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The spectral correlation density (SCD) is an important tool in cyclostationary signal detection and classification.
Even using efficient techniques based on the fast Fourier transform (FFT), real-time implementations are
challenging because of the high computational complexity. A key dimension for computational optimization
lies in minimizing the wordlength employed. In this paper, we analyze the relationship betweenwordlength and
signal-to-quantization noise in fixed-point implementations of the SCD function. A canonical SCD estimation
algorithm, the FFT accumulation method (FAM) using fixed-point arithmetic is studied. We derive closed-form
expressions for SQNR and compare them at wordlengths ranging from 14 to 26 bits. The differences between
the calculated SQNR and bit-exact simulations are less than 1 dB. Furthermore, an HLS-based FPGA design is
implemented on a Xilinx Zynq UltraScale+ XCZU28DR-2FFVG1517E RFSoC. Using less than 25% of the logic
fabric on the device, it consumes 7.7W total on-chip power and has a power efficiency of 12.4 GOPS/W, which is
an order of magnitude improvement over an Nvidia Tesla K40 graphics processing unit (GPU) implementation.
In terms of throughput, it achieves 50 MS/sec, which is a speedup of 1.6 over a recent optimized FPGA
implementation.
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GLOSSARY OF SYMBOLS

𝑇𝑠 sampling period 𝑁 number of samples in a window
Δ𝑓 frequency resolution Δ𝛼 cyclic frequency resolution
𝐺∗ gain of sections (∗ refers to section) 𝑃𝑖 .𝑠 power of input signal
𝑁𝑐 2log2 (𝑇𝑠/Δ𝑓 ) 𝑁𝑓 2log2 (𝑇𝑠/Δ𝛼/𝐿)
𝐿 𝑁𝑐/4 𝑃 ⌊𝑁 /𝐿⌋
𝑚1 log2 (𝑁𝑐 ) 𝑚2 log2 (𝑁𝑓 )
𝐴1 2 − 𝑚1+1.5

𝑁𝑐
𝐴2 2 − 𝑚2+1.5

𝑁𝑓

𝐵1
2𝑚1
6 − 1 𝐵2

2𝑚2
6 − 1

𝑞1 normalization coefficient for the first FFT
𝑞2 normalization coefficient for the conjugate multiplication
𝑞3 normalization coefficient for the second FFT

1 INTRODUCTION
A time series is said to be cyclostationary if its probability distribution varies periodically with
time. Cyclostationary time series analyses are suitable for a wide range of periodic phenomena in
signal processing, including characterization of modulation types; noise analysis of periodic time-
variant linear systems; synchronization problems; parameter and waveform estimation; channel
identification and equalization; signal detection and classification; AR and ARMA modelling and
prediction; and source separation [8]. A signal exhibits cyclostationarity if and only if the signal
is correlated with certain frequency-shifted versions of itself [6]. Cyclostationary analysis often
involves computing the spectral correlation density (SCD), also called the cyclic spectral density
or spectral correlation function. This function describes the cross-spectral density of all pairs of
frequency-shifted versions of a time-series.

Although the SCD method reveals rich information about cyclostationary processes even under
low signal-to-noise ratio conditions, its high computational complexity makes it difficult to apply
in real-time applications. Thus there has been interest in developing high-performance implemen-
tations of the FAM method to detect and classify cyclostationary signals on processors (CPUs) [19],
graphics processing units (GPUs) [14] and field programmable gate arrays (FPGAs) [2, 13].

To maximise performance, fixed-point implementations of signal processing techniques should
be considered as they are more computationally efficient than floating point implementations
and can lead to improved hardware efficiency, at the cost of a quantization error. In this work,
we analyse the performance of the FAM method in terms of signal to quantization noise ratio
(SQNR), introduce two methods of fixed-point design, namely Fixed Precision (FAM_M1) and Mixed
Precision (FAM_M2), and compare their performance.
Furthermore, we present an open-source1, scalable high-speed FPGA-based SCD accelerator,

utilizing on-chip high speed arithmetic primitives present in the digital signal processing (DSP) and
memory blocks to verify the calculation result. The design is synthesized from a C description using
high-level synthesis (HLS) tools [15], allowing our calculations to be verified and performance
metrics such as speed and performance to be determined. Previous work in references [5, 14, 17]
use floating-point calculations and are unable to achieve the performance of our proposed design.

1https://github.com/Jingyi-li/FAM_Synthesis.git
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A summary of our contributions are:

• The first analytical SQNR model for fixed-point implementations of the FFT accumulation
method (FAM) technique for estimating SCD, enabling aggressive tradeoffs between precision
and area.
• A quantitative comparison of two wordlength assignment strategies, FAM_M1which employs
a fixed wordlength throughout the data path, and FAM_M2 with mixed precision.
• A parallel architecture for computing the SCD using fixed-point arithmetic with the FAM_M1
and FAM_M2 wordlength assignments. The architecture is highly parallel and allows mixed
precisions to be used throughout.
• An HLS implementation of the architecture which, to the best of our knowledge, achieves
the highest reported throughput and power performance for the FAM technique. It employs
our SQNR model to minimise resource requirements through careful precision optimisation
and sparse matrix output to minimise accelerator-to-host bandwidth.

