
Customizing Low-Precision Deep Neural Networks
For FPGAs

Julian Faraone* Giulio Gambardella# David Boland* Nicholas Fraser# Michaela Blott# Philip H.W. Leong*

The University Of Sydney*
Xilinx Research Labs#

(julian.faraone, david.boland, philip.leong)@sydney.edu.au (giuliog, nfraser, mblott)@xilinx.com

Abstract—In this paper, we argue that instead of solely focusing
on developing efficient architectures to accelerate well-known
low-precision CNNs, we should also seek to modify the network
to suit the FPGA. We develop a fully automative toolflow which
focuses on modifying the network through filter pruning, such
that it efficiently utilizes the FPGA hardware whilst satisfying a
predefined accuracy threshold. Although fewer weights are re-
moved in comparison to traditional pruning techniques designed
for software implementations, the overall model complexity and
feature map storage is greatly reduced. We implement the
AlexNet and TinyYolo networks on the large-scale ImageNet and
PascalVOC datasets, to demonstrate up to roughly 2× speedup
in frames per second and 2× reduction in resource requirements
over the original network, with equal or improved accuracy.

I. INTRODUCTION

Deep Convolutional Neural Networks (CNNs) are typically
designed for optimal prediction capabilities without consider-
ations for practical implementations and hardware costs. As
a result, modern CNNs are introducing increasing numbers
of layers and high-dimensional filters in order to improve
prediction capabilities on challenging Image Classification and
Object Detection tasks. Unfortunately, this growth results in
increased computational and memory requirements. Quantized
Neural Networks (QNNs) are well suited to customisable
hardware, such as FPGAs and ASICs, because it is possible to
save silicon area with reduced precision, as well as to exploit
the reduced memory bandwidth requirement. In particular,
FPGA implementations of extreme forms of QNNs, such
as Binary and Ternary Neural Networks (BNNs and TNNs)
have been shown to achieve superior throughput and power
efficiency over CPU and GPU platforms [1]. As accuracies for
these networks become increasingly better with new training
methods [2], network customizations are important to improv-
ing their amenability to FPGAs. Pruning methods seek to
remove parameters from the network, reducing the on-chip
memory, memory bandwidth and computational requirements,
whilst minimizing any loss in accuracy. Coarse-grained prun-
ing methods such as filter pruning, result in a structured sparse
representation that maintains the regular data access patterns of
the original network. Generally this can make use of existing
optimized hardware implementations. One of the limitations
of existing filter pruning methods is that they do not take into
account the underlying FPGA accelerator architecture.

Altogether, our work makes the following contributions:

• We propose a novel quantization error pruning heuristic
which minimizes the error in the weights rather than in
the output feature maps.

• We propose a resource-aware method for customizing low
precision CNNs to underlying FPGA dataflow architec-
tures.

• We achieve the highest reported frames per second (FPS),
FPS/kLUT and FPS/BRAM on the popular AlexNet.

II. REDUNDANCIES IN CNNS

CNNs typically consist of convolutional and fully-connected
layers. For each convolutional layer, filters are applied to
all pixels of the Input Feature Maps (IFMs), with the result
passed into an element-wise activation function f to compute
Output Feature Maps (OFMs). The OFMs then become the
IFMs for the next layer. For each fully-connected layer, all
pixels of the IFMs are multiplied by weights to generate
each pixel of the OFM. In this paper we use the weight and
activation quantization as proposed in [2]. During training both
the full precision and quantized weight values are needed;
for inference only the quantized weights are required. While
quantization methods reduce the number of bits for weights
and arithmetic operations, pruning methods reduce the total
number of weights that must be stored and arithmetic op-
erations that must be performed. Filter pruning chooses the
least important filter/s to keep and prunes out both those
filters and their corresponding OFM. Filters are considered
important if their removal results in accuracy degradation.
However, while filter pruning reduces the total number of
operations, on hardware designs, it is typically the feature map
memory or available resources for processing elements that
limits performance.

