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Abstract
The advent of the Internet of Things and 5G has further accelerated the growth in devices 
attempting to gain access to the wireless spectrum. A consequence of this has been the 
commensurate growth in spectrum conflict and congestion across the wireless spectrum, 
which has begun to impose a significant impost upon innovation in both the public and 
private sectors. One potential avenue for resolving these issues, and improving the effi-
ciency of spectrum utilisation can be found in devices making intelligent decisions about 
their access to spectrum through Dynamic Spectrum Allocation. Changing to a system of 
Dynamic Spectrum Allocation would require the development of complex and sophisti-
cated inference frameworks, that would be able to be deployed at a scale able to support 
significant numbers of devices. The development and deployment of these systems can-
not exist in isolation, but rather would require the development of tools that can simu-
late, measure, and predict Spectral Occupancy. To support the development such tools, 
this work reviews not just the available prediction frameworks for networked systems with 
sparse sensing over large scale geospatial environments, but also holistically considers the 
myriad of technological approaches required to support Dynamic Spectrum Allocation.
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1 Introduction

Spectrum conflict is on the rise, due to the growth of devices seeking access to a finite 
amount of spectral resources. The competition for access to this spectrum already has a 
significant impost on innovation in both the public and private sectors. These costs will 
only grow as it is projected that there will be up to 50 billion internet enabled wireless 
devices by 2020 (Al-Fuqaha et al. 2015), attempting to exchange 50 exabytes of data per 
month by 2021 (Zhou et  al. 2018). Supporting this growth will require a commensurate 
increase in capacity, through both capital investment and the development of new tech-
nologies. Failing to address this growth in demand will result in an increasingly congested 
spectral environment, cost increases, and access constraints that will affect mobile devices, 
the Internet of Things, satellites, and radar systems.

These issues can broadly be seen as a consequence of static spectrum allocation, which 
has produced a spectral environment that is simultaneously congested and underutilised 
(Shared Spectrum Company 2010). One approach for improving the efficiency of access 
to the spectrum environment would be to move to policies of Dynamic Spectrum Allo-
cation, in which devices negotiate with the spectral environment for access, in a fashion 
that balances public and private needs against demand (Marţian et al. 2010). Building such 
systems around Software Defined Radios (SDRs) and Cognitive Radios, to allow devices 
to dynamically and intelligently manage their access to the spectral environment without 
necessarily requiring any centralised control (Iii 2000; Sithamparanathan and Giorgetti 
2012), essentially performing local optimisation to improve the individual device experi-
ence (Jiang et al. 2017b).

Performing such optimisation is an inherently complex task, as it requires a deep under-
standing of the multifaceted nature of signal behaviour, and the interactions between sig-
nals and environment in which they exist. This behaviour is driven not just by technologi-
cal factors—like the use of WiFi and cellular networks, or the level of data throughput 
expected by users—but also how we both move through the built and natural environments, 
and how the signals that we produce interact with said environments. Moreover, additional 
complexity results from how contributions to the signal environment can be driven by the 
state of the signal environment itself. While it is clearly impossible to predict the conscious 
and unconscious decisions that drive an individual’s contribution to the spectral environ-
ment, it may well be possible to accurately predict the aggregate contributions of a popula-
tion group.

Armed with the data to make such predictions and the appropriate methodologies to 
leverage said data, SDRs would significantly improve the efficiency of spectral utilisation. 
However, the pathway to deployment of such systems is particularly complex, due to the 
lack of representative data sets to test the accuracy of prospective predictive frameworks. 
While it would be possible to collect such data, the lead time to designing and deploying 
the systems required would be significant, which would in turn lead to significant costs. 
Furthermore, deploying fixed measurement systems prior to designing the predictive 
framework would mean that lessons learned from the predictive approaches could not be 
leveraged to improve the design of the systems used to measure Spectral Occupancy.

Clearly, a linear developmental approach, in which the systems engineering first consid-
ers measurement, then prediction, and finally the hurdles of deployment would require sig-
nificant investments in both financial resources and time. Disrupting this sequential design 
process, and moving to a more efficient, circular design methodology, is possible by intro-
ducing simulated data to the design process. By constructing a simulacra of the spectral 
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environment, the performance of predictive techniques, the requisite engineering specifica-
tions for the sensors, and the designs of the sensor networks themselves can all be consid-
ered in parallel. While constructing such a simulacra is not without its challenges—due to 
the multifaceted nature of spectral occupancy, and the geographic and temporal scales over 
which it varies—doing so has the potential to significantly decrease the development time 
required to build the systems required to support Dynamic Spectrum Allocation.

1.1  Summary of contributions

The task of predicting dynamic spectrum allocation intuitively feels as if it would be a 
natural extension of predictive modelling in other fields. However, the spectral and spati-
otemporal dimensionality, the scale of underlying processes, and the inherent difficulties 
imposed by the dimensionality of the underlying data present unique challenges that do 
not have many analogues in related fields. Even when considered in the context of these 
sub-problems, the strong inter-dependencies between problem facets exacerbates the over-
all complexity. The nature of these inter-dependencies—as is emphasised within  Fig. 1—
inherently means that a good solution to one-sub-problem may be infeasible in the context 
of the broader problem space.

As such, this review considers a holistic approach the systems and techniques required 
to support dynamic spectrum allocation. This includes discussing the motivation of the 
problem space in Sect.  2; the measurement of spectrum usage in Sect.  3; constructing 
future predictions within Sect. 4; and the deployment of such systems in Sect. 5.

In taking such a holistic perspective, the contribution of this work is not only to review 
the performance of techniques (drawn from works within and outside the field of dynamic 
spectrum allocation), but also to provide a big-picture perspective to researchers consider-
ing facets of the spectrum allocation problem. It is hoped that by doing so future work can 
be directed in a fashion that is complimentary to the wider problem space.

In aide of this, our work makes the following specific contributions: 

1. A concise definition of Spectral Occupancy, that can be applied to a range of domains, 
while being well suited for spectral–spatio–temporal predictive modelling, as covered 
within Sect. 2. This chapter also reviews the considerations and techniques required for 
the measurement of Spectral Occupancy.

Fig. 1  Flowchart emphasising the inherent inter-dependencies in attempting to support Dynamic Spectrum 
Allocation. Here fundamental problem scales are selected, prior to either simulating or measuring data. 
This data is then modelled, and based upon the outcomes of this process, the fundamental assumptions 
regarding the appropriate scales may need to be revised
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2. A comprehensive review of how traditional and machine learning techniques can be 
applied to predicting Spectral Occupancy. This can be found within Sect. 4, which 
outlines a novel taxonomy of prediction frameworks. This work is the first to consider 
holistically consider all elements of spectral–spatio–temporal prediction, including how 
these predictions are dependent upon sensing systems.

3. Due to the cost of collecting appropriate data for testing prediction regimes, this work 
provides the first review of techniques available for constructing synthetic data for 
spectrum related tasks. Section 5 outlines how this data can be generated, and how it 
can be utilised to significantly reduce the risk in developing and deploying large scale 
Occupancy predicting systems.

4. Also contained within Sect. 5 is a review of the engineering requirements for building, 
deploying, and managing systems to support SDRs at scale.

5. Finally Sect. 6 outlines both open questions and directions of research priority to support 
the task of Dynamic Spectrum Allocation.

2  Motivation and background

To date, studies of dynamic spectral allocation have typically focused upon specific sub-
problems. One common feature is the reliance upon univariate signals, representing the 
capture of spectral data at a single point of space, over some defined time scale. These 
issues persist across both works considering the measurement of Spectral Occupancy (Xue 
et  al. 2013; Subramaniam et  al. 2015) and those testing the applicability of predictive 
regimes (Wang and Salous 2011).

While such work does demonstrate the applicability of localised spectral sensing, it 
inherently misses opportunities to understand key drivers of the signals environment, espe-
cially in urban environments. In such spaces, there is both the potential for there to be 
inherent correlations between sensor locations, and an inherent interdependency between 
the use of spectrum and the surrounding built environment. As such, rather than consider 
spectrum allocation at a single point in space, this work is the first to consider not just the 
suite of potential approaches, but how these approaches can be built into a cohesive, holis-
tic predictive system.

In aide of this, we begin by defining how Spectral Occupancy should be considered 
quantitatively. Any measure of Spectral Occupancy should reflect the difficulty of access-
ing the spectral environment. This environment is inherently inhomogeneous across not 
just time and space, but also the frequency at which a device is able to communicate. To 
support Dynamic Spectrum Allocation, the metric should also reflect not just the level of 
congestion within the spectral environment, but also the ability for the device to transmit 
signals relative to such congestion. In doing so, the measure should reflect that different 
devices will have a different perspective on what constitutes occupancy, as a mobile phone 
has far less power, and thus ability to access and impact congested spectrum, than a televi-
sion transmission tower.

The Spectrum Occupancy O at any point of space can be considered as a time series 
that represents the proportion of the time window (t, t + �t) that a signal would face con-
gestion from another transmitter, whose received signal would be above the considered 
threshold power in the bandwidth region of interest. This corresponds to the probability 
that measured signals at a point and time will be strong enough to induce congestion within 
the spectrum. Such a measure is consistent with the latest 802.22 wireless standard for 
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SDRs (Cordeiro et al. 2005). Building upon the Duty Cycle model of Spectral Occupancy 
(Wellens and Mähönen 2010) to incorporate spectral and spatiotemporal variation, we pro-
pose measuring occupancy as

here t and �t are the time and the length of the time window respectively, x is the location 
at which the occupancy is to be measured, P is the maximum received power at a point in 
space and time, P̂ is the threshold power (in dBW), and b represents the bandwidth repre-
senting the frequency span [f0, f1] . Treating this as an integrable measure only with respect 
to time, and not space, is a consequence of imposing that the measure of occupancy relates 
to received power at any point. Moreover, considering the occupancy in terms of band-
width, rather than frequency, reflects the potential for frequency modulation to occur, and 
also allows a degree of quantisation to be introduced to the model, which can reduce the 
complexity of the task of predicting Spectral Occupancy while simultaneously reflecting 
the nature of different device behaviours.

3  Measuring spectral occupancy: spectral sensing

Before considering the prediction of spectral occupancy, it is important to understand 
how deployed systems are able to capture the spectral environment. An exemplar sens-
ing environment is shown in Fig.  2, in which a sparse network of sensors are able to 
capture the local spectral occupancy. These can be considered as local observations at 

(1)
O(t, x, b, P̂) =

1

𝛿t �
t+𝛿t

t

1P̂(P(𝜏, x; b))d𝜏 where

1P̂(P(𝜏, x; b)) =

{

1 if P(𝜏, x; b) > P̂

0 if P(𝜏, x; b) ≤ P̂.

Fig. 2  An example sensing 
domain, containing a base station 
antenna, four mobile devices, 
three fixed sensors, and both 
natural and constructed environ-
mental factors
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distinct x ⊂ Ω̂ at time t. Depending upon the context of the deployed system, any predic-
tions may need to be constructed at either the discrete sensor locations x ⊂ Ω̂ ; or across 
a broader domain x ⊂ Ω.

To support the development of these systems, it is important to understand the 
behaviour of sensors of Spectral Occupancy, as their physical behaviours will inform 
the range of available prediction methodologies. The tools for such spectrum sensing 
fall into two broad categories, known as narrowband or wideband sensors (Sitham-
paranathan and Giorgetti 2012), with the demarcation between the two determined by 
the number of frequency channels the sensor can access. Narrowband sensors consider 
one distinct frequency at each point in time, whereas wideband sensors aim to analyse 
a frequency bandwidth, in a manner that operates similarly to a number of narrowband 
sensors operating in parallel (Ali and Hamouda 2016), which introduces complexity to 
the implementation, but requires less energy while producing faster results than sequen-
tial–sensing (Lu et al. 2017).

Narrowband sensors can be constructed based upon a number of frameworks, with 
matched–filter detection (Veen and Van Der Wiellen 2003), energy detection (Sun et al. 
2010), and cyclostationarity feature detection (Sutton et al. 2008) being the most com-
monly implemented. Other narrowband sensing techniques include covariance based 
detection (Zeng and Liang 2008) and cooperative machine learning based sensing (Wang 
and Yang 2016). With Matched–filtering, the received signal–to–noise ratio is max-
imised under the assumption that the primary user signal can be demodulated, which 
imposes additional constraints. Energy detection is a simplification of Matched–filter-
ing, that introduces an energy metric to perform sub–optimal non–coherent detection 
in a manner that can require fewer samples to meet a detection constraint as compared 
to matched–filtering. Cyclostationarity feature detection is constructed around the 
assumption that detected signals contain periodic components, that can be leveraged to 
decrease the number of samples required for a detection event. However, the process of 
Cyclostationarity feature detection is computationally expensive, due to the need to both 
make multiple frequency transforms and calculate the signal’s autocorrelation.

To support Dynamic Spectrum Allocation, sensing systems require the ability to pro-
vide information about wide swathes of the frequency range, in order to exploit extant 
opportunities. While techniques have been proposed for capturing a representative sam-
ple of the environment through a distributed network of sensors (Blum et al. 1997), they 
are still fundamentally limited in the amount of information that they can capture. In 
contrast, wideband sensors are able to sample the broader spectral environment with 
a self contained device, producing consistent and coherent results, without any of the 
potential robustness concerns stemming from a reliance on data from a series of net-
worked narrowband sensors.

While the ability to capture larger swathes of the spectral environment with a single 
sensor is inherently appealing for SDRs, conventional wideband spectrum sensing often 
leads to a sampling rate so high that it becoms unaffordable, or introduces implementa-
tion issues that significantly increase the complexity of designing and integrating these 
systems. As such, novel signal processing approaches have been required to leverage 
the potential of wideband sensing. As channels in the wideband frequency spectrum 
are inherently sparse (Do et al. 2004), there is a clear application case for sparse sam-
pling and Compressed Sensing (CS) (Candes et al. 2006). While most frequency–sam-
pling approaches assume that the ability to reconstruct a signal is limited by the Nyquist 
frequency, CS incorporates knowledge of the signals sparsity to reconstruct signals 



Predicting dynamic spectrum allocation: a review covering…

1 3

sampled significantly below the Nyquist frequency. This is made possible by formulat-
ing the frequency reconstruction problem as an under–determined linear system, and 
then using L1–norm minimisation to construct a single solution to the under–determined 
system.

Within a signals sensing framework, sampling below the Nyquist frequency means that 
significantly fewer samples are required to accurately reconstruct a signal operating at a 
given frequency, which has implications for both the speed of processing, the temporal 
resolutions that are possible, and the hardware requirement for spectrum sensing (Sharma 
et al. 2016). Because of this, numerous authors have considered applications of CS to nar-
rowband and wideband sensing (Tian and Giannakis 2007; Ma et al. 2016). Each of these 
authors have presented variants of sub–Nyquist wideband sensing that leverages CS, and 
while they each have their own relative strengths, a particularly promising approach can be 
found in one–bit sensing (Laska et al. 2011), which considers only the sign information of 
measurements, in a manner that significantly reduces the amount of data that needs to be 
stored and processed (Jacques et al. 2013). By treating these one–bit sign measurements as 
constraints for the CS based reconstruction, sparse signals can be reconstructed with high 
probability (Li et al. 2018). By discarding unnecessary components of the original signal, 
one–bit compressive sensing is able to perform fast sampling without growth in the com-
putational and hardware complexity, while still being robust to noise.

Alternate approaches to sub–Nyquist sampling include wavelet detection, in which a 
continuous signal is decomposed into a series of markers, corresponding to changes 
in occupancy of the frequency band (El-Khamy et  al. 2013). Other options include 
multi–band joint detection (Quan et al. 2008), adaptive thresholding (Gorcin et al. 2010) 
and filter bank detection (Kim and Takada 2009), although each of these techniques is lim-
ited by the necessary sampling rate, and the associated latency, complexity, and energy 
consumption that comes with sampling at the Nyquist frequency level.