The remainder of this paper is organised as follows. In Section 2 we provide background on SCD
analysis, the theory statistical quantization analysis and Vivado HLS [11]. In Section 3, our error
analysis is given. The implementation of our HLS implementation of a FAM method is presented in
Section 4. In Section 5, a comparison of our theory with simulations and the performance of our
FPGA implementation is detailed. Finally, we draw conclusions in Section 6.

2 BACKGROUND
2.1 Spectral Correlation Density Estimation
The SCD function can be implemented either via time or frequency smoothing. In this paper
we focus on time smoothing, since it has been shown to be more computationally efficient in
general [17]. There are two common time-smoothing methods, the FFT accumulation method
(FAM) [17, 19] and the strip spectral correlation algorithm (SSCA) [17, 20].

Due to its parallel FFT-based computation and regular data access patterns, the FAM technique
is a commonly used estimator of the SCD, particularly for a small number of cycle frequencies. The
SSCA method is more efficient when all cycle frequencies are of interest, and Antoni’s fast spectral
correlation estimator [1] has advantages over FAM and SSCA when the maximum considered cycle
frequency is a small fraction of the sampling rate [21]. The techniques proposed in this paper could
be extended to these and others in a straightforward manner.

The description of the SCD function below follows that of Roberts et. al. [17] and Brown et. al [5].
The discrete-time complex demodulate of a continuous time, complex-valued signal 𝑥 (𝑡) at frequency
𝑓 is

𝑋𝑇 (𝑛, 𝑓 ) =
𝑁 /2∑︁

𝑟=−𝑁 /2
𝑎(𝑟 )𝑥 (𝑛 − 𝑟 )𝑒−𝑖2𝜋 𝑓 (𝑛−𝑟 )𝑇𝑠 (1)

where 𝑎(𝑟 ) is a length 𝑇 = 𝑁𝑇𝑠 second windowing function, 𝑇𝑠 is the sampling period and 𝑁 is
the number of samples. Complex demodulates are low pass sequences with bandwidths Δ𝑓 ≈ 1/𝑇 .
For inputs 𝑥 (𝑛) and 𝑦 (𝑛) of length 𝑁 samples, we correlate demodulates 𝑋𝑇 (𝑛, 𝑓1) and 𝑌𝑇 (𝑛, 𝑓2)
separated by 𝛼0 (𝑓1 = 𝑓0 + 𝛼0/2, 𝑓2 = 𝑓0 − 𝛼0/2) over the time window Δ𝑡 = 𝑁𝑇𝑠 using a complex
multiplier followed by a low pass filter (LPF) with bandwidth approximately 1/Δ𝑡 . Thus the SCD
function is given by

𝑆𝛼0
𝑥𝑦𝑇
(𝑛, 𝑓0)Δ𝑡 =

∑︁
𝑟

𝑋𝑇 (𝑟, 𝑓1)𝑌 ∗𝑇 (𝑟, 𝑓2)𝑔(𝑛 − 𝑟 ) (2)
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Δt = NTs

time
n

|     T = NcTs     |

(a) A real signal 𝑥 (𝑛) with a sample period of 𝑇𝑠 .

time

n
frequency

Δt=1/Δα

Δf=1/T
α
f

(b) Complex demodulates of signal 𝑥 (𝑛).

Alpha
Profile

(c) The SCD function of signal 𝑥 (𝑛). (d) Sparse SCD with only 0.457% non-zero values.

Fig. 1. The SCD function and sparse SCD of OOK signal from DeepSig [10] at SNR = -8 dB.

where the ∗ operator is a complex conjugate and 𝑔(𝑛) is a length Δ𝑡 = 𝑁𝑇𝑠 windowing function.
For the special case of auto-correlation studied in this paper, 𝑦 (𝑛) is a time-delayed value of 𝑥 (𝑛),
i.e., 𝑦 (𝑛) = 𝑥 (𝑛 + 𝑑) where 𝑑 is the delay.