III. CNN ACCELERATION

We use the following notation to describe our CNNs. For
layer j in a CNN, we assume there are Ij IFMs of dimensions
Fj × Fj and Nj filters of dimensions Kj × Kj (we assume
feature maps and filters of squared dimensions). The OFMs
from layer j are the IFMs to layer j+1, and can be represented
as Ij+1.



Various research studies have explored how to take ad-
vantage of these quantization methods in order to create
FPGA-based CNN accelerators with high throughput and low
power [3]. A Framework For Fast, Scalable Binarized Neural
Network (FINN) [4], demonstrated the advantages of fitting
models in on-chip memory. The methods introduced in this
paper could be applied to improve the performances of many
of these implementations for minimal or no accuracy loss. We
implement a pruning strategy which focuses on customizing
the pruning process for FPGA architectures. FPGAs pose
unique considerations over other hardware platforms as the
amount of layer unrolling is set by the designer and resources
can be arbitrarily allocated. Furthermore, since the highest
performance implementations store intermediate FMs in on-
chip BRAM, only considering the model-size is misleading to
the overall hardware savings from pruning.

IV. HARDWARE-AWARE PRUNING

A. Layer Selection

To fit a design on the FPGA, it becomes necessary to re-
use the same PEs. To enable this, we must add data buffers to
hold IFMs and OFMs between layers, as shown in Figure 1.
The total number of operations for layer j is given by (1).
We assume that a layer has PEj processing elements that
can be re-used to perform these operations. The total number
of times that these PEs are reused is given by (2). Note that
for maximum efficiency we must match throughput between
layers, to do this, the reuse should be the same for all layers. In
a fully pipelined implementation Reuse = 1, in this case there
is no need to use any memory: OFMs from one layer can go
directly to the SWUs of the next layer. If Reuse = 2, then half
of the time, OFMs must be stored, half of the time they can go
directly to the Sliding Window Units (SWUs) of the next layer.
As we increase the reuse, we reduce the PE requirements, but
increase the RAM requirements for intermediate buffers. We
can model the cost of BRAMs for OFMS per layer using (3),
where Bw denotes the number of words stored in a BRAM
respectively.

OPSj = Kj ×Kj × Ij ×Nj × Fj+1 × Fj+1 (1)

Reuse = dOPSj

PEj
e (2)

BRAMIFMj+1
= dIj × Fin × Fin × (Reuse− 1)

Reuse×Bw
e (3)

To help us create a working hardware design we can utilize
these equations, along with a model of the resources cost
per PE, the resource cost per SWU and the BRAM cost to
store all network weights. We then follow a basic heuristic
for hardware-optimized pruning, given in Algorithm 1. This
heuristic helps us to determine which layer to prune. We begin
with a fully pipelined design (Reuse = 1). If this does not
fit on the FPGA, the design is constrained by the resources
for PEs. We therefore have the option of pruning the layer
utilizing the most resources for PEs, or increasing Reuse.
After this, if the design is constrained by the resources for
PEs, we have the same options; if the design is limited by

Fig. 1. Advantage of reading from on-chip BRAMs

BRAMs, we can prune the layer utilizing the most BRAMs
(FM + Weight memory).

Algorithm 1 Pruning Process For FPGA implementation
1. Initialize:
Choose PE size such that reuse = 1.
2. Iteratively prune filters:
while accuracy change ≤ η do

Prune filters by 10% using (4)
Re-train
Save Model

end while
3. Reuse:
while design exceeds available FPGA resources do

Increase hardware reuse
end while
4. Model Finetuning:
Add/Remove filters and ensure they are a multiple of the
number of PEs
Re-train
5. Check:
if Accuracy satisfies η then