Ultimately, the choice of narrowband or wideband, and the specific sampling technique 
within those frameworks, is a multifaceted optimisation task subject to competing objec-
tives. For a system designed to be integrated into a broader machine learning modelling 
and forecasting framework, important factors will include the robustness to false positives, 
as well as both the sensitivity to noise and the robustness of the sensor to noise. Similarly, 
computational requirements, problem specific latency, and resource utilisation considera-
tions must also be taken into account.

Another important consideration in the specification of sensor networks is the trade off 
between accuracy and efficiency. In these terms, accuracy relates to both the ability of a 
sensor to detect transmissions above its noise floor and separate out signal detections from 
noise, and the false positive rate of transmissions; while efficiency refers to the proportion 
of time the sensor can query a part of the spectrum, given both observation and throughput 
constraints (Yu et al. 2012). These two factors of the sensors performance are intrinsically 
coupled—as more focus is placed upon the accuracy of the sensor, system resources are 
consumed that reduce its throughput, which will in turn affect the efficiency of the sensor. 
However, it has been shown that by acting in parallel, networks of sensors can improve 
both accuracy and efficiency by sharing some of the sensing workload (Xie et al. 2010).

3.1  Distributed sensor networks

A network of sensors offer more opportunities than just improving the local performance 
of sensors—distributed sensor networks are a crucial tool for sampling geographic regions 
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that would be beyond the scope of an individual sensors capabilities. The design of such 
networks is inherently complicated, due to both the domain complexity—in terms of both 
the spectral, natural and built environments—and the range of objectives that must be 
considered. These objectives for resource allocation can include, but are not limited to, 
considerations of coverage, energy efficiency, communication and processing constraints, 
detection reliability, and robustness to failure modes, as well as more application specific 
concerns.

As the domain of interest increases in size, resource constraints make perfect sampling 
of the domain to be an almost impossible task. Instead, it is likely that there will be geo-
graphically correlated problem areas in the domain coverage, giving rise to regions known 
as holes (Ahmed et al. 2005). A coverage hole is a geographic region that is not covered by 
at least k sensors, where k is the specified level of coverage required from the application, 
to capture all data and to account for fault tolerance (Huang and Tseng 2005). Construct-
ing accurate measurements of the geographic distribution of spectrum occupancy—includ-
ing potential geolocation of signal sources—may require k ≥ 3 (Niculescu and Nath 2003). 
Peer–to–peer network topologies may also require multiple coverage to ensure robust con-
nectivity. The design of the network may also lead to the formation of routing holes, in 
which network messages from a geographic region are unable to be communicated to the 
broader network, due to bandwidth constraints, missing links, or an improperly designed 
adaptive routing framework (Akkaya and Younis 2005).

Static distributed sensor networks designs can be broadly categorised as belonging to 
either Target, Area, or Cell–Edge (or Barrier) coverage. For Target coverage, the sensed 
domain has predetermined discrete target locations that have been marked as being par-
ticularly important; Area coverage attempts to maximise the sampling across a defined 
geographic region; and Cell–Edge coverage attempts to sense transitions into and out of 
a region of interest, without focusing upon the interior region. Of these three taxonomies, 
Area coverage has the greatest relevance to the problem of spectral occupancy prediction, 
and as such we shall focus our consideration of network design on techniques suitable for 
Area coverage.

Under a static regime, techniques from computational geometry like Voronoi cells 
(Vieira et  al. 2003) and Delaunay triangulation (Wu et  al. 2007) were initially popular 
for managing grid distribution, however they are limited in their ability to be adapted to 
manage multifaceted objectives. To maximise the coverage of a sensor network, numerous 
iterative schemes have been successfully tested, including Ant colony optimisation (Liu 
and He 2014), Glow–worm swarm optimisation (Liao et al. 2011) and Genetic Algorithms 
(Yoon and Kim 2013), with similar techniques also being employed to maximise the con-
nectivity between network nodes (Younis and Akkaya 2008). Connectivity maximisation is 
particularly important in the design of systems that are robust to the impact of environmen-
tal or adversarial interference.

The design objectives of physical implementations of wireless sensor networks are more 
likely to be multi–faceted, and as such approaches that can consider balanced objectives 
must be considered as being of particular importance. In doing so, coverage and connec-
tivity considerations can also be balanced with other design parameters, like energy effi-
ciency, redundancy, and the expected lifespan of the network. Due to their well established 
efficacy for multi–objective functions, Evolutionary and Genetic algorithms (Khalesian 
and Delavar 2016), Particle Swarm optimisation (Pradhan and Panda 2012) and even pred-
ator scent marking and bee–colony algorithms (Hashim et al. 2016) have all been proposed 
as mechanisms for managing the deployment of static wireless sensor networks. The moti-
vation for employing these techniques is their well known ability to handle multi–objective 
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optimisation tasks, however they do introduce computational burdens, and are inscrutable 
when attempting to determine the factors that have given rise to the suggested topology.

3.2  Mobile distributed sensing

Distributed sensing is not necessarily limited to fixed topologies—such sensors could be 
mounted on moving human agents, ground or aerial vehicles, or satellites. As such, (Heo 
and Varshney 2003) introduced both algorithms, and performance metrics for ensuring 
that self–deploying wireless sensor networks best meet objectives for coverage, uniformity, 
deployment time, and distance travelled. However, accessibility for perfect placement is not 
necessarily guaranteed, and as such deployment algorithms have been designed to account 
for uncertainty derived from aerial (Corke et  al. 2004) or ground based (Chang et  al. 
2008) deployment systems. The performance of such a system can be further enhanced if 
the behaviour of individual sensors can be modified, either in terms of their sleep–wake 
cycles and sensor power (Abo-Zahhad et al. 2016), or using mobility to rearrange the sen-
sor nodes (Niewiadomska-Szynkiewicz et al. 2016). Beyond relocation, node mobility can 
also be exploited to enhance coverage (Liang and Ren 2005), and to generate efficient data 
transfer structures (Zhan et al. 2017). The balance of these factors will then be driven by 
the resources available for deployment.

While observations of the spectral environment are critically important, their value is 
not able to be capitalised upon without having the supporting hardware and software to 
manage the data, and to support the post-processing required to generate predictions of 
future spectral utilisation. This task is inherently complex, due to the potential presence 
of structural heterogeneities in the collected data, differential delivery rates due to system 
latencies, and the need to be robust against adversarial attacks and security concerns (Lu 
et al. 2013). The implementation hurdles associated with these concerns grow nonlinearly 
with the size of the sampled region, as a consequence of the volume of data that must be 
processed and managed.

3.3  Robust network design

While the aforementioned holes can broadly be considered failures in design and imple-
mentation, there is also the possibility that they were introduced through the actions of 
outside actors, behaving in an inadvertent or adversarial manner (Karlof and Wagner 
2003). By compromising a node in such a manner that its behaviour is disrupted, adver-
sarial agents can generate denial–of–service conditions, or inject false data into the detec-
tion framework. A sink hole is one in which a node that has either been compromised or 
exploited introduces behaviour that increases the resource demands placed on neighbour-
ing nodes, in terms of energy consumption or bandwidth. Such an attack aims to introduce 
a failure mode that propagates through the nodes, to induce an artificial coverage or routing 
hole (Kalita and Kar 2009).

Another classical attack would be jamming the communication between nodes (in a 
deliberate or inadvertent manner), to ensure that any information describing a detection 
cannot be propagated out from the jammers domain of influence. As a consequence of 
this, any detections that would be able to be identified by network inference would also be 
denied. Such an event is known as a black hole, and there are also gray holes, in which the 
malicious node intermittently behaves as a black hole. An alternate adversarial approach 
is the insertion of a wormhole (Pathan et al. 2006), in which malicious nodes distributed 
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across a wide geographic region create network tunnels between each other, with the aim of 
introducing erroneous routing behaviour, and, potentially, spurious geographic cross–cor-
relates that could present as false detections, or hide true detections, affecting the accuracy 
of the sensors.

4  Predicting spectral occupancy

The complexity of predicting spectral occupancy (in the form of Eq. 1) is complicated due 
to the high-dimensional spectral–spatio–temporal nature of occupancy. This complexity 
only grows as the evolution of the spectral environment is dependent upon a large num-
ber of confounding factors, including the environment that the signals exist in—that can 
include built and natural topography, as well as weather events—and human factors. As 
such, it is important that consideration is given to prediction frameworks that can accu-
rately incorporate sources of data beyond observations of the historic spectral environment.

Another factor that underscores the importance of reviewing available techniques is the 
local nature of occupancy observations, and the likely need in an SDR context for global 
(over a domain of interest) predictions. Given the cost of performing observations of the 
spectral environment it is likely that the observations are highly sparse—at a level beyond 
what has been required for other problem domains—relative to the resolution required for 
predictions.

In the context of these factors, which introduce challenges unique to this problem 
domain, the review of appropriate prediction techniques will be split into a taxonomy that 
independently considers predictions at, and away from observation sites as on- and off-
sensor prediction respectively. This taxonomy can be considered as a generalisation of 
the consideration of prediction domains in Sect. 3. From a time series perspective, a basic 
exemplar of the differences between on- and off-sensor predictions can be seen in Fig. 3.

For on-sensor predictions, the historic values of a single sensor, or a network to predict 
the future state of spectral occupancy. By decomposing the task further to consider discrete 
frequency bands, the prediction task can be expressed as an m × n-dimensional time series, 
where m and n are the number of connected sensors and frequency bands respectively.

As frequency bands can be treated as being nominally independent, the prediction task 
can be further decomposed to being n distinct m-dimensional time series. While the overall 

Fig. 3  Example of the information available for on-sensor and off-sensor predictions. Here the 10 time 
series provide historical information up to the red dotted line, and the prediction methodologies need to 
predict all subsequent points in the time series
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number of time series is consistent across either of these approaches, the latter should be 
more computationally efficient, as the search for correlations within the time series should 
be proportional to the dimensionality of the time series. Unfortunately many suitable pre-
diction frameworks are only designed for 1-dimensional time series, requiring the prob-
lem to be further decomposed, and to treat each sensor and frequency band as producing 
its own, distinct time series. While taking such an approach does prevent the prediction 
framework from leveraging information from neighbouring sensors or correlated frequency 
bands, it does significantly increase the range of approaches that can be applied to the task 
of predicting the spectral occupancy. While this lost information may be significant in 
some sensor network designs, as the spacing between sensors is increased the correlations 
will likely decrease, lending support for this decomposition approach.

On-sensor predictions can be considered as predictions of the form

for i ∈ m and j ∈ n , where each fi,j(t) can be considered independent of every other 
sequence. It must be noted here that while this framework implies that each sensor is 
spatially stationary at xi across time, it is also possible to consider moving sensors under 
this framework. However, as many of these techniques are unable to incorporate contex-
tual information—like position—into their temporal predictions, it must be expected that 
prediction quality will likely significantly decrease as the speed of motion increases, and 
becomes less deterministic and patterned.

Off-sensor predictions can be considered either as a distinct task, or a sequentially 
dependent extension of on-sensor predictions, in which the on-sensor extensions are 
extended across the spatial domain. The simplest approach for such extensions would be to 
use interpolation approaches to construct a geospatial representation of spectral occupancy 
across a domain of spatial interest.

A complicating factor for both on- and off-sensor predictions is the behaviour of the 
sensors involved. As was discussed in Sect. 3, some sensor designs—particularly wideband 
sensors—are only capturing a subset of the frequency domain at any one time, as they need 
to perform a sweep of frequency space to capture the totality of spectral data. This results 
in a time series sequence that is inherently sparse. Depending upon the properties of the 
sensor, it may be possible to construct a continuous sequence by down-sampling from the 
sensor frequency. However, if this is not possible, then even on-sensor predictions may 
need to be considered using techniques more suitable for off-sensor problems, due to the 
inherent need for data imputation.

4.1  On‑sensor predictions

Forecasting Spectral Occupancy can take numerous forms, depending upon both the nature 
of the requirements, and the resources available to support the prediction. In applications 
where the measurement of the spectral occupancy occurs at a single sensor—or where the 
sensors are independent and do not communicate with each other—the prediction task 
is well suited to the wide range of one–dimensional time series forecasting frameworks. 
Analogous problems have been successfully considered through statistical methods, rang-
ing from linear extrapolation and sequential models like exponential smoothing (Gardner Jr 
2006), through to more complex frameworks like ARIMA and Hidden Markov Models. 
Machine Learning offers another potential avenue for considering these one–dimensional 

(2)O(t, xi, bj, P̂) = fi,j(t)
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forecasting problems, with Recurrent Neural Networks and Long-Short Term Memory 
Networks showing particular promise.

The performance of these systems can be improved for systems of multiple sensors, 
if the sensors are able to pass information between one another. In this case, the system 
becomes analogous to a multidimensional time series problem, of a form that is well suited 
for machine learning prediction tasks. The remainder of this subsection will explore suit-
able techniques for single– and multi–dimensional time series predictions, following the 

Fig. 4  Taxonomy of regression algorithms for on-sensor wireless spectrum occupancy prediction



Predicting dynamic spectrum allocation: a review covering…

1 3

taxonomy of Fig. 4, with particular emphasis upon techniques that have been applied to 
analogous problem spaces.

4.1.1  Statistical methods for temporal prediction

Historically, Bayesian models have frequently been used for predicting time series prob-
lems from varying domains, including spectral processes (Eltom et al. 2018a). The depth 
of a well–fit Bayesian explanatory model allows for explicit claims about the generative 
process that actually created the observation. Hence, the estimated latent generative model 
can synthesise observations based on the conditional probability relationship between the 
observations and latent features. However, the downside of model richness is scalability, 
and notably higher computational costs. Furthermore, such generative models often under 
perform their competitors if the conditional relationships between model features only par-
tially approximate the underlying generative process (Yu and Deng 2010).

Mixture models are hierarchical models that combine the probability distribution of 
observation subsets to generate a hybrid distribution. Bayesian mixture models then per-
form inference by incorporating the mixture likelihood with prior distributions for both 
the component hyper–parameters and the mixture probabilities. A common extension to 
Bayesian mixture models is to assume the latent parameters defining the mixture compo-
nent identities are connected in a Markov chain, rather than independent identically dis-
tributed random variables. The resulting models are sequential hierarchical models such 
as Hidden Markov models, Kalman filters and particle filters (Arulampalam et al. 2002). 
Another extension are Bayesian nonparametrics (Müller and Quintana 2004), which intro-
duce priors are placed upon a number of components through methods like Dirichlet point 
processes in order to improve accuracy.

Bayesian Markov-based model for temporal spectrum prediction is essentially a doubly 
stochastic tracking problem in the time dimension. Within a doubly stochastic model the 
distribution of the random variable of interest is assumed, or observed, to be a standard, 
pre-defined distribution and the related parameters of the distribution itself are assumed to 
be time varying random variables. Through this framework, numerous models have been 
proposed for modelling aspects of spectrum utilisation, through the use of Poisson distrib-
uted Markov chain models proposed by (Bayhan and Alagöz 2012); Hidden Markov Mod-
els of (Eltom et al. 2018b); two–state (Csurgai-Horváth and Bito 2011) and three–state dis-
crete–time Markov Models (Bayhan and Alagöz 2012); and higher–order Markov chains 
(Li et al. 2010).

In contrast to the aforementioned approaches, Gaussian models utilise a Kalman filter, 
either directly for Linear models, or through a sub–optimal variant for Nonlinear models. 
These variants include, but are not limited to, the extended Kalman filter, and uncentered 
Kalman filters. More general nonlinear models can also be constructed using particle filter 
methods and Monte–Carlo Markov Chain (MCMC) approximations to construct the condi-
tional posterior probability for the relationship between the latent variables and the obser-
vations (Kobayashi et al. 2011).