2.2 Example of Spectral Correlation Desity, Alpha Profile and Sparse SCD
Fig. 1 shows an on-off keying (OOK) modulated in-phase and quadrature (I/Q) signal 𝑥 (𝑛) with
complex demodulate 𝑋𝑇 (𝑟𝐿, 𝑓𝑚), an estimated SCD function 𝑆

𝛼0
𝑥𝑦𝑇 (𝑛, 𝑓0)Δ𝑡 , the alpha profile and the

sparse SCD 𝑆
′𝛼0
𝑥𝑦𝑇 (𝑛, 𝑓0)Δ𝑡 . The alpha profile indicates maximal SCD values along the alpha frequency

axis and is defined by:

alpha profile = max
𝛼∗∈𝛼0
(𝑆𝛼∗𝑥𝑦𝑇 (𝑛, 𝑓0)Δ𝑡 ). (3)

The sparse SCD matrix is formed from the full SCD matrix by setting values smaller than a
threshold value (𝑇𝑟𝑒𝑑) to zero. It captures the critical information and greatly reduces storage
requirements compared to the full SCD matrix. The sparse SCD is defined as:

𝑆
′𝛼0
𝑥𝑦𝑇
(𝑛, 𝑓0)Δ𝑡 =

{
𝑆
𝛼0
𝑥𝑦𝑇 (𝑛, 𝑓0)Δ𝑡 if (𝑆𝛼0

𝑥𝑦𝑇 (𝑛, 𝑓0)Δ𝑡 ≥ 𝑇𝑟𝑒𝑑)
0 otherwise . (4)

To the best of our knowledge, this work is the first to use a sparse SCD output format.
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decimate 

decimate 

complex demodulate

*

bandpass

bandpass

FFT

Fig. 2. The FFT accumulation method (FAM)

2.3 FAM Technique
The direct application of Eq. (2) is computationally inefficient. Decimation and the fast Fourier
transform (FFT) can be used to reduce the computational complexity [17]. Fig. 2 illustrates the
signal flow for the FAM method, where the first task for both methods is to compute the complex
demodulates, 𝑋𝑇 and 𝑌𝑇 (in Eq. (2)). We summarize the computations in this subsection, and refer
readers to references [5, 7] for a detailed derivation.

2.3.1 Complex Demodulate. For Eq. (1), the input sequence is from 𝑁 to 𝑃 = 𝑁 /𝐿 via decimation
using an 𝐿 sample stride for the channelizer, with 𝐿 = 𝑁𝑐/4 [5]. The Eq. (1) can be rewritten as

𝑋𝑇 (𝑝𝐿, 𝑓 ) =
𝑁𝑐/2∑︁

𝑟=−𝑁𝑐/2
𝑎(𝑟 )𝑥 (𝑝𝐿 − 𝑟 )𝑒−𝑖2𝜋 𝑓 (𝑝𝐿−𝑟 )𝑇𝑠 (5)

where 𝑝 = {0, 1..., 𝑃 − 1}. Substituting 𝑑 = 𝑁𝑐/2 − 1, 𝑟 = 𝑑 − 𝑘, 𝑓𝑚 = 𝑚𝑓𝑠/𝑁𝑐 and −𝑁𝑐/2 < 𝑚 <

𝑁𝑐/2 [7], Eq. (5) becomes

𝑋𝑇 (𝑝𝐿, 𝑓𝑚) =
𝑁𝑐−1∑︁
𝑘=0

𝑎(𝑑 − 𝑘)𝑥 (𝑝𝐿 − 𝑑 + 𝑘)𝑒−𝑖2𝜋𝑚 (𝑝𝐿−𝑑+𝑘)/𝑁𝑐

= [
𝑁𝑐−1∑︁
𝑘=0

𝑎(𝑑 − 𝑘)𝑥 (𝑝𝐿 − 𝑑 + 𝑘)𝑒−𝑖2𝜋𝑚𝑘/𝑁𝑐 ]𝑒−𝑖2𝜋𝑚 (𝑝𝐿−𝑑)/𝑁𝑐

= [
𝑁𝑐−1∑︁
𝑘=0

𝑎(𝑑 − 𝑘)𝑥 (𝑝𝐿 − 𝑑 + 𝑘)︸                       ︷︷                       ︸
𝑥 (𝑛) windowed by 𝑎 (𝑛)

𝑒−𝑖2𝜋𝑚𝑘/𝑁𝑐 ]

︸                                               ︷︷                                               ︸
𝑁𝑐 point-FFT

𝑒−𝑖2𝜋𝑚𝑝𝐿/𝑁𝑐︸        ︷︷        ︸
Down Conversion

.

(6)

Thus, according to Eq. (6), the input is windowed via 𝑎(𝑛), then passed through a 𝑁𝑐 -Point FFT. A
phase shift is introduced to compensate for the down conversion from 𝑁 to 𝑁𝑐 samples.