continue
else

Go to Step 3 using saved model from previous iteration.
end if
6. Deploy

B. Model-finetuning

Pruning layers involves the removal of feature maps. To
ensure efficient use of the underlying hardware, we prune
layers so that the remaining number of feature maps in a layer
is a multiple of the number of PEs assigned to that layer, i.e.
N%PE = 0. In addition, we also attempt to increase the
number of feature maps in other resource-inexpensive layers
such that N%PE = 0. This is only the case if it doesn’t
impinge on the desired performance of the design. Once again,
this is to ensure maximum efficiency. This can translate into a
significant increase in the accuracy of our design, or recover
some of the accuracy that is lost by pruning the most expensive
layer. But importantly, comes with a minimal increased cost
in terms of resources: there is only a slight increase in weight



memory/resources. There is also a slight increase in power
requirements as more of the circuit will be active. Note that
on other architectures such as GPUs or CPUs, this decision
is unlikely to be taken as it would increase the workload;
instead the ideal course of action is to simply prune the overall
network to reduce the total number of operations.

C. Quantization Error Pruning

Once the layers to prune have been chosen, we must choose
which filters to prune in a given layer. Pruning approaches
attempt to remove weights or filters with minimal reduction
in accuracy. With traditional floating point network pruning,
error in the OFMs is what impinges overall accuracy. It follows
that a typical pruning technique is to select weights or filters
which have the lowest magnitudes and hence contribute to
the smallest activation outputs. Unfortunately, this technique
does not easily extend to extremely low-precision QNNs. If
two weights have the same sign, they have the same quantized
value and hence equal contributions to the OFMs. We hypoth-
esize that for highly quantized representations, such as BNNs
and TNNs, it is the quantization error in the quantized weight
values that impinges overall accuracy. As such, we rank the
importance of filters based on the highest accumulated mean-
squared quantization error (MSQE) for each filter, as described
by (4), where n = Kj ×Kj × Ij .

MSQEN =
1

n

n∑
z=1

(qz − wz)
2 (4)

D. Data Fine-tuning

To avoid excessive training times, and ensure minimal
accuracy loss, after filters are selected to prune, we remove
them to reconstruct the network with its new customized
configuration by initializing the weights with values from the
saved filters. We then retrain using a quarter of the initial
training epochs to fine-tune weight values and recover the
accuracy for the new CNN configuration. As such, we do this
pruning process iteratively for some predefined percentage of
filters in each iteration. In our work, ≈ 10% of filters are
pruned per iteration. In the last pruning iteration we ensure
N%PE = 0, as discussed in Section IV-B.

V. EXPERIMENTAL SETUP

A. Networks

We evaluate our methods on 2 networks. Firstly, we use
an AlexNet-variant inspired by DoReFa-Net [2] which has 1-
bit weights and 2-bit activations. This is used for classifying
the ImageNet dataset which has 224 × 224 input image
sizes. Secondly, we consider a fully-convolutional network,
TinyYolo [5] and binarize the network weights and use 3-bits
for activations for this second benchmark. This network is used
on the Pascal VOC dataset for Object Detection which has a
418×418 input image size. The TinyYolo model is much more
compact in terms of weight memory footprint than AlexNet,
although has a larger total number of operations and input
image size. For both networks, we quantize the first and last

layers to 8-bit representations and the activations bit widths
for all layers is the same. Finally, we also quantize the inputs
to 8-bit values, for no accuracy loss.

B. Computing Core

To investigate the effectiveness of our pruning method,
we use the FINN [4] hardware library in Vivado HLS. The
FINN architecture uses SWUs to feed so-called Matrix-Vector
Threshold Units (MVTU) for CONV or FC layers. SWUs can
also feed Pooling Units (PU). There are three key parame-
ters for FINN: PEs, SIMD lanes and Matrix-Multiple Vector
(MMV) length. PEs refer to the number of OFMs evaluated in
parallel, SIMD refers to the number of parallel IFMs processed
in each PE, MMV controls to the amount of output pixels
evaluated in parallel. We extend the PEs in the MVTU to
arbitrary precision activations for the middle layers, which
replaces the XNOR-popcount from the PEs in FINN by either
an addition or subtraction (ADD/SUB) depending on the sign
of the weight. For the 8-bit input vector and 8-bit weights in
the first layer, DSPs are used for the MAC before being fed
into the thresholding unit. The overall system designs for the
architectures discussed in this work use our MVTU extensions
to compute the CONV layers.