In contrast to the aforementioned stochastic methods, another popular framework for 
deterministic modelling is the Autoregressive Moving Average (ARMA) model, and its 
associated techniques. These approaches assume that future behaviour of a time series is a 
product of a weighted sum of past observations, and an additional set of random contribu-
tions that cannot be observed. ARMA is particularly appealing for time series modelling, 
due to both its simple implementation and easy of interpretation—in contrast to machine 
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learning models—as the output state is not a black box. ARMA variants have been widely 
used across a range of time series prediction tasks, ranging from predicting short–term 
stock price movements (McLeod and Zhang 2008), retail sales behaviour (Ramos et  al. 
2015), and residential electricity consumption forecasting (Badrinath Krishna et al. 2016). 
This level of support for the technique is driven by the simplicity of ARMA, on both a 
conceptual and computational level. This simplicity has allowed ARMA to be generalised 
to multivariate time series, of the form likely to be seen within the spectrum allocation 
context, through Vector Autoregression (VAR) and the Vector Autoregression Moving-
Average (VARMA) (Lütkepohl 2006).

However, it must be noted that ARMA–like models are limited by their reliance upon 
regularly sampled data which must also be stationary. The stationary condition imposes 
that all properties of the modelled process must be constant with time, which is not neces-
sarily true for spectral occupancy, which can have seasonalities and trends on time scales 
ranging from days to years. To account for this, it has been shown that repeatedly differ-
entiating the time series until the point where the sequence can be considered to be sta-
tionary works, producing what is known as an Autoregressive Integrated Moving Average 
(ARIMA) model. The influence of seasonalities can also be explicitly incorporated through 
a seasonal ARIMA (SARIMA) (Chatfield 1980, Chap.  4), the idea of which has been 
extended further by Facebook’s Prophet algorithm (Taylor and Letham 2017), which is a 
variant of Generalised Additive Model (GAM) that attempts to decompose the time series 
into components corresponding to the trend, the seasonality and the influence of holidays 
(Harvey and Peters 1990). In contrast to ARIMA–like models, Prophet has been designed 
to manage irregularly spaced data, subject to the assumption that this data can be assumed 
to have an underlying continuity. By adding additional features, more non–stationary traffic 
processes, such as trends in vehicular movement (Williams 2001; Jiang 2002) and freeway 
traffic speeds (Chandra and Al-Deek 2009) have been able to be modelled using extensions 
of ARIMA. However, even in these works, the autoregressive core of ARIMA means that 
the approach is still limits these techniques to data sets in which the mean and variance of 
the underlying signal do not change with time.

Another concern with ARIMA-like methods is their ability to resolve discontinuities 
and shocks (Christiano et al. 2006; Chari et al. 2008; Kascha 2012). In a signals context 
such behaviours are visible at very short time scales as devices cease or begin activity; and 
in very long scales, where aggregate features change, such as would be the case for obser-
vations at a time scale that would not, for example, capture the transition from a city during 
day- and night-times.

Decision trees are another viable technique for exploring the relationship between 
observations, and their dependent outputs, in a manner that is suitable for understanding 
the factors that drive changes in the observed spectral environment. Such trees are hierar-
chically structured topologies of branches connecting decision points, connected by nodes 
representing bifurcations in the state after the decision point (Rokach and Maimon 2008). 
In aggregate, the unfolding set of decision nodes produces a model that can readily be 
interpreted, in contrast to many other nonlinear techniques.

A powerful approach for constructing regression trees can be found in Gradient boost-
ing, with a variant known as eXtreme Gradient Boosting (XGBoost) (Chen and Guestrin 
2016), which produces an ensemble of models that, in aggregate, exhibit strong conver-
gence properties while preserving scalability and minimising over–fitting. The potential 
for XGBoost to predict spectral occupancy at a receiver is underscored by its success in 
other, similar domains, including electricity demand (Ben Taieb and Hyndman 2014) and 
oil price forecasting (Zhou et al. 2019).
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4.1.2  Machine learning methods for temporal prediction

Artificial Neural Networks (ANNs) are a family of computational techniques for machine 
learning, that draws upon ideas of mathematical biology. These tools can be used to pre-
dict, classify, or cluster data, through what are essentially large systems of nonlinear equa-
tions, subject to sets of free parameters. By exposing the model to data, the underlying 
parameter space can be refined, so that the nonlinear system of equations begins to reflect 
the data in a manner that allows for the future state of the system to be predicted.

One primary advantage of machine learning type approaches are their ability to incor-
porate contextual information. This information can include information including, but 
not limited to, device mobility data, or information from nearby sensors or correlated fre-
quency bands. In doing so, we can generalise Eq. 2 to take the more flexible form

where g represents the fusion of spectral–spatio–temporal contextual data. While the 
synthesisation of any such information into the predictive framework does not guarantee 
increased prediction accuracy, through careful design it should be possible to improve the 
generalisability of the constructed predictions.

4.1.2.1 RNNs Recurrent Neural Networks (RNNs) are a family of neural networks which 
are ideally suited to problems involving sequentially structured data. While traditional feed-
forward neural networks can capture temporal dynamics (Chen et al. 2021), they are often 
limited to sequences where that the input to each node must be of a fixed length. In contrast, 
RNNs encode cyclical structural dependencies, that are more appropriate for capturing the 
sequential nature of time series data. These cyclic structures also allows for parameter shar-
ing to occur, as a number of distinct nodes will all be subject to the same parameters, allow-
ing for the model to efficiently learn correlations between elements of a sequence. Further-
more, because a node with a self–loop may be unfolded an arbitrary number of times, there 
is no fundamental restriction placed upon the length of the input sequence to the node. This 
property is of particular relevance to time series problems, as it allows a single model to be 
constructed for time series with different lengths.

Beyond these cyclical structural elements, RNNs can also be constructed in fashion that 
allows them to capture: sequential inputs with non-sequential outputs (or vice versa); cases 
where the input and output sequence are of different lengths (as seen in encoder-decoder 
architectures); where there are output-to-hidden loops instead of hidden-to-hidden loops 
(teacher forcing); and bidirectional structures, in which connections extend both forward 
and backwards in time.

Due to the flexibility in which RNNs can be constructed, they have been successfully 
applied to problems with crossover to the task of spectral prediction by (Yasdi 1999; 
Van Lint et al. 2002), and (Song et al. 2016), who all considered problems stemming from 
traffic dynamics and human mobility. Other comparable problem domains have included 
predicting wireless user activity (Agarwal et al. 2016) and detecting anomalous behaviours 
in radio networks (O’Shea et al. 2016; Katzef et al. 2020, 2021, 2022).

4.1.2.2 LSTMs While RNN architectures are able to conduct time series predictions, they 
often struggle as the time scale of interdependence increases, as the training process strug-
gles to update weights as the sequence length increases (Bengio et al. 1994). To resolve this, 
Long Short–Term Memory (LSTM) cells have been introduced as hidden units, as an alter-

(3)O(t, xi, bj, P̂) = fi,j
(

t; g(O, x(t), bj)
)

,
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native to RNN cells. These cells take the structure of an RNN cell, subject to the addition 
of an additional logical element known as a forget gate (Hochreiter and Schmidhuber 1997). 
This gate, which is unique to LSTMs, takes the form of a vectors of numbers between 0 and 
1 that depend upon the input and previous state through trainable parameters, that focuses 
the attention on subsets of the previous state. Through the addition of these gates, LSTMs 
are able to learn which parts of the input and previous state to keep or forget, and to what 
degree, which allows for modelling complex and arbitrarily long long–term dependencies, 
beyond what RNNs are capable of.

Because of this, LSTMs have quickly become the most commonly utilised technique 
for regression and classification tasks in a time series context. Within a spectrum predic-
tion context, several recent works have demonstrated that LSTMs can successfully predict 
temporal problems from the dynamic spectrum allocation space  (Radhakrishnan et  al. 
2021b), in a fashion that exhibits lower computational complexity than prior approaches 
(Radhakrishnan and Kandeepan 2020; Radhakrishnan et al. 2021a). When considering the 
broader set of problem spaces with similar dynamics to those seen within dynamic spec-
trum allocation, LSTMs have also been shown to be an accurate for predicting nonlinear 
vehicular traffic dynamics (Zhao et al. 2017b), weather, precipitation (Shi et al. 2015), and 
energy consumption forecasting (aggregate and single-meter) (Jian et al. 2017a).

LSTMs can also be used in conjunction with what are known as Deep Belief Networks 
(DBMs), which are a form of Bayesian neural network. Such Bayesian models attempt to 
predict not just a value, but its probability distribution. These stacked models have been 
shown to be successful for developing Bayesian nonlinear high dimensional models where 
other Bayesian models like HMM have struggled (Melchior et  al. 2017). For spectrum 
occupancy modelling, DBN in conjunction with Long Short Term Memory networks have 
the potential to capture the inherent inter–dependencies between the spatial, temporal and 
spectral features of the channel states.

Another potential avenue for augmenting LSTMs can be found in Physics–Guided Neu-
ral Networks (Karpatne et al. 2017). Such approaches attempt to regularise the behaviour 
of the solution through a loss function that considers a basic, physical model of the under-
lying system behaviour. For the purposes of modelling Spectral Occupancy, such a model 
could be used to increase the effective spatial density of sensor networks, by approximating 
the distribution of spectral occupancy in their neighbourhoods in terms of known, physics 
based relationships.

4.1.2.3 Attention mechanisms Attention mechanisms (Bahdanau et al. 2014) have recently 
grown in popularity—especially within the Natural Language Processing community—for 
their ability to create complex, representative models by calculating the relationship between 
different positions within sequential data. This mechanism works by constructing a matrix 
between the input and output sequences, which can be thought of as a learned representa-
tion of correlation between each element of the input sequence to each element of the output 
sequence. Within a Natural Language Processing context, if the input sequence is a sentence 
in one language, and the output the same sentence translated into another language, then the 
correlations measure how important an individual word is to the output translation, and how 
its context also affects the translation.

Through this approach, attention mechanisms are able to better capture long–range 
dependencies, which are particularly difficult to represent within RNN and LSTM archi-
tectures. Similar to RNNs and LSTMs, Attention mechanisms have often been embed-
ded within encoder–decoder architectures (Luong et al. 2015), although recent work has 
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suggested that Attention mechanisms perform best when embedded in a network architec-
ture known as a Transformer, in which the model behaviour is entirely driven by the Atten-
tion mechanism itself (Vaswani et al. 2017).

While the development of Attention mechanisms has primarily been focused upon 
sequential data, like temporal sequences, recent work has also demonstrated its promise 
for spatial data (Xu et al. 2015). This in turn suggests that Attention mechanisms may hold 
promise for the spectral–spatio–temporal aspect of forecasting Spectral Occupancy, either 
directly or as part of a broader modelling framework. However, it must be noted that the 
ability for Attention mechanisms to scale with higher–dimensional data remains an open 
question.

4.1.2.4 Convolutional networks One of the most commonly utilised machine learning tech-
niques are Convolutional Neural Networks (CNNs), which utilise convolution operations to 
leverage structural dependencies in regular data to quickly generate accurate representative 
models. Unlike the techniques discussed to this point, a CNNs can be thought of as acting 
not directly upon the data itself, but rather upon a filtered form of said data. In the context 
of an image, a filter could be thought of as taking a subset of, blurring, or down–sampling 
the image, or some combination of the aforementioned operations. A neural network that is 
built in terms of such filtered components reduces the cost of discovering inter–dependency 
of the individual components of the neural network, while simultaneously improving con-
vergence properties in a manner that minimises the overall computational cost (Goodfellow 
et al. 2016, Chap. 9) while producing successful results in a range of domains, including pre-
dicting wireless interference (Schmidt et al. 2017) and human mobility (Zhang et al. 2016b).

Typically CNNs are employed in image-based problems, due to the inherent regularity 
and translation invariance of pixel structured data (Zhang et al. 1990). However, in occu-
pancy data similar regularity can be constructed through careful design of sensor networks. 
Moreover, CNNs have been applied to spatiotemporal processes by simply adding time as 
an additional matrix dimension, which can introduce underlying structural seasonalities 
that is well suited to CNNs (Pyrkov et al. 2018), making them potentially appropriate for 
both sequential and parallel spatiotemporal prediction. Through this, CNNs have been suc-
cessfully employed in predicting predicting wireless interference (Schmidt et al. 2017) and 
human mobility (Zhang et al. 2016b).

One promising variant for parallel spectral occupancy prediction can be found in the 
Wavenet (Oord et  al. 2016) variant of CNN, which employs dilated convolutions are 
applied in an autoregressive manner through the introduction of an offset stride between 
temporal components. Wavenet uses to date have primarily been in audio prediction, how-
ever such data contains structural similarities with constructing predictions across a range 
of frequency bands and locations across the spectral–spatio–temporal domain.

4.1.2.5 Graph convolutional networks In the case where data cannot be expressively dis-
cretised upon a regular grid the performance of CNNs begins to degrade. In response to this, 
a substantial volume of recent research has focused upon extending convolution operators 
onto less regularly structured data, through the use of graph networks. These networks often 
utilise spectral graph theory (Bruna et  al. 2013), and construct the convolution operator 
through a Fourier transform on the graph. This Fourier transform is in turn a generalisation 
of the Laplacian operator to a graph-based Laplacian, and has been used across a broad 
range of problem domains including medical classification (Parisot et  al. 2017), human 
activity recognition (Shi et al. 2018), and traffic forecasting (Yu et al. 2017; Hermes et al. 
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2022). Extensions to the concept of Spectral graph networks can be found in localised spec-
tral graph convolution (Bruna et al. 2013), and multi–scale graph convolution (Abu-El-Haija 
et al. 2018), which allow for computational efficiency improvements by avoiding having to 
perform large scale Laplacian eigendecomposition.

However, due to the inherently non–local nature of spectral graph theory, interpreting 
the convolution operations of such networks can be challenging. This is particularly vexing 
for some problem domains, like traffic or spectral occupancy forecasting, where interpret-
ing the learned spatial dependencies can provide additional insight. An alternate approach 
to spectral graph theory can be found in spatial convolutional graph networks, which con-
struct localised convolution operations across the nodes of the graph, where the magni-
tude of the dynamic edge weighting can give insight into the predicted dynamics (Cui 
et al. 2018). In the context of a deployed multi–sensor environment, such insight could be 
used to inform the redeployment of sensor nodes, or the prioritisation of communication 
between nodes.

4.2  Off‑sensor predictions

Extending from on-sensor to off-sensor predictions greatly complicates the task of find-
ing analogous problem domains. This in turn increases the complexity of assessing the 
applicability of extant techniques to the problem at hand. The closest problem domain is 
numerical weather prediction, in which a finite set of weather stations are used to predict 
future weather across a broader geographic domain. However even in this case the discrete 
sensors are augmented by satellite and radar imagery, which is able to capture the exact 
state across significant proportions of the spatial domain of interest.

Other problem domains that require similar spatiotemporal predictions include vehicu-
lar traffic forecasting, and both taxi and ambulance demand forecasting. In the case of traf-
fic forecasting, the motivating data-sets are often recordings of motion through traffic loops 
on urban road networks. In such cases, while there is a geospatial relationship between 
the traffic loops, the nature of vehicular traffic means that there is no need to generalise 
the prediction across the whole problem domain. As such, traffic loop data, while sparse 
in terms of the physical space it represents is a dense measurement of the behaviours of 
interest, and it is this density that makes it difficult to map solution techniques from this 
problem domain into a spectral sensing context.

While taxi and ambulance demand forecasting has a clear spatiotemporal context, the 
sparse nature of demand for these services means that data is aggregated into large geo-
graphic regions (ranging in size from several city blocks up to a suburb), with demand 
being assumed to be homogeneous over these regions of interest. This assumption of 
homogeneity introduces a problem similar to that observed with numerical weather predic-
tion—that the characteristic distance scales of such a prediction task are potentially going 
to be far larger than would be needed to resolve spectral behaviour. Furthermore, the sparse 
and stochastic nature of demand for these services at any location is fundamentally differ-
ent to the dense and nominally continuous nature of spectral usage. This again limits the 
direct applicability of techniques derived for taxi and ambulance demand forecasting to the 
task of spectral occupancy prediction.