2.3.2 FAM method. Taking Eq. (2), and substituting 𝑋𝑇 = 𝑌𝑇 to compute at the frequency 𝑓𝑘𝑙 =

(𝑓𝑘 + 𝑓𝑙 )/2, Eq. (2) becomes

𝑆𝛼0
𝑥𝑦𝑇
(𝑛, 𝑓𝑘𝑙 )Δ𝑡 =

∑︁
𝑟

𝑋𝑇 (𝑟, 𝑓𝑘 )𝑋 ∗𝑇 (𝑟, 𝑓𝑙 )𝑔(𝑛 − 𝑟 ). (7)
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Applying this for 𝑃 segments (Eq. (6)), the SCD function becomes

𝑆𝛼0
𝑥𝑦𝑇
(𝑝𝐿, 𝑓𝑘𝑙 )Δ𝑡 =

∑︁
𝑟

𝑋𝑇 (𝑟𝐿, 𝑓𝑘 )𝑋 ∗𝑇 (𝑟𝐿, 𝑓𝑙 )𝑔𝑑 (𝑝 − 𝑟 ) (8)

where 𝑝 = {0, 1, ..., 𝑃 −1} and 𝑔𝑑 (𝑟 ) = 𝑔(𝑟𝐿). Now the cycle frequency parameter has been redefined
to 𝛼0 = 𝑓𝑙 − 𝑓𝑘 + 𝜖 , as the 𝜖 = Δ𝑓 is the introduced frequency shift. Introducing 𝜖 = 𝑞Δ𝛼 (Δ𝛼 = 𝑓𝑠/𝑃
and 𝑞 =

Δ𝑓
Δ𝛼 ) to Eq. (8),

𝑆𝛼0
𝑥𝑦𝑇
(𝑝𝐿, 𝑓𝑘𝑙 )Δ𝑡 ≈

∑︁
𝑟

𝑋𝑇 (𝑟𝐿, 𝑓𝑘 )𝑋 ∗𝑇 (𝑟𝐿, 𝑓𝑙 )𝑔𝑑 (𝑝 − 𝑟 )𝑒−𝑖2𝜋𝜖𝑟𝑇𝑠 . (9)

When we substitute 𝑎𝑘𝑙 = 𝑓𝑘 − 𝑓𝑙 , 𝑓0 = 𝑓𝑘𝑙 = (𝑓𝑘 + 𝑓𝑙 )/2 and 𝛼0 = 𝑎𝑘𝑙 + 𝑞Δ𝛼 [7], the following is
obtained

𝑆
𝑎𝑘𝑙+Δ𝛼
𝑥 (𝑝𝐿, 𝑓𝑘𝑙 )Δ𝑡 =

∑︁
𝑟

𝑋𝑇 (𝑟𝐿, 𝑓𝑘 )𝑋 ∗𝑇 (𝑟𝐿, 𝑓𝑙 )︸                    ︷︷                    ︸
Conjugate Multiplication

𝑔𝑑 (𝑝 − 𝑟 )

︸                                 ︷︷                                 ︸
windowed by g(n)

𝑒−𝑖2𝜋𝑟𝑞/𝑃

︸                                                   ︷︷                                                   ︸
P-point FFT

.

(10)

The Xilinx FFT LogiCORE intellectual property (IP) core[12], provides four different architectures
and a bit-accurate C library for simulation. It has AXI4-Stream compliant interfaces which were
used to communicate with the other code in our implementation. It was used in the computation
of the complex demodulates as it had several times higher performance per DSP than a pure HLS
implementation.

3 FAM ERROR ANALYSIS
We now present an error analysis of FAM, using two separate models. The FAM_M1 model employs
a fixed dynamic range where complex additions in FFT calculations are truncated according to
Eq. 15. For FAM_M2, we grow the word-length for each addition, so these additions contribute
zero quantization error. Details of the derivation of the output noise or signal variance of the FAM
method is listed in Appendix A.

3.1 Quantization Models
3.1.1 FAM_M1 - Fixed Precision. In the FAM_M1 model, we represent signals as 𝐵-bit two’s
complement fractions

𝑎 = −𝑎𝐵−1 +
𝐵−2∑︁
𝑖=0

𝑎𝑖 , 2𝑖−(𝐵−1) (11)

where∀𝑖, 𝑎𝑖 ∈ {0, 1}, and range𝑎 ∈ [−1, 1). In this representation, themost significant bit determines
the sign and the remaining 𝐹 = 𝐵 − 1 bits are used for the fraction.

Oppenheim et al. [16] and Widrow et al. [23] have developed a statistical quantization analysis,
illustrated in Fig. 3. All operations where a signal 𝑥 is quantized to 𝑥 ′ by quantizer 𝑄 are modelled
by an additive noise source 𝑛, which is assumed to be uncorrelated, uniformly distributed ∈
[−2−𝐹−1, 2−𝐹−1) and with variance 𝜎2 =

(2−𝐹 )2
12 .

