Q=Q+Q
If b; = 1 then
Q=Q+P
4. Return Q

which requires n + v(k) — 2 point additions where
v(k) is the number of nonzero bits in the binary rep-
resentation of k.

2.4 Discrete Logarithm Problem

Elliptic curve cryptography is based on the discrete
logarithm problem applied to elliptic curves over a fi-
nite field. In particular, for an elliptic curve FE it relies
on the fact that it is easy to compute

Q=kP



for k€ {1,...,#G~1} and P,Q € E, however, there
is currently no known subexponential time algorithm
to compute k given P and Q.

In fact, the discrete logarithm problem can be used
to build cryptosystems with any finite abelian group.
Indeed, multiplicative groups in a finite field were orig-
inally proposed. However, the difficulty of the prob-
lem depends on the group, and at present, the problem
in elliptic curve groups is orders of magnitude harder
than the same problem in a multiplicative group of a
finite field. This feature is the main strength of elliptic
curve cryptosystems.

2.5 Elliptic Curve Cryptography

The discrete logarithm problem can be used as the
basis of various public key cryptographic protocols for
key exchange, encryption and digital signatures. It is
beyond the scope of this paper to review all of the
cryptographic protocols for public key cryptography,
but an example of its use in the Diffie-Hellman key
exchange is given in this section.

Suppose that Alice and Bob wish to agree on a com-
mon key to be used for encryption using a traditional
secret key algorithm such as DES, but need to do so
over an insecure channel such as the Internet. Then
the following Diffie-Hellman procedure can be used
with a public elliptic curve E and point P € E.

1. Alice generates a secret random integer kg4 €
1,...#G —1 and sends the point on E ks x P
to Bob

2. Bob generates a secret random integer kp €
1,...#G —1 and sends the point on E kg x P
to Alice

3. Alice and Bob can both compute the key k =
kAX(kB XP)-—-kB X(kAXP)

An adversary, Carol eavesdropping on the channel,
can only gain the information E, P, k4 x P and kg x P.
For Carol to be able to compute k, she must solve the
discrete logarithm problem and the best known algo-
rithm takes fully exponential time. Alice and Bob,
however, need only compute elliptic curve multiplica-
tions which are comparatively easy.

3 An Elliptic Curve Processor
A block diagram of the elliptic curve processor is

shown in Figure 1. The organization is similar to a
traditional microcoded central processing unit (CPU)

72

microcode £} E
i \/
control EQ ALU
Data
Registers

Figure 1: EC processor architecture

that it consists of an arithmetic logic unit (ALU), reg-
ister file, a microcode sequencer and microcode stor-
age. Major differences between this architecture and
a conventional CPU are that the datapath is n bits
wide and the ALU performs operations based on Fan»
arithmetic instead of integer arithmetic.

3.1 Arithmetic Logic Unit (ALU)

The ALU is faster and simpler than an integer ALU
since no carry propagation is required. The complex-
ity is determined by the Fa» multiplier.

Figure 2 shows the circuit used for calculating cx
of Equation 1 [13]. In each cycle ¢, (0 < t < n), the
ck’th cell computes

n—1

Fi(t) = boiye O NikGike

=0

(where all subscripts are reduced modulo n).

In each cycle, the A, B and C registers are rotated
as shown in Figure 3. The result being that after
n cycles, the contents of register C are the desired
product of the A and B inputs [13]. It should be noted
that an optimal normal basis reduces the number of
interconnections and fanout of signals in the multiplier
to the minimum possible, resulting in reduced area
and increased speed over a non—optimal normal basis.
In fact, the maximum fanout for a; in Figure 3 is 4
[13].

The addition operation is implemented simply as
an XOR function and the squaring function is imple-
mented as a rotate left operation.



a inputs determined by A,,

From cell

S

DFF o Tocell

k+1

b input determined by )\.lj

Figure 2: Fa» multiplier element of cx

ao al a2 33 oo w1

wiring

wiring

Figure 3: Fy» multiplier circuit

73

3.2 Register File

A 16 x n-bit dual-port synchronous register file is
constructed from the 16 x 1-bit distributed RAM fea-
ture of the Xilinx Virtex series logic cell (see Sec-
tion 3.5). This gives an eight-fold reduction in re-
sources over RAMs based on latches.

3.3 Microcode

The ALU plus register file form a F3» processor sim-
ilar to previous designs [3]. However, for performing
elliptic curve cryptography, higher level elliptic curve
multiplications of Section 2.3.2 are required. This
could be implemented as a finite state machine [5] or
in microcode. The implementation described in this
paper opted for a microcoded approach which has the
following advantages in a FPGA implementation

1. the microcode is stored in Xilinx Virtex block
RAMs and do not use logic resources of the FPGA
(as explained in Section 3.5). The microcode se-
quencer in this design is very simple and has a
small overhead.

2. the microcode can be changed without requiring
recompilation of the elliptic curve processor

3. algorithmic optimizations to the processor can be
performed entirely in microcode

4. a microcoded description is a higher level abstrac-
tion than a finite state machine and hence easier
to develop and debug.