As was alluded to previously, constructing these predictions across the geospatial 
domain can be performed through two distinct modelling approaches—parallel and sequen-
tial prediction. In parallel prediction, the spatial and temporal components (and potentially 
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also the bandwidth) are are considered simultaneously, as part of one single aggregate 
model; while sequential prediction would involve first constructing predictions forward in 
time, and then using those predictions in a separate, strictly spatial model to generalise 
the temporal predictions across the spatial domain. While an integrated, parallel prediction 
framework may seem intuitively appealing, the relative sparsity of appropriate techniques, 
and the different nature of occupancy as a function of space as compared to time may lead 
to undesirable outcomes.

In contrast, sequential prediction allows for drawing from a wider suite of techniques 
and apply them in the context—be it spatial or temporal prediction—that they are best 
suited to. At the most basic level, this could be simply adding spatial interpolation (in the 
form of nearest neighbour, linear, or nonlinear predictions) across the discrete sensor loca-
tions, in order to generalise the prediction across space. However, the sequential nature of 
these models introduces modelling complexity, in terms of how validation is performed 
upon the spatial layer.

To validate a temporal model at discrete locations, a subset of data (in time) is reserved 
from the training of any learnable parameters, and then the performance of the model is 
assessed against the reserved model. To assess the accuracy of the consolidated sequential 
model at predicting spectral accuracy, spatial predictions should be constructed in terms 
of predicted (not measured) temporal values at a subset S of the total receivers R (such 
that S ⊂ R ), and then tested against the corresponding measured temporal values at R ⧵ S . 
In doing so, the relative accuracy and performance of different sequential spatio-temporal 
prediction frameworks can be quantitatively assessed and compared.

4.2.1  Data imputation

Treating off-sensor predictions has motivated a number of recent works in data imputa-
tion, in which the geospatial nature of data is used to provide contextual information that 
can be used to predict behaviours away from sensors. Techniques like nearest-neighbour 
or linear interpolation have successfully produced data reconstructions without introduc-
ing any trainable parameters (Batista and Monard 2003; Zhang 2012). While this signifi-
cantly reduces the computational burden, on a design level this inflexibility limits the level 
of response that can be performed to predict domain specific features. To improve upon 
the accuracy of such approaches, trainable ensembles of interpolation has been shown to 
improve model accuracy across geospatial domains (Oke et  al. 2002). This process has 
been shown to be an accurate framework for extending the geospatial coverage of weather 
and climate models (Sanderson et  al. 2015). Another similar approach can be found in 
Kriging, due to its ability to better capture both dependencies and uncertainties across spa-
tial data (Yang et al. 2018).

Drawing from statistical tools, data fusion has been successfully applied to predict the 
likelihood of occupancy (Eltom et  al. 2016). Constructed coalition games (Zhou et  al. 
2017) and Bayesian non–parametric frameworks (Saad et  al. 2012) have also been pro-
posed for managing data fusion under a spectrum occupancy framework. The latter of 
these tracks the signal amplitude of primary users at each sensor node through a nonlinear 
particle filter, in order to generate a measure of correlated perception.

Monte Carlo methods (Ni et  al. 2005) and Probabilistic Principal Component Analy-
sis (Qu et al. 2009) can also be used to reconstruct the spatiotemporal data by assuming 
that there is some latent distribution that all points are drawn from. However, recently 
it has been shown that tensor-completion based mechanisms outperform matrix based 
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mechanisms (Signoretto et al. 2011), leading to several applications of this process to spa-
tiotemporal traffic prediction tasks (Chen et al. 2019). While tensor-completion approaches 
have been successfully applied to spatiotemporal data imputation, they are best suited to 
low levels of missing data. As the level of missing data is increased, it has been shown that 
Loess based Season and Trend Decomposition (Chaudhry et al. 2019) produces the most 
accurate data reconstruction (Li et al. 2020).

4.2.2  Neural processes

Neural Processes (Garnelo et al. 2018b) are a novel approach that attempts to bridge the 
space between deterministic neural networks and Bayesian methods (Garnelo et al. 2018a). 
In the context of functional approximation and regression, while deep neural networks 
have been shown to be highly accurate, they require access to a large training corpus for 
effective training, which needs to be repeated for each problem domain. While this can 
be somewhat mitigated by employing meta–learning, the computational cost is still sig-
nificant (Erhan et  al. 2009). In contrast, Gaussian Processes, while still computationally 
expensive, can leverage a specified prior distribution to reduce the inference cost. However, 
this of course relies upon the ability to construct an appropriate and accurate prior, which 
is a non–trivial task in and of itself (Ghosal et al. 2006). Neural Processes attempt to con-
struct a neural approximation of Gaussian Process for learning a posterior distribution. By 
doing so, accurate, probabilistic predictions can be constructed even when exposed to only 
a limited training corpus. One weakness of Neural Processes is their tendency to under fit 
data, although this has been broadly addressed by subsequent work, which incorporated 
attention mechanisms into the deterministic and probabilistic predictions (Kim et al. 2019). 
Inspired by Neural Processes, (De Brouwer et al. 2019) have developed a method that can 
incorporate sparse, sporadically observed measurements to update predictions. Of particu-
lar interest to geospatial modelling of spectral occupancy is that the correlations between 
sequences are also learned, so an observation in one time series can update the prediction 
of all other series of interest, in a manner which would be of particular interest in either 
off-sensor predictions, or predictions for sensors which are not able to record a measure-
ment due to engineering or communications constraints.

5  Supporting technologies

The deployment of any successful system for spectral occupancy prediction requires not 
only the sensors and prediction techniques, but a framework for managing the deploy-
ment, processing and management of the data collected by these systems. Another factor 
of concern is that the successful development of any such system requires data to test and 
assess prediction and deployment frameworks. This would necessitate an unfeasible delay 
between the investment in physical deployment, and the actual deployment of the full spec-
tral occupancy system, and may lead to an improper allocation of deployed assets.

To circumvent this, we propose that the development of such systems should be sup-
ported by the development of synthetic data sets that accurately replicate real world 
dynamics. In doing so, all aspects of the measurement and prediction framework can be 
tested prior to the investment in any physical capital, which should significantly decrease 
the risks of such a program. As such this chapter will outline the tools and techniques 
required to support the deployment of predictive systems for spectral occupancy.
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5.1  Deployment, processing, and data management

As was alluded to in Sect. 3, the ability to manage and process data to inform predic-
tions of spectral occupancy is of crucial importance. Latencies in the delivery of data 
are of particular concern for both data processing, due to concerns around data consist-
ency and potential overwrites, and the application of predictive techniques. These issues 
are particularly acute for Machine Learning algorithms, which are typically designed 
and trained under scenarios where information flows are predictable and consistently 
synchronous. In an attempt to resolve this concern, Delay Tolerant Machine Learning 
has recently been proposed, with authors focusing on preventing update issues between 
when information is provided and gradients are updated (Sun 2016), and the develop-
ment of schemes that are robust to delays generated by scattered, asynchronous data 
sources (Mishchenko et al. 2018). However, while such an approach removes concerns 
relating to data consistency, and inherent latencies, it may also increase the cost of 
developing and deploying the sensor network, and introduce complexities in communi-
cating domain information outside the domain sampled by an individual sensor.

A complimentary approach may be found in down-sampling data, either by way of 
low-pass filtering strategies like the Exponential Moving Average (Haque et al. 2015), 
or employing subsets of more complex decompositions (Wen et al. 2019). In doing so, 
stored data volumes will decrease, but the down-sampling process itself will likely 
introduce additional computational costs, and potentially prevent the ability to develop 
real-time predictions, especially under certain predictive time scales.

Under either an offline or online framework, specialised hardware may be required to 
efficiently execute Machine Learning algorithms. These computational considerations 
are particularly important as machine learning typically has a computational cost that 
is orders of magnitude higher than classical signal processing techniques. As such, any 
utilisation of Machine Learning must be considered in context of the scalability of com-
putational resources.

The ubiquity of CPU and GPU based systems has made them de rigueur for Machine 
Learning applications. Of these, GPU based implementations can perform machine 
learning tasks an order of magnitude faster than the equivalent CPU, at the cost of 
requiring 8 times as much energy (Zhao et al. 2017a). However, more specialised hard-
ware has begun to gain prominence, with particular focus being placed upon Field–Pro-
grammable Gate Arrays (FPGAs) and Application–Specific Integrated Circuits (ASICs) 
due to their ability to improve computational performance while minimising power 
consumption.

FPGAs, as their name suggests, can be used in multiple contexts, are re–program-
mable, and can even have parts of the chip reconfigured while other components are 
under load. In contrast, ASICs exhibit permanent circuitry, and are designed to be oper-
ated within a specific context. The design specificity allows ASICs to be more energy 
efficient than equivalent FPGA chips, however, this comes at a higher cost due to the 
inherent difficulties in developing and utilising a chip that has been produced for one 
specific purpose.

Relative to CPUs, (Zhao et  al. 2017a) found that FPGAs could be 2.5 times more 
powerful than CPUs for CNN inference using binary arithmetic, while simultaneously 
performing 50 times more calculations per watt of energy. This power can be explained 
by the ability of FPGAs to exploit pipeline parallelism, which allows for batches of 
multiple data-points to be considered at once, rather than individually (Lacey et  al. 
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2016). Further advances in computational efficiency have been seen in CNNs (Zhang 
et  al. 2016a), ResNets (Nurvitadhi et  al. 2017), LSTMs (Wang et  al. 2016), and Ran-
dom Forrest implementations (Nakahara et  al. 2017) when employing an optimised 
pipeline, which in turn suggests that it may be possible to unlock further performance 
from FPGAs by considering device specific optimisation. The power of such optimisa-
tions is underscored in the work of (Wang et al. 2019), who produced results for LSTM 
time series predictions using an optimised FPGA that were between 20 and 50% better 
than previous work by (Ferreira and Fonseca 2016). These advantages may be further 
enhanced in the case of deep neural network architectures, although performance gains 
are not guaranteed, as care needs to be taken to manage the power budget and on–chip 
memory of FPGAs (Han et al. 2017). Recent work has demonstrated that careful optimi-
sation of a single-FPGA design can yield real–time modulation classification with 8 uS 
latency and 488k classification throughput (Tridgell et al. 2020).

Moving from FPGAs to ASIC based implementations can in turn introduce additional 
computational savings, at the expense of the design flexibility of FPGAs. ASICs have been 
shown to outperform CPU, GPU, and FPGA implementations in both both deep neural net-
works (Srinivasan et al. 2019) and Gated Recurrent Units (a variant of RNN) (Nurvitadhi 
et al. 2016). These performance differences can be attributed to ASICs inherently higher 
compute density and efficiencies, however it must be noted that newer FPGAs will likely 
close the efficiency gap. ASICs have also been used to accelerate solutions to dense (Chen 
et al. 2014) and sparse deep neural networks (Albericio et al. 2016), with such accelerators 
being able to potentially realise significant speedups, while decreasing energy requirements 
(Zhang et al. 2016c).

5.2  Simulating spectral occupancy

While it is possible to collect the requisite data for predicting Spectral Occupancy, doing so 
at the scales required to assess the accuracy of predictive regimes would require a signifi-
cant investment. However, this task is only one part of the overall design process, as once 
the data is collected tools would still be required to manage the prediction of future states 
of the spectral environment. Doing so would leave the measurement assets stranded with 
limited utility, until such time that the remainder of the design process had been completed. 
An alternative development approach could be to simulate the required data, and use it to 
inform the development of both the sensor networks, and test prediction regimes.

While such an approach would significantly decrease the initial investment required for 
such a scheme, it would still present significant hurdles. Any such model must take into 
account not just the behaviour of devices, but also human mobility. These interactions can 
quickly become highly complex, as human behaviour can be influenced by the interaction 
between devices and the spectral environment. As such, this section will cover the major 
facets of this predictive task, and outline tools that can be used in order to support the 
development of a comprehensive framework to support Dynamic Spectrum Allocation.

5.2.1  Empirical signal propagation models

Urban modelling of signal propagation can be traced back to, at least, the work of (Turin 
et al. 1972), who conducted experimental and statistical work on multi–path signal propa-
gation of analogue and digital signals. Statistical models of urban environments typically 
classify the environment in terms of broad metrics that include the topographic variation, 
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vegetation density, building density and height distribution, and density of regions of open 
area and water (Ibrahim and Parsons 1983).

Of the extant empirical models, the most commonly employed are Okumura–Hata 
(Falli 1988), Walfisch–Ikegami (Low 1992a), (Erceg et al. 2001), Longley–Rice (Longley 
and Rice 1968) models, and Log–Normal (Erceg et al. 1999; Walden and Rowsell 2005; 
Chrysikos and Kotsopoulos 2013) the features of which are summarised in Table 1, with 
the latter coming into prominence recently due to its ease of fitting. Of these models, Long-
ley–Rice is unique in that it relies less upon experimental measurements, and more on the 
incorporation of topographic maps, which are used empirically to estimate the geographic 
influence on large scale signal attenuation.

While the Okumara–Hata, Walfisch–Ikegami and SUI models are able to model signal 
propagation, they have limited applicability for considering signals in the modern, urban 
context, due to the spatial length scales involved and the need to model transmitters located 
below the height of local buildings, as the observed error is inversely proportional to the 
ratio between the transmitter height and the building height, so that the error increases as 
the transmitter height is decreased to the building height (or below the building height) 
(Low 1992b), as the influence of diffraction around building edges and wall reflections 
becomes more dominant. These factors are further complicated by the density of transmit-
ters in a modern urban environment.

5.2.2  Physics–based signal propagation models

To address these concerns, some simulations have resorted to reduced–order, physics 
inspired models, including simple radial propagation (where the signal is presumed to exist 
within a fixed radius R about the source), free–space and two–ray models. However, while 
such models are computationally efficient, they fail to account for the influence of local 
environmental conditions, and as such fail to capture physically realistic channel variability.

To capture the influence of the built environment, Ray–tracing techniques were intro-
duced to model the propagation of individual signals. Such models were initially restricted 
to the 2D plane (Valenzuela 1993), but have since been extended to 3D environments (Kim 
et al. 1999). Several authors have implemented ray–tracing models for vehicle–to–vehicle 
transmission under urban, suburban and rural conditions (Maurer et al. 2004), with (Pilosu 
et al. 2011) incorporating additional pre-processing in order to reduce the computational 
cost of calculating the attenuation between connected regions of interest. However, while 
these approaches improve the fidelity of the simulation, they still are fundamentally limited 
due to the nonlinear growth in computational complexity with the number of agents, and 

Table 1  Properties of empirical modelling approaches

Abstracted topographic modelling approaches denoted by *

Model Range Freq (GHz) Transmit Receive Motivation Topography

Okumara–Hata > 5 km < 1.5 30–200 m 1–10 m Urban radio No & No
Walfisch–Ikegami 0.02–5 km 0.8–2 4–50 m 1–3 m Urban diffusion Built
SUI < 10 km < 2 15–40 m 2–10 m Urban WiFi Built*
Longley–Rice 1–2000 km 0.02–20 n/a n/a Topography Natural
Log–Normal < 2.2 km 1.9–3.5 10–80 m 10–80 m Urban shadowing Built* & Natural*
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the number of buildings within the environment. As such, these models become computa-
tionally intractable as the domain of interest increases to scales of practical relevance.

To address this, frameworks have been developed for constructing computationally 
efficient propagation models within dense urban environments, through what is known as 
Beam–tracing (Sridhara and Bohacek 2007). Such an approach can be considered a com-
putationally efficient variant of Ray–tracing, that still allows for incorporating transmis-
sion, diffraction, reflection, scattering, channel–gain, and delay–spread within both interior 
and exterior environments. Of course, such a model requires knowledge of not just build-
ing locations and sizing, but also their interior and exterior materials, and while it is more 
computationally efficient than Ray–tracing, it still shares the same fundamental computa-
tional limitations as the size of the simulation region increases.