For the analysis in this paper, the computations only involve a series of multiplication and
addition operations. Therefore, it is necessary to account for the quantization errors introduced by
these blocks in order to deduce a quantitative analysis for the whole system. For two’s complement
fractions, the number of fraction bits for the product result is 2𝐹 which is rounded to 𝐹 bits to match
the wordlength. In this case, the quantization error is (2

−𝐹 )2
12 − (2

−2𝐹 )2
12 approximated as 𝜎2

𝑚 =
(2−𝐹 )2
12 .
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Fig. 3. Quantization noise model (𝑥 ′(𝑛) = 𝑥 (𝑛) + 𝑛)

Moreover, for the multiplication of two complex values, four real multiplications contribute to the
variance [16, 22]:

𝜎2
𝑐𝑐 = 4𝜎2

𝑚 =
(2−𝐹 )2

3
. (12)

For a real number multiplied with a complex number, it is

𝜎2
𝑟𝑐 = 2𝜎2

𝑚 =
(2−𝐹 )2

6
. (13)

Quantization errors are also introduced by addition. An 𝐹 -bit addition in general has an 𝐹 + 1 bit
result with no quantization error. To scale this back to 𝐹 -bits without overflow requires a right shift
which introduces a noise term with variance [16, 23]

𝜎2
𝑎𝑑

=
(2−𝐹 )2

8
. (14)

As the addition of two complex numbers computes the real and imaginary components separately,
the variance [16, 23] becomes:

𝜎2
𝑎𝑐 = 2𝜎2

𝑎𝑑
=
(2−𝐹 )2

4
. (15)

Eq. (12) to Eq. (15) form the necessary equations for our quantization analysis.
The Fast Fourier Transform (FFT) [3] employs a butterfly structure and Fig. 4a illustrates the

noise model of the Decimation-in-time (DIT) Radix-2 FFT, where N is the number of points of the
FFT. This involves𝑚 = log2 𝑁 stages. The noise model introduces round off (𝜎2

𝑐𝑐 ) and truncation
(𝜎2

𝑎𝑐 ) terms to the system. For the 𝑘th (1 < 𝑘 < 𝑚) stage, the input is 𝑥𝑘−1 + 𝜎2
𝑘−1 and the output is

𝑥𝑘 + 𝜎2
𝑘
, with [𝑎] and [𝑏] denoting the upper and lower part of the butterfly structure.

-1

(a) Rounding error and truncation error

-1

(b) Rounding error

Fig. 4. Quantization Noise Model of Radix-2 DIT Butterfly Structure (𝑘𝑡ℎ Stage, 1<k<m)
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To avoid overflow, a right-shift is introduced in each stage. Thus, the variance of signal and noise
have to be multiplied by 1/4 before introducing the truncation noise term. Therefore, the variance
is

𝜎2
𝑘
[𝑎] = (𝜎2

𝑘−1 [𝑎] + 𝜎
2
𝑘−1 [𝑏] + 𝜎

2
𝑐𝑐 )

1
4
+ 𝜎2

𝑎𝑐1 (16a)

𝜎2
𝑘
[𝑏] = (𝜎2

𝑘−1 [𝑎] + 𝜎
2
𝑘−1 [𝑏] + 𝜎

2
𝑐𝑐 )

1
4
+ 𝜎2

𝑎𝑐2. (16b)

In summary, the quantization noise arising from the FFT operation is modelled as the sum of the
round off (𝜎2

𝑅
) and truncation (𝜎2

𝑇
) components. As 𝑁 = 2𝑚 the variance of those two noise terms

generated from each butterfly and passed to the final stage are

𝜎2
𝑅 = 𝜎2

𝑐𝑐 (
𝑁

2
) ( 1
𝑁
) [𝑁 ( 1

4
)𝑚 + 𝑁

2
( 1
4
)𝑚−1 + ... + 𝑁

2𝑚−1
( 1
4
)]

=
1
2
𝜎2
𝑟 [1 − (

1
2
)𝑚]

=
1
6
2−2𝐹 [1 − ( 1

2
)𝑚]

(17)

and

𝜎2
𝑇 = 𝜎2

𝑎𝑐 [
𝑁

2
( 1
4
)𝑚−1 + 𝑁

4
( 1
4
)𝑚−2 + ... + 𝑁

2𝑚
( 1
4
)𝑚−𝑚]

= 2𝜎2
𝑎𝑐 [1 − (

1
2
)𝑚]

=
1
2
2−2𝐹 [1 − ( 1

2
)𝑚] .

(18)

Thus, the output noise variance is

𝜎2
𝐸_𝑀1 = 𝜎2

𝑇 + 𝜎2
𝑅 =

2
3
2−2𝐹 [1 − ( 1

2
)𝑚] (19)

However, when𝑤 ∈ {1,−1, 𝑗,− 𝑗}, the error from multiplication will be zero. Therefore, the first
two stages of DIT do not introduce noise. After extracting those from the Equation (19), the final
expression of FFT quantization noise becomes

𝜎2
𝐹_𝑀1 = 𝜎2

𝐸_𝑀1 − 𝜎2
stage 1 and 2 =

2−2𝐹

3
[2 − 𝑚 + 1.5

𝑁
] . (20)

Furthermore, based on Equation (16), the gain of this block is 1
𝑁
.