VI. RESULTS

A. Streaming Dataflow

1) System Design: For dataflow architectures, FINN allows
the selection of parallelism (P = SIMD×PE×MMV ) for
each layer depending on the number of operations. The overall
throughput of the network is dependent on the layer which
requires the largest number of cycles to compute. For the
AlexNet implementation, a large proportion of total operations
is done in the 2nd and 3rd layers. Additionally, the first
layer requires more resources per MAC operation, as it is
computed with 8-bit inputs and weights, hence requiring DSPs
for implementation and more memory resources for weight
storage. Hence, the first three layers are chosen to be pruned
equally for resource and throughput improvements. This is
done iteratively for a total of 40% of filters. For the first layer,
the number of IFMs is 3, meaning SIMD ≤ 3. The number of
PEs and MMV is restricted by the number of OFMs and OFM
dimension respectively, hence MMV ≤ 54 and PE ≤ 60 (as
the OFMs are reduced to 60 after pruning and model fine-
tuning). We set SIMD = 3, PE = 60 & MMV = 18
as the throughput mustn’t exceed the latency of the SWU to
construct the image matrix. To achieve load balancing for all
succeeding layers, the resources are allocated such that the
estimated cycles matches this first layer. In our system design,
the last CONV layer writes to the host memory and FC layers
are computed on the host CPU. This is due to their large
BRAM and low operations requirement. A large proportion
of the operations and weight + FM memory in the original
TinyYolo network is in the last two quantized layers. Hence,
we prune these layers to improve the load-balancing and also
reduce the number of BRAMs. We also double the number of
second layer filters, as increasing the number of PEs in that



TABLE I
ALEXNET AND TINYYOLO IMPLEMENTATION RESOURCE USAGE

AlexNet LUTs DSPs BRAMs Freq. FPS Acc.

Original 375,037 2,693 1,527 159 3,265 50.157% 49% 35%

Pruned-30% 228,104 1,938 1,057 172 3,530 50.334% 35% 25%

Pruned-40% 188,924 1,698 955 185 3,797 50.125% 25% 20%
TinyYolo

Original 179,265 500 2,731 233 1,189 47.827% 9% 63%

Pruned-50% 234,883 189 1,930 240 1,226 48.535% 3% 45%
Available 663,360 5,520 4,320

TABLE II
SCALING UP PARALLELISM FOR PRUNED ALEXNET

Original Pruned-30% Pruned-40%
Freq (MHz) 159 130 150

LUTs 375,037 410,073 302,325
BRAMs 1,527 1,333 1,156

DSPs 2,693 3,772 2,693
FPS 3,265 5,359 6,172

FPS/kLUT 8.70 13.14 20.44
FPS/BRAM 2.14 4.02 5.39

layer from 32 to 64 imposes minimal resource impact and
helps preserve accuracy during re-training.

2) Performance: We measure the performance of both
pruned and non-pruned versions of AlexNet by implementing
the dataflow architecture on the Xilinx KU115 board. For the
pruned topologies, there are two alternatives for improving our
hardware; 1) By fixing the model’s parallelism, we can reduce
concurrency and save computational resources. This translates
to a greater ability to fit the model on low-cost FPGAs and
achieve higher frequencies. 2) Increasing the parallelism of
our original architecture, which reduces latency and improves
our FPS. Following 1), we maintain the same parallelism for
pruning AlexNet at 30% & 40% as displayed in Table I. As
the frequency increases, the frame rate also improves whilst
resources are significantly reduced. For TinyYolo, there is a
slight increase in FPS whilst resources are again reduced.
We also note our pruning strategy improves the accuracy of
TinyYolo by 0.7mAP and AlexNet-30% by 0.2%. For 2) we
scale-up the parallelism our implementation. We maintain sim-
ilar frequencies to the original AlexNet network and achieve
roughly a 2× speedup over the original network as displayed
in Table II with a significant reduction in resources and the
same accuracy. Scaling for the original network was unable
to achieve the FPS reported for the pruned topologies due to
device resource constraints.