The instruction set of the processor is shown in Ta-
ble 2. Apart from instructions which directly control
the ALU, there are three types of jump instructions:
JMP - jump unconditionally, JKZ - jump if the least
significant bit of K counter is zero and JCZ - jump if
the C register is zero.

Each instruction is 16 bits in width and the format
of instructions is shown in Figure 4. Most instructions
accept a source register and a destination register in
operand1 and operand2 respectively. The jump in-
structions have a 12-bit jump address.

A two pass symbolic assembler was developed which
takes symbolic input and produces the binary mi-
crocode which can be downloaded to the processor’s
microcode store. A microcode simulator was also writ-
ten to facilitate microcode development.



| Operation Clock Cycles |
NOP 1
XOR 1
Rotate left, ROTL 1
Shift right, SHFR 1
Field Multiplication, MUL n+1
Transfer register value, TFR 1
Jump Instructions 1
JKZ, JCZ, JMP
Table 2: Instruction set
Instruction
(XOR,ROTL,SHFR,MUL,TFR)
opcode operandl operand2
15 11 5 0
Instruction
(JKZJCZ,JMP)
opcode -address
15 11 7 3 0

Figure 4: Instruction format

3.4 Parameterized Module Generator

An important feature of the elliptic curve processor
(ECP) is that it is parameterized via a module gen-
eration program so that elliptic curve processors for
any n with an optimal normal basis can be produced.
Hence this scheme advantageously uses the reconfig-
urable nature of the FPGA to add the flexibility of
being able to choose arbitrary n (compared with fixed
n of previous designs [3]).

The module generator is a program written in the
Perl programming language [14] which takes n as an
input parameter and produces the VHDL code of the
ECP as output. Perl is a language which supports long
integer arithmetic which was helpful in performing the
arithmetic required to generate the A matrix of the
field multiplier.

3.5 Implementation

The ECP was implemented on an Annapolis Mi-
cro Systems Wildcard ™™ board [15], a type II PCM-

74

CIA card with 32-bit CardBus interface consisting of
a Processing Element (PE, Xilinx Virtex XCV300-4
[16]) and two 64K by 32-bit SDRAMs. The XCV300
has 64Kbits of block RAM (arranged as 8 x 8 — Kbit
blocks) and 1536 configurable logic blocks (CLBs).

The basic building block of the Virtex FPGA is the
the logic cell (LC). A LC includes a 4-input function
generator, carry logic and a storage element. Each
Virtex CLB contains four LCs, organized in two slices.
The 4-input function generator are implemented as 4-
input look-up tables (LUTs). Each of them can pro-
vide the functions of one 4-input LUT or a 16x1-bit
synchronous RAM (called “distributed RAM”). Fur-
thermore, two LUTs in a slice can be combined to
create a 16x2-bit or 32x1-bit synchronous RAM, or
a 16x 1-bit dual-port synchronous RAM.

Also within the Virtex chip are dedicated blocks
of dual-ported 8-Kbit block RAMs, configurable in
widths from 1 to 16-bits. These were used in our
design for the storage of microcode and for commu-
nications between the host and the PE.

4 Results

VHDL code for the elliptic curve processor was gen-
erated for different values of n which have an optimal
normal basis. The code was then synthesized using
Synposys FPGA Express and the Xilinx Foundation
Tools. Table 3 shows the resource utilization and max-
imum clock rate reported by the Xilinx tools for de-
signs with different n.

The size of the microcode is currently less than 512
16-bit words and does not significantly change for dif-
ferent n.

n | # of slices | Max. freq
(MHz)
113 1290 45
155 1567 36
281 2622 33

Table 3: Resource utilization and maximum clock rate
for different n on a Xilinx XCV300-4. The Xilinx
XCV300 contains 3072 slices (1536 CLBs).

The total number of cycles required for an elliptic
curve multiplication for various n is given in Table 4,
where we assume that the k of Equation 3 is a n-bit
binary number with 64 bits set. The time required
for an elliptic curve multiplication at the maximum



frequency is shown in Table 4. Note that these figures
do not include the time for host processor interfacing.
In many applications, the P of Equation 3 only needs
to be downloaded once to the processor. It may also
be possible to generate k¥ on the chip to enjoy further
savings on the I/O bandwidth of the chip.

The execution time of the processor was compared
with that of an optimized software implementation of
an optimal normal basis elliptic curve package [9] run-
ning on a 270MHz Sun Ultra-5 with 512MB of RAM.
The results are presented in Table 4. The software
package uses many optimizations (detailed in [9]) cur-
rently not implemented in our microcode such as a
balanced integer representation [17] and faster inver-
sion [18]. It can be seen that the elliptic processor is
approximately 30 faster than the software implemen-
tation. However; it should be noted that for many
embedded applications, compact implementation, low
cost and low power consumption are often of greater
concern that maximum speed.