In conjugatemultiplication, the complex signal is multiplied by the conjugate of each thread signal,
which generates quantization noise when truncating to the specified wordlength. W. Schlecker
et al. derive the quantization error for the multiplication result of two quantized signals (in real
number) [18] as

𝑆𝑁𝑅 =
𝜎2
𝑥1𝜎

2
𝑥2

𝜎2
𝑥1𝜎

2
𝑒2 + 𝜎2

𝑥2𝜎
2
𝑒1 + 𝜎2

𝑒1𝜎
2
𝑒2 + 𝜎2

𝑒𝑞

(21)

where 𝜎2
𝑥 , 𝜎2

𝑒 and 𝜎2
𝑒𝑞 is the variance of input signal, input error and the error generated by

multiplication.
The error analysis assumes the signals are all independent. Hence, the signal power after complex

conjugate multiplication becomes

𝑃2
𝑆.𝐶𝑀 = 𝑃2

𝑠1𝑃
2
𝑠2 (22)
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Input
Signal Framing

FFT 
GF1 

Down
Conversion 

FFT, GF2  
(with g(n)) 

xin(pL+1:pL+N') 
yin(pL+1:pL+N') 

 xw:{a(r)x(pL+1:pL+N') 
 yw:{a(r)y(pL+1:pL+N') 

X(pL,f)
Y(pL,f)

SSCA:Saxy(r',f0)Δt
 

DEMODULATE

x(n) 
y(n) 

* p = 0,...,P-1
* k = 1...N'
* pL<=r'<(p+1)L
* Norm: normalization
* q: normalization factor

XT(pL,fk)YT(pL,fl)

FAM:Saxy(pL,fkl)Δt
 

σw
2 σF1

2

σCM
2σF2

2

Norm2 
 (q2) 

Norm1 
 (q1) 

X'(pL,f) 
Y'(pL,f) 

σq1
2

σq2
2

Norm3 
 (q3) 

σq3
2

* The normalization blocks in red are only required for FAM_M2

Conjugate Multiplication
GCM

FFT2

Windowing 
a(r)

CMM

Fig. 5. SCD Signal Flow Graph for FAM_M1 (Fixed Precision) in black and FAM_M2 (Mixed Precision)
techniques

and the variance of the output noise becomes

𝜎2
𝑁 .𝐶𝑀 = 𝑃2

𝑠1𝜎
2
𝑠2 + 𝑃2

𝑠2𝜎
2
𝑠1 + 𝜎2

𝑠1𝜎
2
𝑠2 + 𝜎2

𝐶𝑀 (23)

where 𝜎2
𝑠1 and 𝜎

2
2 denote the input noise sources, 𝑃𝑠1 and 𝑃𝑠2 are the power of two input signals,

and 𝜎2
𝐶𝑀

= 𝜎2
𝑐𝑐 is the quantization error introduced by the complex multiplication.

3.1.2 FAM_M2 - Mixed Precision. Since quantization noise is determined by the number of frac-
tional bits, each right shift in the FAM_M1 model degrades the SQNR. Therefore, we introduce a
new FAM_M2 model, which uses mixed precision to improve the SQNR by increasing the number
of bits per addition and rescaling to avoid overflow [9].

Fig. 4b illustrates the new noise model for Decimation-in-time (DIT) Radix-2 FFT which has only
round off noise, accompanied by a normalization to adjust the weight of the signal after the first
FFT, conjugate multiplication and second FFT. The other settings are the same as in FAM_M1.

To compute the new noise model for the FFT, the variance for both lower and upper parts of the
𝑘𝑡ℎ butterfly become

𝜎2
𝑘
[𝑎] = 𝜎2

𝑘−1 [𝑎] + 𝜎
2
𝑘−1 [𝑏] + 𝜎

2
𝑐𝑐 (24a)

𝜎2
𝑘
[𝑏] = 𝜎2

𝑘−1 [𝑎] + 𝜎
2
𝑘−1 [𝑏] + 𝜎

2
𝑐𝑐 . (24b)

In the 𝑘𝑡ℎ stage, 𝑁𝑐/2 points are multiplied with twiddle factors, introducing an error that doubles
when passing through each of the𝑚 − 𝑘 + 1 subsequent stages. Thus, the variance of output of the
FFT can be computed from Eq. (24) to

𝜎2
𝐸_𝑀2 = 𝜎2

𝑐𝑐

𝑁𝑐

2
1
𝑁𝑐

[2𝑚 + 2𝑚−1 + ... + 2]

= (2𝑚 − 1)𝜎2
𝑐𝑐 .