When considering large scale simulations, path loss propagation models have typically 
been constructed using simplified representations of the local geometry. Combining these 
geometric abstractions with pre-calculated statistical measures can be used to minimise the 
computational cost of the ensuing calculations. An example of such a formulation can be 
found in the work of (Cheng et al. 2007), who simulated suburban environments using a 
Dual–Slope Log Distance formulation for long distance signal propagation, and a Nakag-
ami model (Proakis and Salehi 2001) for small–scale signals. These Nakagami models lev-
erage the Nakagami-m probability distribution (Nakagami 1960) in order to approximate 
the fading and spatial attenuation of wireless signals (Alouini and Goldsmith 2000). A 
similar Nakagami implementation was also considered by (Khan et al. 2009) for vehicular 
ad-hoc networks. This dual scale approach is becoming increasingly popular as a method 
to reduce the computational complexity of solving signal propagation, and has lead to sys-
tems that scale linearly with the number of agents (Viriyasitavat et al. 2015). A broad tax-
onomy of these techniques is outlined in Fig. 5.

Fig. 5  Classification of spatial propagation models for wireless spectrum
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While the geographic scale of the city–scale environments is the primary driver of sig-
nal attenuation in urban environments, multiple other factors influence spectral propaga-
tion. The nature of built topography is both a secondary driver of attenuation—as well 
as being a primary source of both shadowing and fading—with other factors including 
weather effects, especially rain, cloud cover, and smog all influencing signal attenuation 
through the introduction of additional scattering and diffraction (Jaruwatanadilok et  al. 
2004). Under ideal circumstances, all of these factors would be accounted for in a model, 
however there is presently no literature covering a comprehensive signals based model for 
the built environment that incorporates weather conditions, and as such, the accuracy and 
applicability of any model must be assessed in the context of the local weather conditions.

5.2.3  Device mobility

Beyond the influence of the built and natural environment, a realistic simulacrum of the 
spectral environment must also take into account device mobility, which in turn is a prod-
uct of human behaviour and vehicular patterns. While some abstracted, low–resolution 
data sets do exist (Barlacchi et al. 2015), there is a broad absence of accurate real world 
data sets that accurately represent large scale spectral–spatio–temporal behaviour at high 
resolution. This in turn limits the ability for testing techniques for measuring and predict-
ing spectral occupancy requires models to be constructed. Moreover, constructing a repre-
sentative simulacra of such data is also a non–trivial task, due to the inherently complex 
and stochastic nature of human behaviour.

The most viable conceptual framework for attempting to construct such a model can be 
found within Agent Based Modelling (ABM), which attempts to construct rich, representa-
tive dynamics not by prescriptive modelling, but rather by establishing motivations for a 
suite of simulated agents, and then establishing the rules for how these agents can behave 
and interact. By then iteratively allowing the collective set of agents to evolve to optimise 
their individual behaviour, rich models full of emergent behaviour can transpire, that have 
been shown to reflect real world dynamics.

Computationally, the design of an ABM is a competitive process between the number 
of resolved agents and the spatial and temporal time scales considered, against the extant 
computational resources. Simulations over limited spatial domains, like public events 
(Batty et al. 2003) and indoor movement (Crooks et al. 2015) have been resolved to sec-
ond–level time scales, whereas city–scale simulations are typically modelled over funda-
mental time scales at the minute (Crooks and Hailegiorgis 2014), hour (Groff 2007), day 
(Heppenstall et al. 2006), or even year long periods (Haase et al. 2010). By restricting the 
underlying scales to the smallest individual level of interest, additional resources are freed 
up for the generation of complexity in the agent dynamics.

Such models can be informed by integrating geographic and population level data, in 
order to refine the development of the models, and the behaviour of the individual agents. 
A common source of such data is census information, which can be accessed at resolu-
tions that range from population wide to sub–suburb resolutions. This can also be com-
bined with activity and time–use surveys, such as the UK Time Use Survey (Sullivan and 
Gershuny 2018) and the American Time Use Survey (ATUS) (Spencer and Aultman-Hall 
2019) to inform features like the distribution of work start and end times, the likelihood of 
people going shopping on work days, and the amount of time spent on key tasks every day. 
Incorporating such data ensures that the fundamentals of the model are tied in with real 
world behaviours, without being overly prescriptive.
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Further, more granular data can be found in physical footfall surveys, or geolocated 
and time stamped data from social media networks. Such Geographic Information System 
(GIS) data sets are particularly interesting, due to their ability to be collected in near–con-
tinuous time (Evans 2012). GAMA (GIS & Agent Based Modelling Architecture) and 
MOSAIIC are computational frameworks for merging GIS data with an ABM approach 
(Taillandier et  al. 2019), that has been used for city–scale modelling. More broadly, a 
Dynamic Data Assimilation (DDA) framework can be employed to refine agent based 
models in (Ward et al. 2016); and for calibrating dynamical system models of urban crime 
(Lloyd et  al. 2016) and traffic (Work et  al. 2008). The fusion of ABMs and DDA has 
occurred using both Ensemble Kalman Filters (Ward et al. 2016), for which the ensemble 
is based upon the stochastic evolution of the underlying ABM and the updated data; or 
Deep Learning Networks (van der Hoog 2017). These data sets can, and should, be used 
not just for model development, but also to assess the veracity of the ABM as a proxy for 
real world dynamics. This can be achieved by conducting an exploratory data analysis on 
validation data sets, that are distinct from the data used for training.

From a computational perspective, scalability is the primary constraint upon the growth 
of ABMs, due to the nonlinear growth in interactions, and ensuing computational cost 
(Bazzan and Klügl 2013). As such, city–scale ABMs tend to be built around a small suite 
of well understood tools, of which MATSim is one of the most popular. This code-base 
allows for multi–agent simulation of transportation for the purposes of traffic flow manage-
ment, urban planning, and developing evacuation scenarios, that has been used to simu-
late more than 50,000 distinct agents at a time (Horni et al. 2016). Multiple extensions of 
MATSim for city–scale modelling exist, with Tangramob (Castagnari et  al. 2018) being 
one of the more interesting due to its integration of Smart Mobility into the transit model.

For resolving scenarios that rely upon realistic traffic dynamics and interactions, SUMO 
(Krajzewicz et al. 2002) has proven particularly popular, both for direct simulations, and 
to manage small–scale traffic interactions within a larger ABM. While traditionally con-
structed as a 2–dimensional model (Lopez et al. 2018), recent work has shown its viabil-
ity for contending with 3–dimensional scenarios (Codeca and Härri 2018). SUMO can be 
extended further through interaction with JADE, a Java development framework for con-
structing smart networks (Azevedo et al. 2016). A generalised summary of ABMs and their 
associated tools can be found in Table 2.

5.2.4  Device use patterns

Of course, for considering spectral occupancy human dynamics models need to be aug-
mented by models for the propagation and use of spectrum contributing devices. Agents 
within an ABM may contribute to the spectral environment through both static devices, 
such as personal routers or desktop computers, and dynamic devices like mobile phones 
and laptops, with multiple devices potentially being attributable to individual agents. These 
devices will also inherently contribute differently to the spectral environment, based upon 
differential use cases and power levels.

Simulating the manner through which devices access the spectral environment var-
ies, depending upon the device, and the context of its use. For some parts of the spec-
trum, like those used by television transmission towers, such access is a constant trans-
mission covering a singular component of the frequency band. For individual device 
level modelling, probabilistic models have frequently been used to express access 
demand. Of these, the most commonly utilised approach can be found in memoryless 
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Poisson models (Huang et al. 2012), as well as Pareto distribution processes (Neame 
et al. 1999), Bernoulli processes (Haghani et al. 2007), and Weibull distributions (Lee 
et al. 2014). These models typically focus upon the distribution of the received time of 
transmissions or data packets, although they can also be used in the context of aggre-
gated methods, or for specific use contexts.

An alternate approach can be found in Hidden Markov models, which attempt to 
construct rich simulations of spectral behaviour by considering probabilistic tran-
sitions between a finite number of different activity states. A common approach has 
been to model the transition between on and off states for individual devices (Lee and 
Seeling 2014). Markov Modulated Fluid models also hold potential, as they have been 
shown to produce rich dynamics with limited computational cost (Ye et al. 2014). This 
is made possible by considering events as part of a continuous process in terms of 
finite flow rates.

The signals transmitted by these devices do not exist in isolation, but rather can be 
influenced and attenuated by the built and natural environments, and by weather condi-
tions. Such attenuation can be spatially varying, temporally varying, or both. Finally, 
with the growth of internet enabled devices, the spectral environment can potentially 
influence the decisions and actions of agents as they move through the environment—
for example, by disrupting GPS signals for routing purposes, or interfering with traffic 
signalling systems. This in turn can create potential behavioural positive or negative 
feedback–loops, which in the contexts of an ABM could manifest as different forms of 
emergent behaviour. Another consideration is that the simulation of device level spec-
tral access behaviour must also be flexible enough to account for behavioural changes 
that would occur under Dynamic Spectrum Allocation, the ramifications of which are 
currently a topic of active research (Jiang et al. 2016).

Table 2  Comparison of simulation approaches

Name Language Usage scenario Open source Citation

MATSim Java Multi–agent modelling Yes Horni et al. (2016)
GAMA Java GIS integration Yes Taillandier et al. (2019)
SynCity Java Energy policy modelling No Keirstead et al. (2010)
Polaris Not available Traffic No Auld et al. (2015)
DEUS Java Discrete events Yes Picone et al. (2012)
InterSCSimulator Erlang Smart cities transit Yes Santana et al. (2016)
Sydney Model Not available Disruption modelling No Cai et al. (2013)
CityFlow–Recon Not available Model for GIS integration No Li et al. (2017)
SUMO C++ Traffic Simulation Yes Krajzewicz et al. (2002)
LuST SUMO Multi–modal traffic simula-

tion
Yes Codeca et al. (2017)

MoST SUMO Multi–modal traffic simula-
tion

Yes Codeca and Härri (2018)

Veins Java, C++ Vehicular Ad-Hoc Networks Yes Darus and Bakar (2013)
CityFlow Python & C++ Traffic Simulation Yes Zhang et al. (2019)
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6  Challenges and future work

While this work has attempted to identify viable research and development pathways 
for supporting the task of dynamic spectrum allocation, a number of key challenges still 
remain. To support future work, we have identified some key challenges, that would be 
well suited for further consideration.

6.1  Data features and management

From a data perspective, broad questions still remain about the qualitative and quantitative 
characteristics of true spectral data at different spatial, temporal and spectral resolutions. 
Understanding these features has fundamental implications for simulating, measuring, and 
predicting spectral data. Extracting these features is of particular importance for choosing 
appropriate predictive frameworks, as it is unlikely that any one single predictive frame-
work would be optimal for all potential signal characteristics. Even the ability to identify 
such signal characteristics may prove tricky, in the face of potential legal ramifications of 
conducting large scale signals measurement, storage, and post-processing. However, if that 
level of data collection is achievable, then one promising avenue for extracting such fea-
tures algorithmically is motif identification (Alaee et al. 2020), which has been success-
fully applied to characterise features of time series data. However, additional work would 
be required to extend such works to the spectral and spatiotemporal domains.

The ability for qualitative and quantitative data features to be characterised could then 
in turn be used as the basis of either a reference data-set or data set generator that exhibits 
the characteristics of true signals data that reflects that built and natural environment. The 
construction of such data would allow for reliable, repeatedly experiments to be performed 
across multiple works.

It is highly likely that any predictive system, especially one in which sensors commu-
nicate with each other would face bottlenecks stemming from the size of the underlying 
data. As such, it is highly likely that any predictions would be built upon down-sampled or 
compressed data measurements. This process could be achieved through filtering mecha-
nisms, smoothing, or sub-sampling mechanisms, or in an adaptive fashion by incorporat-
ing encoder-style neural networks. Of these, filtering mechanisms have a long established 
record for facilitating extracting relevant features in temporal data (Baxter and King 1999; 
Wen et al. 2019).

A further complication on this front is the potential for the recorded data to contain per-
sonally identifying features, which may introduce legal complications. This would neces-
sitate a process of data anonymisation, which could draw upon Differential Privacy (Dwork 
et al. 2006) to ensure that private and identifying information about individual users could 
not be revealed. However additional research and care would be required to ensure that the 
temporally continuous nature of the underlying data does not give rise to opportunities for 
re-identification of individual signal sources (Culnane et al. 2019).

Any consideration of data management, aggregation, anonymisation, and down-sam-
pling must, of course, be assessed in the context of how these changes impact upon the 
predictability of the underlying signals. While many of these approaches should reduce the 
inherent variability of the underlying signals, making them easier to predict, these changes 
may well be offset by the added data variance of any anonymisation process. Moreover, 
there is the potential for these changes to introduce systemic biases in the ability to predict 
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and understand the state of the spectral environment, which also needs to be considered in 
any subsequent research.

6.2  Adversarial interactions

One important consideration when considering deployed systems is the potential for adver-
sarial interactions. This is especially true given the scale and socioeconomic value of the 
spectral environment, which would introduce incentives for malicious agents to attempt 
to attack any deployed systems. Such adversarial behaviours have been repeatedly studied 
within an image-based context (Biggio et al. 2013), with recent works also beginning to 
consider adversarial sensitivity in a time series context (Karim et al. 2020). As such open 
questions still remain about both the potential to exploit large scale time-series models, 
and the availability of mechanisms to deter such adversarial behaviour. Of course, the pres-
ence of adversarial attacks also opens the potential for supporting dynamic spectrum allo-
cation with appropriate adversarial defences, or certifications against adversarial behav-
iour (Lecuyer et al. 2019; Cullen et al. 2022, 2023).

6.3  Anomaly detection and fault tolerance

While anomaly detection has been well studied—including relevant works relating to time-
series (Laptev et al. 2015)—there is still scope for further work in developing systems that 
are reactive and responsive to anomalous behaviours. In a dynamic spectrum allocation 
context, an anomaly could present from a component in the sensor network failing; or it 
could be the product of a large scale grouping of people, like at a sporting event. As such 
there is a need for studying how tools and processes relating to both anomaly detection and 
fault tolerant prediction can be applied to generate predictions that are accurate in the face 
of both genuine faults and outlier events.

7  Conclusion

Growth of demand for wireless data, and the commensurate limitations on the amount of 
spectral resources that can be allocated, are quickly growing to be significant problems 
worldwide. Servicing that demand necessitates a change in the manner through which 
devices access and understand the spectral environment. The high dimensionality of the 
problem space, and the difficulty in accessing the true state makes this problem particularly 
well suited for exploring through machine learning techniques.

To support the engineering challenge of building deployable systems, a range of predic-
tion techniques has been reviewed, and assessed for their applicability to different facets 
of the prediction task. This has been performed with the aim of constructing accurate pre-
dictions of spectral occupancy across large, heterogeneous geographic environments. This 
included a study of state of the art machine learning techniques that could be deployed to 
facilitate this task, and how a distributed sensing framework could be deployed to achieve 
this. Also included in this review was a consideration of how realistic data could be con-
structed, as a proxy to measuring the true spectral environment, in order to test how vari-
ous techniques performed prior to implementation.

While the presented techniques have the potential to inform spectral management and 
prediction, the deployment of such a system would also need to consider the economics of 
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a dynamic spectrum environment. Such work would need to consider not just how to price 
spectrum access, but broader questions of the relative merits of cooperative environments 
or competitive market mechanisms, and how such environments would affect the motiva-
tions of adversarial actors. We believe that resolving such questions is the next frontier for 
developing and implementing a cooperative, Dynamic Spectrum Allocation environment 
that will scale with future spectral demand.

Acknowledgements The authors would like to extend their thanks to David Boland of the University of 
Sydney; Marc Katzef and Gregory J. Karanikas of the University of Melbourne; Daniel Salmond and Perry 
Plackmore from the Defence Science and Technology Group for their assistance and knowledge in explor-
ing this problem domain. The research within this paper received funding from the Australian Government 
through Trusted Autonomous Systems, a Defence Cooperative Research Centre funded through the Next 
Generation Technologies Fund.

Funding Open Access funding enabled and organized by CAUL and its Member Institutions. The research 
within this paper received funding from the Australian Government through Trusted Autonomous Systems, 
a Defence Cooperative Research Centre funded through the Next Generation Technologies Fund.