VII. RELATED WORK

The W/Act Precision for AlexNet in Table III metric is
for the weight and activation precision. To calculate our
FPS/BRAM against previous implementations, we assume a
direct conversion of M20k to BRAM(18k). Also, to calculate
our FPS/kLUT we assume 8-input ALMs and 6-input LUT
units are equivalent. It is evident our design achieves a highly

TABLE III
COMPARISON TO PREVIOUS ALEXNET IMPLEMENTATIONS

Li16 [6] Aydonat17 [7] Moss17 [3] Ours
Device VC709 Aria 10 Aria 10 KU115
Freq 156 303 312.5 150
LUTs 273,805 246k (ALM) 427.2k (ALM) 302,325

BRAMs 1,913 2487 (M20k) 2000 (M20k) 1,156
DSPs 2,144 1,476 1518 2,693

W/Act. 16/16-bit 16/16-bit 1/1-bit 1/2-bit
Acc. - 56.0 44.21 50.1
FPS 391 1,020 1,610 6,172

FPS/kLUT 1.43 4.14 3.77 20.44
FPS/BRAM 0.20 0.37 0.72 5.39

superior 3.8× improvement in FPS, 4.9× in FPS/kLUT and
7.5× in FPS/BRAM over previous state-of-the-art implemen-
tations. This demonstrates the largely efficient use of resources
in our design as our pruning strategy is able to remove
redundant filters which don’t contribute much to the overall
accuracy.

VIII. CONCLUSIONS

We presented a hardware-aware filter pruning framework
for customizing low precision CNNs to underlying FPGA
architectures. Following the selection of resource-heavy lay-
ers, an effective heuristic was established which utlizes the
information from the reduced precision weights to measure
the relative importance of each filter. Reducing computational
requirements whilst maintaining the regular data access pat-
terns of dense matrices was demonstrated by applying it to
significantly improve the state-of-the-art in terms of FPS,
FPS/kLUT and FPS/BRAM for the AlexNet and TinyYolo
networks.

IX. ACKNOWLEDGMENTS

This research was supported under the Australian Research
Councils Linkage Projects funding scheme (project number
LP130101034) and Zomojo Pty Ltd.

REFERENCES

[1] E. Nurvitadhi, D. Sheffield, J. Sim, A. K. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of FPGA,
CPU, GPU, and ASIC,” Int. Conf. on Field-Programmable Technology,
pp. 77–84, 2016.

[2] S. Zhou, Z. Ni, X. Zhou, H. Wen, Y. Wu, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” CoRR, vol. abs/1606.06160, 2016.

[3] D. J. M. Moss, E. Nurvitadhi, J. Sim, A. K. Mishra, D. Marr, S. Sub-
haschandra, and P. H. W. Leong, “High performance binary neural
networks on the Xeon+FPGATM platform,” in FPL. IEEE, 2017, pp.
1–4.

[4] Y. Umuroglu, N. J. Fraser, G. Gambardella, M. Blott, P. H. W. Leong,
M. Jahre, and K. A. Vissers, “FINN: A framework for fast, scalable
binarized neural network inference,” CoRR, vol. abs/1612.07119, 2016.
[Online]. Available: http://arxiv.org/abs/1612.07119

[5] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” CoRR,
vol. abs/1612.08242, 2016.

[6] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high
performance FPGA-based accelerator for large-scale convolutional neural
networks,” Proc. Int. Conf. on Field Programmable Logic and Applica-
tions, pp. 1–9, 2016.

[7] U. Aydonat, S. O’Connell, D. Capalija, A. C. Ling, and G. R. Chiu,
“An opencl(tm) deep learning accelerator on arria 10,” CoRR, vol.
abs/1701.03534, 2017.

1Accuracy obtained from 1/1-bit AlexNet in [?]