‘SW time

n | #of HW time | Speed-
cycles | Ultra-5(ms) [ (ms) up
113 | 166783 [ 110 3.7 30
155 | 246443 | 180 6.8 27
281 | 474504 | 516 14.4 36

Table 4: Execution time for elliptic curve multiplica-
tion and comparison with a software implementation.

The EC processor was successfully tested on the
Wildcard board, the microcode instructions being
downloaded to the Block RAMs by the host PC. Dual-
ported distributed RAM was used to interface the pro-
cessor to the host.

5 Conclusion

A processor which can perform elliptic curve opera-
tions was presented. The datapath of the processor is
an optimal normal basis Fyn processor synthesized by
a parameterized module generator which can accom-
modate arbitrary n. The control part of the processor
is microcoded to facilitate rapid development and al-
gorithmic optimizations. The design was successfully
tested on a Xilinx Virtex XCV300-4 device and could
perform an elliptic curve multiplication over the field
Fans in 3.7 milliseconds which is thirty-fold speedup
over an optimized software implementation.

75

6 Further work

There has been much recent work on improved algo-
rithms for implementing the field and curve operations
required for elliptic curve cryptography [9, 17, 19, 20].
We are currently implementing some of these ideas
and exploring the tradeoffs between affine and projec-
tive coordinates [7]. These improvements are at the
algorithmic level and can be implemented completely
in microcode. It is expected that they will lead to
large improvements in performance.

References

[1] N. Koblitz, “Elliptic curve cryptosystems,” Math-
ematics of Computation, vol. 48, pp. 203-209,
1987.

[2] V. S. Miller, “Use of elliptic curves in cryptogra-
phy,” in CRYPTO 85, pp. 417-426, 1986.

[3] G. B. Agnew, R. C. Mullin, and S. A. Vanstone,
“An implementation of elliptic curve cryptosys-
tems over Foiss,” IEEE Transactions on Selected
Areas in Communications, vol. 11, pp. 804-813,
1993.

(4] J. S. P. Ivey, S. Walker and S. Davidson, “An

ultra-high speed public key encryption proces-

sor,” in Proceedings of the IEEE Custom In-
tegrated Circuits Conference, pp. 19.6.1-19.6.4,

1992.

[5] M. Rosner, Elliptic Curve Cryptosystems on re-

configurable hardware. Master’s Thesis, Worces-

ter Polytechnic Institute, Worcester, USA, 1998.

[6] G. Orlando and C. Paar, “A super-serial Galois
field multiplier for FPGAs and its application
to public key algorithms,” in Proceedings of the
IEEE Symposium on Field-programmable custom
computing machines (FCCM’99), pp. 232-239,
1999.

[7] A. J. Menezes, Elliptic Curve Public Key Cryp-
tosystems. Kluwer Academic Publishers, 1993.

[8] A. J. Menezes, P. van Oorschot, and S. A. Van-
stone, Handbook of Applied Cryptography. CRC
Press, 1999.

[9] M. Rosing, Implementing Elliptic Curve Cryptog-
raphy. Manning, 1998.



[10] I. Blake, G. Seroussi, and N. Smart, Elliptic
Curves in Cryptography. Cambridge University
Press, 1999.

[11] R. C. Mullin, I. M. Onyszchuk, S. A. Vanstone,
and R. M. Wilson, “Optimal normal bases in
GF(p"),” Discrete Applied Mathematics, vol. 22,
pp. 149-161, 1988/89.

[12] T. Itoh and S. Tsujii, “A fast algorithm for com-
puting multiplicative inverses in GF(2™) using
normal bases,” Info. and Comput., vol. 78(3),
pp. 171-177, 1988. .

[13] G. B. Agnew, R. C. Mullin, I. M. Onyszchuk, and
S. A. Vanstone, “An implementation for a fast
public-key cryptosystem,” Journal of Cryptology,
vol. 3, pp. 63-79, 1991.

[14] L. Wall, T. Christianson, and R. L. Schwartz,
Programming Perl. O’Reilly, 2nd ed., 1996.

[15] Annapolis Micro Systems, Inc., Wildcard Refer-
ence Manual, 1999. Revision 1.1.

[16] Xilinx, Virtex 2.5V field programmable gate ar-
rays, 1999.

[17] J. A. Solinas, “An improved algorithm for arith-
metic in a family of elliptic curves,” in CRYPTO
'97, pp. 357-371, 1997.

[18] R. Schroeppel, H. Orman, S. O’Mally, and
O. Spatscheck, “Fast key exchange with elliptic
curve systems,” in CRYPTO 95, pp. 43-56, 1995.

[19] J. Guajardo and C. Paar, “Efficient algorithms
for elliptic curve cryptosystems,” in CRYPTO
’97, pp. 343-356, 1997.

[20] J. Lopez and R. Dahab, “An improvement of
the Guajardo-Paar method for multiplication on
non-supersingular elliptic curves,” in Proceedings
of the XVIII International Conferences of the
Chilean Society of Computer Science (SCCC’98),
pp- 91-95, 1998.

76