(25)

Removing the quantization error of the twiddle factor ∈ {𝑖,−𝑖, 1,−1} from the Eq. (25), the variational
expression for the FFT quantization error is

𝜎2
𝐹_𝑀2 = [

2𝑚

6
− 1] 2

−2𝐹

3
. (26)
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Table 1. Summary of gain and quantization error for each block of FAM_M1 and FAM_M2

Blocks Gain Block Error Output Error Output Signal Integer bits

FAM_M1
FAM_M2

Framing 1 - - 𝑃𝑠 1
Windowing 𝐺𝑊 = 1

1.592 [4] 𝜎2
𝑤 = 𝜎2

𝑟𝑐 𝜎2
𝑁 .𝑊

= 𝜎2
𝑟𝑐 𝑃𝑆.𝑊 =

𝑃𝑠
1.592 1

Down Conversion 1 - - - 1

FAM_M1
First FFT 𝐺𝐹1 = 1/𝑁𝑐 𝜎2

𝐹1 = 𝜎2
𝐹_𝑀1 𝜎2

𝑁 .𝐹1 = 𝜎2
𝑁 .𝑊
/𝑁𝑐 + 𝜎2

𝐹1 𝑃𝑆.𝐹1 = 𝑃𝑆.𝑊 /𝑁𝑐 1
Conjugate Multiply 𝐺𝐶𝑀 𝜎2

𝐶𝑀
= 𝜎2

𝑐𝑐 𝜎2
𝑁 .𝐶𝑀

𝑃𝑆.𝐶𝑀 1
Second FFT 𝐺𝐹2 = 1/𝑁𝑓 𝜎2

𝐹2 = 𝜎2
𝐹_𝑀1 𝜎2

𝑁 .𝐹2 = 𝜎2
𝑁 .𝑊
/𝑁𝑓 + 𝜎2

𝐹2 𝑃𝑆.𝐹2 = 𝑃𝑆.𝐶𝑀/𝑁𝑓 1

FAM_M2

First FFT 𝐺𝐹1 = 𝑁𝑐 𝜎2
𝐹1 = 𝜎2

𝐹_𝑀2 𝜎2
𝑁 .𝐹1 = 𝜎2

𝑁 .𝑊
𝑁𝑐 + 𝜎2

𝐹1 𝑃𝑆.𝐹1 = 𝑃𝑆.𝑊𝑁𝑐 𝑙𝑜𝑔2𝑁𝑐 + 1
Normalization 1 𝐺𝑁𝑜𝑟𝑚1 = 𝑞21 𝜎2

𝑞1 = 𝜎2
𝑟𝑐 𝜎2

𝑁 .𝑞1 = 𝜎2
𝑁 .𝐹1𝑞

2
1 + 𝜎2

𝑞1 𝑃𝑆.𝑞1 = 𝑃𝑆.𝐹1𝑞
2
1 1

Conjugate Multiply 𝐺𝐶𝑀 𝜎2
𝐶𝑀

= 𝜎2
𝑐𝑐 𝜎2

𝑁 .𝐶𝑀
𝑃𝑆.𝐶𝑀 2

Normalization 2 𝐺𝑁𝑜𝑟𝑚2 = 𝑞22 𝜎2
𝑞2 = 𝜎2

𝑟𝑐 𝜎2
𝑁 .𝑞2 = 𝜎2

𝑁 .𝐶𝑀
𝑞22 + 𝜎2

𝑞2 𝑃𝑆.𝑞2 = 𝑃𝑆.𝐶𝑀𝑞
2
2 1

Second FFT 𝐺𝐹2 = 𝑁𝑓 𝜎2
𝐹2 = 𝜎2

𝐹_𝑀2 𝜎2
𝑁 .𝐹2 = 𝜎2

𝑁 .𝑞2𝑁𝑓 + 𝜎2
𝐹2 𝑃𝑆.𝐹2 = 𝑃𝑆.𝑞2𝑁𝑓 𝑙𝑜𝑔2𝑁𝑓 + 1

Normalization 3 𝐺𝑁𝑜𝑟𝑚3 = 𝑞23 𝜎2
𝑞3 = 𝜎2

𝑟𝑐 𝜎2
𝑁 .𝑞3 = 𝜎2

𝑁 .𝐹2𝑞
2
3 + 𝜎2

𝑞3 𝑃𝑆.𝑞3 = 𝑃𝑆.𝐹2𝑞
2
3 1

3.2 FAM Signal Flow Diagram
Fig. 5 illustrates the signal flow diagram for FAM_M1 and FAM_M2. The gain and variance in-
troduced by each block in Fig. 5 are calculated using the equations from the previous subsection
and summarized in Table 1. In the figure, the noise introduced in each block is the block error
(𝜎2
∗ ), the output error (𝜎2

𝑁 .∗) is the sum of the block error and the output error from previous block
multiplied by the gain of the current block, and the power of the signal passing out of each block is
the output signal (𝑃𝑆.∗) where ∗ refers to a particular block in the signal flow.

3.2.1 Framing +Windowing. The Framing block rearranges the data sequence 𝑥 (𝑛) into 𝑃 segments,
defined as 𝑥 (𝑝𝐿+1 : 𝑝𝐿+𝑁𝑐 ) where 𝑝 = 0...𝑃−1. For theWindowing block, 𝑎(𝑁𝑐 )𝑥 (𝑝𝐿+1 : 𝑝𝐿+𝑁𝑐 )
in Eq. (6) shows the multiplication between the inputs and the Hamming Window yielding a
rounding error (𝜎2

𝑤 = 𝜎2
𝑟𝑐 ). In addition, the power correlation factor of the Hamming Window is

1.59 (≈ 1/(𝑅𝑀𝑆 (𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝑊𝑖𝑛𝑑𝑜𝑤))) where RMS is root-mean-square. So, there is approximately
a 4 dB (≈ 10𝑙𝑜𝑔10 (1.592)) reduction in SQNR after windowing.