Data availability Not applicable.

Code availability Not applicable.

Declarations 

 Conflict of interest Beyond the previously declared funding, the authors have no applicable conflicts of 
interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly 
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

Abo-Zahhad M, Sabor N, Sasaki S et al (2016) A centralized immune-Voronoi deployment algorithm for 
coverage maximization and energy conservation in mobile wireless sensor networks. Inf Fusion 
30:36–51

Abu-El-Haija S, Kapoor A, Perozzi B, et al (2018) N-GCN: multi-scale graph convolution for semi-super-
vised node classification. arXiv preprint arXiv: 1802. 08888

Agarwal A, Dubey S, Khan MA, et al (2016) Learning based primary user activity prediction in cognitive 
radio networks for efficient dynamic spectrum access. In: 2016 international conference on signal 
processing and communications (SPCOM), IEEE, pp 1–5

Ahmed N, Kanhere SS, Jha S (2005) The holes problem in wireless sensor networks: a survey. ACM SIG-
MOBILE Mob Comput Commun Rev 9(2):4–18

Akkaya K, Younis M (2005) A survey on routing protocols for wireless sensor networks. Ad Hoc Netw 
3(3):325–349

Al-Fuqaha A, Guizani M, Mohammadi M et al (2015) Internet of things: a survey on enabling technologies, 
protocols, and applications. IEEE Commun Surv Tutor 17(4):2347–2376

Alaee S, Kamgar K, Keogh E (2020) Matrix profile XXII: exact discovery of time series motifs under DTW. 
In: 2020 IEEE international conference on data mining (ICDM), IEEE, pp 900–905

Albericio J, Judd P, Hetherington T et al (2016) CNVLUTIN: ineffectual-neuron-free deep neural network 
computing. ACM SIGARCH Comput Archit News 44(3):1–13

http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/1802.08888


Predicting dynamic spectrum allocation: a review covering…

1 3

Ali A, Hamouda W (2016) Advances on spectrum sensing for cognitive radio networks: theory and applica-
tions. IEEE Commun Surv Tutor 19(2):1277–1304

Alouini MS, Goldsmith AJ (2000) Adaptive modulation over Nakagami fading channels. Wirel Pers Com-
mun 13(1–2):119–143

Arulampalam MS, Maskell S, Gordon N et al (2002) A tutorial on particle filters for online nonlinear/non-
Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188

Auld J, Hope M, Ley H et al (2015) POLARIS: Agent-based modeling framework development and imple-
mentation for integrated travel demand and network and operations simulations. Transp Res C. https:// 
doi. org/ 10. 1016/j. trc. 2015. 07. 017

Azevedo T, De Araújo PJ, Rossetti RJ, et al (2016) JADE, TraSMAPI and SUMO: a tool-chain for simulat-
ing traffic light control. arXiv: 1601. 08154

Badrinath Krishna V, Iyer RK, Sanders WH (2016) ARIMA-based modeling and validation of consumption 
readings in power grids. In: Rome E, Theocharidou M, Wolthusen S (eds) Critical information infra-
structures security. Lecture notes in computer science. Springer, Berlin, pp 199–210

Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and translate. 
arXiv preprint arXiv: 1409. 0473

Barlacchi G, De Nadai M, Larcher R et al (2015) A multi-source dataset of urban life in the city of Milan 
and the province of Trentino. Sci Data 2(1):1–15

Batista GE, Monard MC (2003) An analysis of four missing data treatment methods for supervised learning. 
Appl Artif Intell 17(5–6):519–533

Batty M, Desyllas J, Duxbury E (2003) Safety in numbers? Modelling crowds and designing control for the 
Notting hill carnival. Urban Stud 40(8):1573–1590

Baxter M, King RG (1999) Measuring business cycles: approximate band-pass filters for economic time 
series. Rev Econ Stat 81(4):575–593

Bayhan S, Alagöz F (2012) Distributed channel selection in CRAHNs: a non-selfish scheme for mitigating 
spectrum fragmentation. Ad Hoc Netw 10(5):774–788

Bazzan A, Klügl F (2013) A review on agent-based technology for traffic and transportation. Knowl Eng 
Rev 29:375–403. https:// doi. org/ 10. 1017/ S0269 88891 30001 18

Ben Taieb S, Hyndman RJ (2014) A gradient boosting approach to the Kaggle load forecasting competition. 
Int J Forecast 30(2):382–394. https:// doi. org/ 10. 1016/j. ijfor ecast. 2013. 07. 005

Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is difficult. 
IEEE Trans Neural Netw 5(2):157–166. https:// doi. org/ 10. 1109/ 72. 279181

Biggio B, Corona I, Maiorca D et al (2013) Evasion attacks against machine learning at test time. In: Joint 
European conference on machine learning and knowledge discovery in databases. Springer, Berlin, pp 
387–402

Blum RS, Kassam SA, Poor HV (1997) Distributed detection with multiple sensors II. Advanced topics. 
Proc IEEE 85(1):64–79

Bruna J, Zaremba W, Szlam A, et al (2013) Spectral networks and locally connected networks on graphs. 
arXiv preprint arXiv: 1312. 6203

Cai C, Wang Y, Geers G (2013) Time-variant travel time prediction model and its application in a coopera-
tive traffic control system. Transp Res Rec 2381(1):36–44

Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measure-
ments. Commun Pure Appl Math 59(8):1207–1223

Castagnari C, Corradini F, De Angelis F, et al (2018) Tangramob: an agent-based simulation framework for 
validating urban smart mobility solutions. arXiv: 1805. 10906

Chandra SR, Al-Deek H (2009) Predictions of freeway traffic speeds and volumes using vector autoregres-
sive models. J Intell Transp Syst 13(2):53–72

Chang CY, Chang CT, Chen YC et al (2008) Obstacle-resistant deployment algorithms for wireless sensor 
networks. IEEE Trans Veh Technol 58(6):2925–2941

Chari VV, Kehoe PJ, McGrattan ER (2008) Are structural VARs with long-run restrictions useful in devel-
oping business cycle theory? J Monet Econ 55(8):1337–1352

Chatfield C (1980) The analysis of time series: an introduction. Chapman and Hall; Chapman and Hall in 
association with Methuen, London; New York, N.Y., oCLC: 682061640

Chaudhry A, Li W, Basri A et al (2019) A Method for Improving Imputation and Prediction Accuracy of 
Hhighly Seasonal Univariate Data with Large Periods of Missingness. Wirel Commun Mob Comput. 
https:// doi. org/ 10. 1155/ 2019/ 40397 58

Chen T, Guestrin C (2016) XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM 
SIGKDD international conference on knowledge discovery and data mining. ACM, pp 785–794. 
https:// doi. org/ 10. 1145/ 29396 72. 29397 85

https://doi.org/10.1016/j.trc.2015.07.017
https://doi.org/10.1016/j.trc.2015.07.017
http://arxiv.org/abs/1601.08154
http://arxiv.org/abs/1409.0473
https://doi.org/10.1017/S0269888913000118
https://doi.org/10.1016/j.ijforecast.2013.07.005
https://doi.org/10.1109/72.279181
http://arxiv.org/abs/1312.6203
http://arxiv.org/abs/1805.10906
https://doi.org/10.1155/2019/4039758
https://doi.org/10.1145/2939672.2939785


 A. C. Cullen et al.

1 3

Chen Y, Luo T, Liu S, et al (2014) DaDianNao: a machine-learning supercomputer. In: Proceedings of the 
47th annual IEEE/ACM international symposium on microarchitecture, IEEE Computer Society, pp 
609–622

Chen X, He Z, Sun L (2019) A Bayesian tensor decomposition approach for spatiotemporal traffic data 
imputation. Transp Res C 98:73–84

Chen J, Yang S, Zhang D et al (2021) A turning point prediction method of stock price based on RVFL-
GMDH and Chaotic Time Series Analysis. Knowl Inf Syst 63(10):2693–2718

Cheng L, Henty BE, Stancil DD et al (2007) Mobile vehicle-to-vehicle narrow-band channel measurement 
and characterization of the 5.9 GHz dedicated short range communication (DSRC) frequency band. 
IEEE J Sel Areas Commun 25(8):1501–1516

Christiano LJ, Eichenbaum M, Vigfusson R et  al (2006) Assessing structural VARs. NBER Macroecon 
Annu 21:1–105

Chrysikos T, Kotsopoulos S (2013) Site–specific validation of path loss models and large–scale fading char-
acterization for a complex urban propagation topology at 2.4 GHz. In: Proceedings of the interna-
tional multiconference of engineers and computer scientists, pp 2078–0958

Codeca L, Härri J (2018) Monaco SUMO traffic (MoST) scenario: a 3D mobility scenario for coopera-
tive ITS. In: SUMO 2018, SUMO user conference, simulating autonomous and intermodal transport 
systems

Codeca L, Frank R, Faye S et al (2017) Luxembourg SUMO traffic (LuST) scenario: traffic demand evalua-
tion. IEEE Intell Transp Syst Mag 9(2):52–63

Cordeiro C, Challapali K, Birru D, et al (2005) IEEE 802.22: the first worldwide wireless standard based 
on cognitive radios. In: First IEEE international symposium on new frontiers in dynamic spectrum 
access networks, 2005. DySPAN 2005, IEEE, pp 328–337

Corke P, Hrabar S, Peterson R, et al (2004) Autonomous deployment and repair of a sensor network using 
an unmanned aerial vehicle. In: IEEE international conference on robotics and automation, 2004. Pro-
ceedings. ICRA’04. 2004, IEEE, pp 3602–3608

Crooks AT, Hailegiorgis AB (2014) An agent-based modeling approach applied to the spread of cholera. 
Environ Model Softw 62:164–177

Crooks A, Croitoru A, Lu X et al (2015) Walk this way: improving pedestrian agent-based models through 
scene activity analysis. ISPRS Int J Geo-Inf 4(3):1627–1656

Csurgai-Horváth L, Bito J (2011) Primary and secondary user activity models for cognitive wireless net-
work. In: Proceedings of the 2011 11th international conference on telecommunications (ConTEL), 
pp 301–306

Cui Z, Henrickson K, Ke R, et al (2018) Traffic graph convolutional recurrent neural network: a deep learn-
ing framework for network-scale traffic learning and forecasting. arXiv preprint arXiv: 1802. 07007

Cullen AC, Montague P, Liu S, et al (2022) Double bubble, toil and trouble: enhancing certified robustness 
through transitivity. arXiv preprint arXiv: 2210. 06077

Cullen AC, Montague P, Liu S, et al (2023) Exploiting certified defences to attack randomised smoothing. 
arXiv: 2302. 04379 [cs]

Culnane D, Rubinstein A, Benjamin I, et al (2019) Stop the open data bus, we want to get off. arXiv preprint 
arXiv: 1908. 05004

Darus MY, Bakar KA (2013) Congestion control algorithm in VANETs. World Appl Sci J 21(7):1057–1061
De  Brouwer E, Simm J, Arany A, et  al (2019) GRU-ODE-Bayes: continuous modeling of sporadically-

observed time series. In: Advances in neural information processing systems, pp 7379–7390
Do J, Akos DM, Enge PK (2004) L and S bands spectrum survey in the San Francisco Bay Area. In: PLANS 

2004. Position location and navigation symposium (IEEE Cat. No. 04CH37556), IEEE, pp 566–572
Dwork C, McSherry F, Nissim K et al (2006) Calibrating noise to sensitivity in private data analysis. In: 

Theory of cryptography conference. Springer, Berlin, pp 265–284
El-Khamy SE, El-Mahallawy MS, Youssef ENS (2013) Improved wideband spectrum sensing techniques 

using wavelet-based edge detection for cognitive radio. In: 2013 international conference on comput-
ing, networking and communications (ICNC), IEEE, pp 418–423

Eltom H, Kandeepan S, Liang YC, et  al (2016) HMM based cooperative spectrum occupancy prediction 
using hard fusion. In: 2016 IEEE international conference on communications workshops (ICC), 
IEEE, pp 669–675

Eltom H, Kandeepan S, Evans RJ et al (2018a) Statistical spectrum occupancy prediction for dynamic spec-
trum access: a classification. EURASIP J Wirel Commun Netw 1:29

Eltom H, Kandeepan S, Liang YC et al (2018b) Cooperative soft fusion for HMM-based spectrum occu-
pancy prediction. IEEE Commun Lett 22(10):2144–2147

Erceg V, Greenstein LJ, Tjandra SY et al (1999) An empirically based path loss model for wireless channels 
in suburban environments. IEEE J Sel Areas Commun 17(7):1205–1211

http://arxiv.org/abs/1802.07007
http://arxiv.org/abs/2210.06077
http://arxiv.org/abs/2302.04379
http://arxiv.org/abs/1908.05004


Predicting dynamic spectrum allocation: a review covering…

1 3

Erceg V et al (2001) Channel models for fixed wireless applications. IEEE 802.16.3c-01/29r4. Available as 
www. ieee8 02. org/ 16/ tg3/ contr ib/ 80216 3c- 01_ 29r4. pdf

Erhan D, Manzagol PA, Bengio Y, et al (2009) The difficulty of training deep architectures and the effect of 
unsupervised pre-training. In: Artificial intelligence and statistics, pp 153–160

Evans A (2012) Uncertainty and error. In: Agent-based models of geographical systems. Springer, pp 37–45
Falli M (1988) COST 207: digital land mobile radio communications. Tech. Rep. COST 207, Vienna
Ferreira JC, Fonseca J (2016) An FPGA implementation of a long short-term memory neural network. In: 

2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig), IEEE, pp 
1–8

Gardner Jr ES (2006) Exponential smoothing: the state of the art-part II. Int J Forecast 22(4):637–666
Garnelo M, Rosenbaum D, Maddison CJ, et al (2018a) Conditional neural processes. arXiv preprint arXiv: 

1807. 01613
Garnelo M, Schwarz J, Rosenbaum D, et al (2018b) Neural processes. arXiv preprint arXiv: 1807. 01622
Ghosal S, Roy A et  al (2006) Posterior consistency of Gaussian process prior for nonparametric binary 

regression. Ann Stat 34(5):2413–2429
Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge
Gorcin A, Qaraqe KA, Celebi H, et al (2010) An adaptive threshold method for spectrum sensing in multi-

channel cognitive radio networks. In: 2010 17th international conference on telecommunications, 
IEEE, pp 425–429

Groff ER (2007) Simulation for theory testing and experimentation: an example using routine activity the-
ory and street robbery. J Quant Criminol 23(2):75–103

Haase D, Lautenbach S, Seppelt R (2010) Modeling and simulating residential mobility in a shrinking city 
using an agent-based approach. Environ Model Softw 25(10):1225–1240

Haghani E, De S, Ansari N (2007) On modeling VoIP traffic in broadband networks. In: IEEE GLOBECOM 
2007-IEEE global telecommunications conference, IEEE, pp 1922–1926

Han S, Kang J, Mao H, et al (2017) ESE: efficient speech recognition engine with sparse LSTM on FPGA. 
In: Proceedings of the 2017 ACM/SIGDA international symposium on field-programmable gate 
arrays, ACM, pp 75–84

Haque ME, Khan MNS, Sheikh MRI (2015) Smoothing control of wind farm output fluctuations by pro-
posed low pass filter, and moving averages. In: 2015 international conference on electrical & elec-
tronic engineering (ICEEE), IEEE, pp 121–124

Harvey AE, Peters SD (1990) Estimation procedures for structural time series models. J Forecast 9:89–108. 
https:// doi. org/ 10. 1002/ for. 39800 90203

Hashim HA, Ayinde BO, Abido MA (2016) Optimal placement of relay nodes in wireless sensor network 
using artificial bee colony algorithm. J Netw Comput Appl 64:239–248

Heo N, Varshney PK (2003) A distributed self spreading algorithm for mobile wireless sensor networks. 
In: 2003 IEEE wireless communications and networking, 2003. WCNC 2003., IEEE, pp 1597–1602

Heppenstall A, Evans A, Birkin M (2006) Using hybrid agent-based systems to model spatially-influenced 
retail markets. J Artif Soc Soc Simul 9(3):2

Hermes L, Hammer B, Melnik A, et al (2022) A graph-based U-net model for predicting traffic in unseen 
cities. arXiv preprint arXiv: 2202. 06725

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780
Horni A, Nagel K, Axhausen KW (2016) The multi-agent transport simulation MATSim. Ubiquity Press, 

London
Huang CF, Tseng YC (2005) The coverage problem in a wireless sensor network. Mob Netw Appl 

10(4):519–528
Huang Y, Wang W, Zhang X, et al (2012) An energy efficient multicast transmission scheme with patching 

stream exploiting user behavior in wireless networks. In: 2012 IEEE global communications confer-
ence (GLOBECOM), IEEE, pp 3537–3541

Ibrahim M, Parsons J (1983) Signal strength prediction in built-up areas. Part 1: median signal strength. In: 
IEEE proceedings F (Communications, Radar and Signal Processing), IET, pp 377–384

Iii JM (2000) An integrated agent architecture for software defined radio. PhD thesis
Jacques L, Laska JN, Boufounos PT et al (2013) Robust 1-bit compressive sensing via binary stable embed-

dings of sparse vectors. IEEE Trans Inf Theory 59(4):2082–2102
Jaruwatanadilok S, Ketprom U, Kuga Y et al (2004) Modeling the point-to-point wireless communication 

channel under the adverse weather conditions. IEICE Trans Electron 87(9):1455–1462
Jiang Y (2002) Dynamic prediction of traffic flow and congestion at freeway construction zones. J Constr 

Eng 7(1):45–57
Jiang D, Ying X, Han Y et al (2016) Collaborative multi-hop routing in cognitive wireless networks. Wirel 

Pers Commun 86(2):901–923

https://www.ieee802.org/16/tg3/contrib/802163c-01_29r4.pdf
http://arxiv.org/abs/1807.01613
http://arxiv.org/abs/1807.01613
http://arxiv.org/abs/1807.01622
https://doi.org/10.1002/for.3980090203
http://arxiv.org/abs/2202.06725


 A. C. Cullen et al.

1 3

Jian Z, Cencen X, Ziang Z et  al (2017a) Electric load forecasting in smart grids using long-short-term-
memory based recurrent neural network. In: 2017 51st annual conference on information sciences and 
systems (CISS), pp 1–6. https:// doi. org/ 10. 1109/ CISS. 2017. 79261 12

Jiang C, Zhang H, Ren Y et al (2017b) Machine learning paradigms for next-generation wireless networks. 
IEEE Wirel Commun 24(2):98–105. https:// doi. org/ 10. 1109/ MWC. 2016. 15003 56WC

Kalita HK, Kar A (2009) Wireless sensor network security analysis. Int J Next-Gener Netw (IJNGN) 
1(1):1–10

Karim F, Majumdar S, Darabi H (2020) Adversarial attacks on time series. IEEE Trans Pattern Anal Mach 
Intell 43(10):3309–3320

Karlof C, Wagner D (2003) Secure routing in wireless sensor networks: attacks and countermeasures. In: 
Proceedings of the first IEEE international workshop on sensor network protocols and applications, 
2003., IEEE, pp 113–127

Karpatne A, Watkins W, Read J, et al (2017) Physics–guided neural networks (PGNN): an application in 
lake temperature modeling. arXiv preprint arXiv: 1710. 11431

Kascha C (2012) A comparison of estimation methods for vector autoregressive moving-average models. 
Econom Rev 31(3):297–324

Katzef M, Cullen AC, Alpcan T, et al (2020) Distributed generative adversarial networks for anomaly 
detection. In: International conference on decision and game theory for security, Springer, pp 3–22

Katzef M, Cullen AC, Alpcan T, et al (2021) Privacy-preserving collaborative SDR networks for anom-
aly detection. In: ICC 2021-IEEE international conference on communications, IEEE, pp 1–6

Katzef M, Cullen AC, Alpcan T et al (2022) Generative adversarial networks for anomaly detection on 
decentralised data. Annu Rev Control 53:329–337

Keirstead J, Samsatli N, Shah N et al (2010) SynCity: an integrated tool kit for urban energy systems 
modelling. In: Assessment tools and benchmarking practices, energy efficient cities, pp 21–42

Khalesian M, Delavar MR (2016) Wireless sensors deployment optimization using a constrained pareto-
based multi-objective evolutionary approach. Eng Appl Artif Intell 53:126–139

Khan A, Sadhu S, Yeleswarapu M (2009) A comparative analysis of DSRC and 802.11 over vehicular ad 
hoc networks. Project Report, University of California, Santa Barbara, pp 1–8

Kim M, Takada J (2009) Efficient multi-channel wideband spectrum sensing technique using filter bank. 
In: 2009 IEEE 20th international symposium on personal. indoor and mobile radio communica-
tions, IEEE, pp 1014–1018

Kim SC, Guarino B, Willis T et al (1999) Radio propagation measurements and prediction using three-
dimensional ray tracing in urban environments at 908 MHz and 1.9 GHz. IEEE Trans Veh Technol 
48(3):931–946

Kim H, Mnih A, Schwarz J, et al (2019) Attentive neural processes. arXiv preprint arXiv: 1901. 05761
Kobayashi H, Mark BL, Turin W (2011) Probability, random processes, and statistical analysis: applica-

tions to communications, signal processing. Queueing Theory and Mathematical Finance. Cam-
bridge University Press, New York

Krajzewicz D, Hertkorn G, Rössel C, et al (2002) SUMO (simulation of urban mobility)-an open-source 
traffic simulation. In: Proceedings of the 4th middle east symposium on simulation and modelling 
(MESM20002), pp 183–187

Lacey G, Taylor GW, Areibi S (2016) Deep learning on FPGAs: past, present, and future. arXiv preprint 
arXiv: 1602. 04283

Laptev N, Amizadeh S, Flint I (2015) Generic and scalable framework for automated time-series anom-
aly detection. In: Proceedings of the 21th ACM SIGKDD international conference on knowledge 
discovery and data mining, pp 1939–1947

Laska JN, Wen Z, Yin W et al (2011) Trust, but verify: fast and accurate signal recovery from 1-bit com-
pressive measurements. IEEE Trans Signal Process 59(11):5289–5301

Lecuyer M, Atlidakis V, Geambasu R, et  al (2019) Certified robustness to adversarial examples with 
differential privacy. In: 2019 IEEE symposium on security and privacy (SP), IEEE, pp 656–672

Lee J, Seeling P (2014) Mobile device–level data modeling through high utilization mobile applica-
tions. In: 2014 IEEE 11th consumer communications and networking conference (CCNC), IEEE, 
pp 513–514

Lee D, Zhou S, Zhong X et al (2014) Spatial modeling of the traffic density in cellular networks. IEEE 
Wirel Commun 21(1):80–88

Li Y, Dong YN, Zhang H, et al (2010) Spectrum usage prediction based on high-order markov model 
for cognitive radio networks. In: IEEE 10th international conference on computer and information 
technology (CIT), pp 2784–2788. https:// doi. org/ 10. 1109/ cit. 2010. 464

Li W, Wolinski D, Lin MC (2017) City-scale traffic animation using statistical learning and metamodel-
based optimization. ACM Trans Graph (TOG) 36(6):200

https://doi.org/10.1109/CISS.2017.7926112
https://doi.org/10.1109/MWC.2016.1500356WC
http://arxiv.org/abs/1710.11431
http://arxiv.org/abs/1901.05761
http://arxiv.org/abs/1602.04283
https://doi.org/10.1109/cit.2010.464


Predicting dynamic spectrum allocation: a review covering…

1 3

Li Z, Xu W, Zhang X et  al (2018) A survey on one-bit compressed sensing: theory and applications. 
Front Comput Sci 12(2):217–230

Li H, Li M, Lin X et al (2020) A spatiotemporal approach for traffic data imputation with complicated 
missing patterns. Transp Res C 119(102):730

Liang Q, Ren Q (2005) Energy and mobility aware geographical multipath routing for wireless sensor net-
works. In: IEEE wireless communications and networking conference, 2005, IEEE, pp 1867–1871

Liao WH, Kao Y, Li YS (2011) A sensor deployment approach using glowworm swarm optimization 
algorithm in wireless sensor networks. Expert Syst Appl 38(10):12180–12188

Liu X, He D (2014) Ant colony optimization with greedy migration mechanism for node deployment in 
wireless sensor networks. J Netw Comput Appl 39:310–318

Lloyd D, Santitissadeekorn N, Short MB (2016) Exploring data assimilation and forecasting issues for 
an urban crime model. Eur J Appl Math 27(3):451–478

Longley AG, Rice PL (1968) Prediction of tropospheric radio transmission loss over irregular terrain. A 
computer method. Tech. rep, Institute For Telecommunicatoin Science, Boulder CO

Lopez PA, Behrisch M, Bieker-Walz L, et al (2018) Microscopic traffic simulation using SUMO. In: 2018 
21st international conference on intelligent transportation systems (ITSC), IEEE, pp 2575–2582

Low K (1992a) Comparison of CW-measurements performed in darmstadt with the flat edge model. Tech. 
Rep. COST 231 TD(92) 8, Vienna

Low K (1992b) Comparison of urban propagation models with CW–measurements. In: [1992 proceedings] 
vehicular technology society 42nd VTS conference–frontiers of technology, IEEE, pp 936–942

Lu H, Li J, Guizani M (2013) Secure and efficient data transmission for cluster-based wireless sensor net-
works. IEEE Trans Parallel Distrib Syst 25(3):750–761

Lu Q, Yang S, Liu F (2017) Wideband spectrum sensing based on Riemannian distance for cognitive radio 
networks. Sensors 17(4):661

Luong MT, Pham H, Manning CD (2015) Effective approaches to attention–based neural machine transla-
tion. arXiv preprint arXiv: 1508. 04025

Lütkepohl H (2006) Forecasting with VARMA models. Handb Econ Forecast 1:287–325
Ma Y, Gao Y, Liang YC et al (2016) Reliable and efficient sub-Nyquist wideband spectrum sensing in coop-

erative cognitive radio networks. IEEE J Sel Areas Commun 34(10):2750–2762
Marţian A, Vlădeanu C, Marcu I et al (2010) Evaluation of spectrum occupancy in an urban environment in 

a cognitive radio context. Int J Adv Telecommun 3(3):172–181
Maurer J, Fugen T, Schafer T, et al (2004) A new inter-vehicle communications (IVC) channel model. In: 

IEEE 60th vehicular technology conference, 2004. VTC2004-Fall. 2004, IEEE, pp 9–13
McLeod AI, Zhang Y (2008) Faster ARMA maximum likelihood estimation. Comput Stat Data Anal 

52(4):2166–2176. https:// doi. org/ 10. 1016/j. csda. 2007. 07. 020. arXiv: 1611. 00965
Melchior J, Wang N, Wiskott L (2017) Gaussian-binary restricted Boltzmann machines for modeling natural 

image statistics. PLoS ONE 12(2):e0171015
Mishchenko K, Iutzeler F, Malick J, et al (2018) A delay-tolerant proximal-gradient algorithm for distrib-

uted learning. In: International conference on machine learning, pp 3584–3592
Müller P, Quintana FA (2004) Nonparametric Bayesian data analysis. Stat Sci 19:95–110
Nakagami N (1960) The m-distribution, a general formula of intensity of rapid fading. In: Statistical meth-

ods in radio wave propagation: proc. of a symp. held June 18–20, 1958, Permagon Press, Oxford
Nakahara H, Jinguji A, Sato S, et al (2017) A random forest using a multi-valued decision diagram on an 

FPGA. In: 2017 IEEE 47th international symposium on multiple-valued logic (ISMVL), IEEE, pp 
266–271

Neame TD, Zukerman M, Addie RG (1999) Application of the M/pareto process to modeling broadband 
traffic streams. In: IEEE international conference on networks. ICON’99 proceedings (Cat. No. 
PR00243), IEEE, pp 53–58

Ni D, Leonard JD, Guin A et al (2005) Multiple imputation scheme for overcoming the missing values and 
variability issues in ITS data. J Transp Eng 131(12):931–938

Niculescu D, Nath B (2003) Ad hoc positioning system (APS) using AOA. In: IEEE INFOCOM 2003. 
Twenty-second annual joint conference of the IEEE computer and communications societies (IEEE 
Cat. No. 03CH37428), IEEE, pp 1734–1743

Niewiadomska-Szynkiewicz E, Sikora A, Marks M (2016) A movement-assisted deployment of collaborat-
ing autonomous sensors for indoor and outdoor environment monitoring. Sensors 16(9):1497

Nurvitadhi E, Sim J, Sheffield D, et al (2016) Accelerating recurrent neural networks in analytics servers: 
comparison of FPGA, CPU, GPU, and ASIC. In: 2016 26th international conference on field pro-
grammable logic and applications (FPL), IEEE, pp 1–4

http://arxiv.org/abs/1508.04025
https://doi.org/10.1016/j.csda.2007.07.020
http://arxiv.org/abs/1611.00965


 A. C. Cullen et al.

1 3

Nurvitadhi E, Venkatesh G, Sim J, et al (2017) Can FPGAs beat GPUs in accelerating next-generation deep 
neural networks? In: Proceedings of the 2017 ACM/SIGDA international symposium on field-pro-
grammable gate arrays, ACM, pp 5–14

Oke PR, Allen JS, Miller RN et al (2002) Assimilation of surface velocity data into a primitive equation 
coastal ocean model. J Geophys Res: Oceans 107(C9):5–25

Oord Avd, Dieleman S, Zen H, et  al (2016) Wavenet: a generative model for raw audio. arXiv preprint 
arXiv: 1609. 03499

O’Shea TJ, Clancy TC, McGwier RW (2016) Recurrent neural radio anomaly detection. arXiv preprint 
arXiv: 1611. 00301

Parisot S, Ktena SI, Ferrante E, et al (2017) Spectral graph convolutions for population-based disease pre-
diction. In: International conference on medical image computing and computer-assisted intervention, 
Springer, pp 177–185

Pathan ASK, Lee HW, Hong CS (2006) Security in wireless sensor networks: issues and challenges. In: 
2006 8th international conference advanced communication technology, IEEE, pp 6–pp

Picone M, Amoretti M, Zanichelli F (2012) Simulating smart cities with DEUS. In: Proceedings of the 5th 
international ICST conference on simulation tools and techniques, ICST (Institute for Computer Sci-
ences, Social-Informatics and Technology), pp 172–177

Pilosu L, Fileppo F, Scopigno R (2011) RADII: a computationally affordable method to summarize urban 
ray-tracing data for VANETs. In: 2011 7th international conference on wireless communications. Net-
working and mobile computing, IEEE, pp 1–6

Pradhan PM, Panda G (2012) Connectivity constrained wireless sensor deployment using multiobjective 
evolutionary algorithms and fuzzy decision making. Ad Hoc Netw 10(6):1134–1145

Proakis JG, Salehi M (2001) Digital communications, vol 4. McGraw-Hill, New York
Pyrkov TV, Slipensky K, Barg M et  al (2018) Extracting biological age from biomedical data via deep 

learning: too much of a good thing? Sci Rep 8:1–11. https:// doi. org/ 10. 1038/ s41598- 018- 23534-9
Qu L, Li L, Zhang Y et al (2009) PPCA-based missing data imputation for traffic flow volume: a systemati-

cal approach. IEEE Trans Intell Transp Syst 10(3):512–522
Quan Z, Cui S, Sayed AH et al (2008) Optimal multiband joint detection for spectrum sensing in cognitive 

radio networks. IEEE Trans Signal Process 57(3):1128–1140
Radhakrishnan N, Kandeepan S (2020) An improved initialization method for fast learning in long short-

term memory-based Markovian spectrum prediction. IEEE Trans Cogn Commun Netw 7(3):729–738
Radhakrishnan N, Kandeepan S, Yu X et al (2021a) Performance analysis of long short-term memory-based 

Markovian spectrum prediction. IEEE Access 9:149582–149595
Radhakrishnan N, Kandeepan S, Yu X, et  al (2021b) Soft fusion based cooperative spectrum prediction 

using LSTM. In: 2021 15th international conference on signal processing and communication sys-
tems (ICSPCS), IEEE, pp 1–7

Ramos P, Santos N, Rebelo R (2015) Performance of state space and ARIMA models for consumer retail 
sales forecasting. Robot Comput-Integr Manuf 34:151–163. https:// doi. org/ 10. 1016/j. rcim. 2014. 12. 
015

Rokach L, Maimon OZ (2008) Data mining with decision trees: theory and applications, vol 69. World Sci-
entific, Singapore

Saad W, Han Z, Poor HV et al (2012) A cooperative Bayesian nonparametric framework for primary user 
activity monitoring in cognitive radio networks. IEEE J Sel Areas Commun 30(9):1815–1822. https:// 
doi. org/ 10. 1109/ JSAC. 2012. 121027

Sanderson BM, Knutti R, Caldwell P (2015) Addressing interdependency in a multimodel ensemble by 
interpolation of model properties. J Clim 28(13):5150–5170

Santana EFZ, Bastista DM, Kon F, et al (2016) SCSimulator: an open source, scalable smart city simulator. 
In: Tools session of the 34th Brazilian symposium on computer networks (SBRC). Salvador, Brazil, 
p 46

Schmidt M, Block D, Meier U (2017) Wireless interference identification with convolutional neural net-
works. In: 2017 IEEE 15th international conference on industrial informatics (INDIN), IEEE, pp 
180–185

Shared Spectrum Company (2010) General survey of radio frequency bands—30 MHz to 3 GHz version 
2.0. Tech. rep., shared spectrum company. http:// www. share dspec trum. com/ wp- conte nt/ uploa ds/ 
2010_ 0923% 20Gen eral% 20Band% 20Sur vey% 20-% 2030M Hz- to- 3GHz. pdf

Sharma SK, Lagunas E, Chatzinotas S et al (2016) Application of compressive sensing in cognitive radio 
communications: a survey. IEEE Commun Surv Tutor 18(3):1838–1860

Shi X, Chen Z, Wang H et al (2015) Convolutional LSTM network: a machine learning approach for pre-
cipitation nowcasting. In: Cortes C, Lawrence ND, Lee DD et al (eds) Advances in neural information 
processing systems, vol 28. Curran Associates Inc, Red Hook, pp 802–810

http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1611.00301
https://doi.org/10.1038/s41598-018-23534-9
https://doi.org/10.1016/j.rcim.2014.12.015
https://doi.org/10.1016/j.rcim.2014.12.015
https://doi.org/10.1109/JSAC.2012.121027
https://doi.org/10.1109/JSAC.2012.121027
http://www.sharedspectrum.com/wp-content/uploads/2010_0923%20General%20Band%20Survey%20-%2030MHz-to-3GHz.pdf
http://www.sharedspectrum.com/wp-content/uploads/2010_0923%20General%20Band%20Survey%20-%2030MHz-to-3GHz.pdf


Predicting dynamic spectrum allocation: a review covering…

1 3

Shi L, Zhang Y, Cheng J, et al (2018) Adaptive spectral graph convolutional networks for skeleton-based 
action recognition. arXiv preprint arXiv: 1805. 07694

Signoretto M, Van de Plas R, De Moor B et al (2011) Tensor versus matrix completion: a comparison with 
application to spectral data. IEEE Signal Process Lett 18(7):403–406

Sithamparanathan K, Giorgetti A (2012) Cognitive radio techniques: spectrum sensing, interference mitiga-
tion, and localization. Artech House, Norwood

Song X, Kanasugi H, Shibasaki R (2016) DeepTransport: prediction and simulation of human mobility and 
transportation mode at a citywide level. In: IJCAI, pp 2618–2624

Spencer P, Aultman-Hall L (2019) Assessing seasonal and climate-related variability in rates of walking and 
physical activity with time use data. University of Vermont Transportation Research Center, Tech. rep

Sridhara V, Bohacek S (2007) Realistic propagation simulation of urban mesh networks. Comput Netw 
51(12):3392–3412

Srinivasan S, Janedula P, Dhoble S, et al (2019) High performance scalable FPGA accelerator for deep neu-
ral networks. arXiv preprint arXiv: 1908. 11809

Subramaniam S, Reyes H, Kaabouch N (2015) Spectrum occupancy measurement: an autocorrelation based 
scanning technique using USRP. In: 2015 IEEE 16th annual wireless and microwave technology confer-
ence (WAMICON), IEEE, pp 1–5

Sullivan O, Gershuny J (2018) Speed-up society? Evidence from the UK 2000 and 2015 time use diary surveys. 
Sociology 52(1):20–38

Sun X (2016) Asynchronous parallel learning for neural networks and structured models with dense features. In: 
Proceedings of COLING 2016, the 26th international conference on computational linguistics: technical 
papers, pp 192–202

Sun H, Laurenson DI, Wang CX (2010) Computationally tractable model of energy detection performance over 
slow fading channels. IEEE Commun Lett 14(10):924–926

Sutton PD, Nolan KE, Doyle LE (2008) Cyclostationary signatures in practical cognitive radio applications. 
IEEE J Sel Areas Commun 26(1):13–24

Taillandier P, Gaudou B, Grignard A et al (2019) Building, composing and experimenting complex spatial mod-
els with the GAMA platform. GeoInformatica 23(2):299–322

Taylor SJ, Letham B (2018) Forecasting at scale. Am Stat 72(1):37–45
Tian Z, Giannakis GB (2007) Compressed sensing for wideband cognitive radios. In: 2007 IEEE international 

conference on acoustics, speech and signal processing-ICASSP’07, IEEE, pp IV–1357
Tridgell S, Boland D, Leong PH, et al (2020) Real-time automatic modulation classification using RFSoC. In: 

2020 IEEE international parallel and distributed processing symposium workshops, IPDPSW 2020, New 
Orleans, LA, USA, May 18–22, 2020. IEEE, pp 82–89. https:// doi. org/ 10. 1109/ IPDPS W50202. 2020. 
00021

Turin GL, Clapp FD, Johnston TL et al (1972) A statistical model of urban multipath propagation. IEEE Trans 
Veh Technol 21(1):1–9

Valenzuela R (1993) A ray tracing approach to predicting indoor wireless transmission. In: IEEE 43rd vehicular 
technology conference, IEEE, pp 214–218

Van Lint J, Hoogendoorn S, van Zuylen HJ (2002) Freeway travel time prediction with state-space neural net-
works: modeling state-space dynamics with recurrent neural networks. Transp Res Rec 1:30–39

van der Hoog S (2017) Deep learning in (and of) agent-based models: a prospectus. arXiv: 1706. 06302
Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. CoRR abs/1706.03762. http:// arxiv. org/ 

abs/ 1706. 03762
Veen J, Van Der Wiellen P (2003) The application of matched filters to PD detection and localization. IEEE 

Electr Insul Mag 19(5):20–26
Vieira MA, Vieira LF, Ruiz LB, et al (2003) Scheduling nodes in wireless sensor networks: a voronoi approach. 

In: 28th annual IEEE international conference on local computer networks, 2003. LCN’03. Proceedings., 
IEEE, pp 423–429

Viriyasitavat W, Boban M, Tsai HM et al (2015) Vehicular communications: survey and challenges of channel 
and propagation models. IEEE Veh Technol Mag 10(2):55–66

Walden MC, Rowsell FJ (2005) Urban propagation measurements and statistical path loss model at 3.5 GHz. In: 
2005 IEEE antennas and propagation society international symposium, IEEE, pp 363–366

Wang D, Yang Z (2016) An novel spectrum sensing scheme combined with machine learning. In: 2016 9th 
international congress on image and signal processing. BioMedical engineering and informatics (CISP-
BMEI), IEEE, pp 1293–1297

Wang Z, Salous S (2011) Spectrum occupancy statistics and time series models for cognitive radio. J Signal 
Process Syst 62(2):145–155

Wang C, Gong L, Yu Q et al (2016) DLAU: a scalable deep learning accelerator unit on FPGA. IEEE Trans 
Comput-Aided Des Integr Circuits Syst 36(3):513–517

http://arxiv.org/abs/1805.07694
http://arxiv.org/abs/1908.11809
https://doi.org/10.1109/IPDPSW50202.2020.00021
https://doi.org/10.1109/IPDPSW50202.2020.00021
http://arxiv.org/abs/1706.06302
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762


 A. C. Cullen et al.

1 3

Wang J, Zhou Y, Sun Y et al (2019) Cloud server oriented FPGA accelerator for long short-term memory recur-
rent neural networks. J Phys: Conf Ser 1284:012044

Ward JA, Evans AJ, Malleson NS (2016) Dynamic calibration of agent-based models using data assimilation. R 
Soc Open Sci. https:// doi. org/ 10. 1098/ rsos. 150703

Wellens M, Mähönen P (2010) Lessons learned from an extensive spectrum occupancy measurement campaign 
and a stochastic duty cycle model. Mob Netw Appl 15(3):461–474

Wen Q, Gao J, Song X, et al (2019) RobustSTL: a robust seasonal-trend decomposition algorithm for long time 
series. In: Proceedings of the AAAI conference on artificial intelligence, pp 5409–5416

Williams BM (2001) Multivariate vehicular traffic flow prediction: evaluation of ARIMAX modeling. Transp 
Res Rec 1776(1):194–200

Work D, Tossavainen OP, Blandin S, et al (2008) An ensemble Kalman filtering approach to highway traffic 
estimation using GPS enabled mobile devices. In: 47th IEEE conference on decision and control, Can-
cun, Mexico, pp 5062–5068. https:// doi. org/ 10. 1109/ CDC. 2008. 47390 16

Wu CH, Lee KC, Chung YC (2007) A delaunay triangulation based method for wireless sensor network deploy-
ment. Comput Commun 30(14–15):2744–2752

Xie S, Liu Y, Zhang Y et al (2010) A parallel cooperative spectrum sensing in cognitive radio networks. IEEE 
Trans Veh Technol 59(8):4079–4092

Xu K, Ba J, Kiros R, et al (2015) Show, attend and tell: neural image caption generation with visual attention. 
In: International conference on machine learning, pp 2048–2057

Xue J, Feng Z, Zhang P (2013) Spectrum occupancy measurements and analysis in Beijing. IERI Procedia 
4:295–302

Yang H, Yang J, Han LD et al (2018) A kriging based spatiotemporal approach for traffic volume data imputa-
tion. PLoS ONE 13(4):e0195957

Yasdi R (1999) Prediction of road traffic using a neural network approach. Neural Comput Appl 8(2):135–142
Ye Z, EL-Azouzi R, Jimenez T, et al (2014) Computing the quality of experience in network modeled by a 

Markov modulated fluid model. arXiv preprint arXiv: 1412. 2600
Yoon Y, Kim YH (2013) An efficient genetic algorithm for maximum coverage deployment in wireless sensor 

networks. IEEE Trans Cybern 43(5):1473–1483
Younis M, Akkaya K (2008) Strategies and techniques for node placement in wireless sensor networks: a sur-

vey. Ad Hoc Netw 6(4):621–655
Yu B, Yin H, Zhu Z (2017) Spatio–temporal graph convolutional networks: a deep learning framework for traf-

fic forecasting. arXiv preprint arXiv: 1709. 04875
Yu D, Deng L (2010) Deep learning and its applications to signal and information processing [exploratory dsp]. 

IEEE Signal Process Mag 28(1):145–154
Yu R, Zhang Y, Yi L et al (2012) Secondary users cooperation in cognitive radio networks: balancing sensing 

accuracy and efficiency. IEEE Wirel Commun 19(2):30–37
Zeng Y, Liang YC (2008) Spectrum-sensing algorithms for cognitive radio based on statistical covariances. 

IEEE Trans Veh Technol 58(4):1804–1815
Zhan C, Zeng Y, Zhang R (2017) Energy-efficient data collection in UAV enabled wireless sensor network. 

IEEE Wirel Commun Lett 7(3):328–331
Zhang S (2012) Nearest neighbor selection for iteratively kNN imputation. J Syst Softw 85(11):2541–2552
Zhang W, Itoh K, Tanida J et al (1990) Parallel distributed processing model with local space-invariant inter-

connections and its optical architecture. Appl Opt 29:4790–4797. https:// doi. org/ 10. 1364/ AO. 29. 004790
Zhang C, Wu D, Sun J, et al (2016a) Energy-efficient CNN implementation on a deeply pipelined FPGA cluster. 

In: Proceedings of the 2016 international symposium on low power electronics and design, ACM, pp 
326–331

Zhang J, Zheng Y, Qi D, et al (2016b) DNN-based prediction model for spatio-temporal data. In: Proceedings 
of the 24th ACM SIGSPATIAL international conference on advances in geographic information systems, 
ACM, p 92

Zhang S, Du Z, Zhang L, et al (2016c) Cambricon-X: an accelerator for sparse neural networks. In: The 49th 
annual IEEE/ACM international symposium on microarchitecture, IEEE Press, p 20

Zhang H, Feng S, Liu C, et al (2019) CityFlow: a multi-agent reinforcement learning environment for large 
scale city traffic scenario. arXiv: 1905. 05217

Zhao R, Song W, Zhang W, et al (2017a) Accelerating binarized convolutional neural networks with software-
programmable FPGAs. In: Proceedings of the 2017 ACM/SIGDA international symposium on field-pro-
grammable gate arrays, ACM, pp 15–24

Zhao Z, Chen W, Wu X et al (2017b) LSTM network: a deep learning approach for short-term traffic forecast. 
IET Intell Transp Syst 11(2):68–75. https:// doi. org/ 10. 1049/ iet- its. 2016. 0208

Zhou Y, Dai Z, Hao X et al (2017) Coalition formation games for cooperative spectrum sensing in cognitive 
radio networks. In: Handbook of cognitive radio. Springer, Singapore, pp 1–32

https://doi.org/10.1098/rsos.150703
https://doi.org/10.1109/CDC.2008.4739016
http://arxiv.org/abs/1412.2600
http://arxiv.org/abs/1709.04875
https://doi.org/10.1364/AO.29.004790
http://arxiv.org/abs/1905.05217
https://doi.org/10.1049/iet-its.2016.0208


Predicting dynamic spectrum allocation: a review covering…

1 3

Zhou H, Wang H, Li X et al (2018) A survey on mobile data offloading technologies. IEEE Access 6:5101–5111
Zhou Y, Li T, Shi J et al (2019) A CEEMDAN and XGBOOST-based approach to forecast crude oil prices. 

Complexity 2019:1–15. https:// doi. org/ 10. 1155/ 2019/ 43927 85

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1155/2019/4392785

	Predicting dynamic spectrum allocation: a review covering simulation, modelling, and prediction
	Abstract
	1 Introduction
	1.1 Summary of contributions

	2 Motivation and background
	3 Measuring spectral occupancy: spectral sensing
	3.1 Distributed sensor networks
	3.2 Mobile distributed sensing
	3.3 Robust network design

	4 Predicting spectral occupancy
	4.1 On-sensor predictions
	4.1.1 Statistical methods for temporal prediction
	4.1.2 Machine learning methods for temporal prediction
	4.1.2.1 RNNs 
	4.1.2.2 LSTMs 
	4.1.2.3 Attention mechanisms 
	4.1.2.4 Convolutional networks 
	4.1.2.5 Graph convolutional networks 


	4.2 Off-sensor predictions
	4.2.1 Data imputation
	4.2.2 Neural processes


	5 Supporting technologies
	5.1 Deployment, processing, and data management
	5.2 Simulating spectral occupancy
	5.2.1 Empirical signal propagation models
	5.2.2 Physics–based signal propagation models
	5.2.3 Device mobility
	5.2.4 Device use patterns


	6 Challenges and future work
	6.1 Data features and management
	6.2 Adversarial interactions
	6.3 Anomaly detection and fault tolerance

	7 Conclusion
	Acknowledgements 
	References