3.2.2 The First Fast Fourier Transform. DIT FFT blocks are employed to implement Eq. (6). The
noise power is given by Eq. (20) where 𝑁𝑐 is the points of FFT,𝑚1 is the stages of FFT. The gain of
this block is 1/𝑁𝑐 .

3.2.3 Down Conversion. To implement the complex demodulate, the FFT output needs to be down
converted. To control cycle leakage and aliasing, 𝐿 is set to 𝑁𝑐/4 and therefore 𝑒−𝑖2𝜋𝑚𝑝𝐿/𝑁𝑐 can
only take the values (i, -i, 1, -1) and does not introduce quantization error.

3.2.4 Conjugate Multiplication. The function of this block is to compute a complex dot product
in Eq. (10) and the underlying computation is to multiply an input with its conjugate. We assume
those two signals are independent but have the same input signal and noise power (𝑃𝑆.𝑆 = 𝑃𝑠1 = 𝑃𝑠2
and 𝜎2

𝑁 .𝑆
= 𝜎2

𝑠1 = 𝜎2
𝑠2). Thus, Eq. (23) can be simplified to 𝜎2

𝑁 .𝐶𝑀
= 2𝑃2

𝑆.𝑆
𝜎2
𝑁 .𝑆
+ 𝜎4

𝑁 .𝑆
+ 𝜎2

𝐶𝑀
where

𝜎4
𝑁 .𝑆

is approximated as zero due to its high order. The power of the output signal, 𝑃𝑆.𝐶𝑀 , is 𝑃2
𝑆.𝑆

.

3.2.5 The Second Fast Fourier Transform. The second FFT is an 𝑁𝑓 point one, where 𝑁𝑓 = 𝑃 .
Similar to the First FFT, the noise power of the Second FFT is given by Eq. (20) where 𝑁𝑓 is FFT
size and𝑚2 = 𝑙𝑜𝑔2 (𝑁𝑓 ) is the number of stages. The gain of this block is 1/𝑁𝑓 .
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Fig. 6. SQNR performance for the FAM_M1 Method at different wordlengths

3.3 SQNR Noise Model for FAM_M1
The FAM_M1 model employs a fixed wordlength for all signals. This is achieved by truncating
multiplications and right shifting additions so that the result remains in the range [−1, 1).

Combining all the noise terms in Fig. 5, the output noise variance (𝜎2) of FAM_M1 can be reduced
to the following form

𝜎2
𝐹𝐴𝑀_𝑀1 = [(𝜎2

𝑊𝐺𝐹1 + 𝜎2
𝐹1
)𝐺𝐶𝑀 + 𝜎2

𝐶𝑀 ]𝐺𝐹2 + 𝜎2
𝐹2

=𝑊𝑊 2−2𝐹𝑊 +𝑊𝐹12
−2𝐹1 +𝑊𝐶𝑀2−2𝐹𝐶𝑀 +𝑊𝐹22

−2𝐹2

=
∑︁

#∈{𝑊,𝐹1,𝐶𝑀,𝐹2 }
𝑊#2−2𝐹#

(27)

where𝑊# and 𝐹# are the parameters and the number of fraction bits of each section. The power of
output signal is

𝑃𝐹𝐴𝑀_𝑀1 = 𝑃𝑖 .𝑠𝐺𝑊𝐺𝐹1𝐺𝐶𝑀𝐺𝐹2 (28)
where 𝑃𝑖 .𝑠 is the power of the input signal. The detailed derivations for the FAM_M1 is given in
Appendix A.1.

The SQNR for the FAM_M1 method is

𝑆𝑄𝑁𝑅 = 10 log10 (
𝑃𝐹𝐴𝑀_𝑀1

𝜎2
𝐹𝐴𝑀_𝑀1

). (29)

Fig. 6 shows the SQNR analysis using Eq. (29) for both sine wave and square wave input using
the FAM_M1. A low SQNR results from scaling of each addition operation through a right shift
(division by 2) which is necessary to avoid overflow.

3.4 SQNR Noise Model for FAM_M2
The FAM_M2 model increases the number of bits for each addition and rescaling to avoid overflow.
As a result, this design is a mixed precision one and only rounding errors are introduced. Since
overflow cannot occur, in either FFT or the conjugate multiplications, the Framing, Windowing
and Down Conversion blocks remain unchanged from FAM_M1.

3.4.1 The First Fast Fourier Transform + Normalization 1. The noise power of the new system is
given by Eq. (26). Because additions in each FFT stage require an additional integer bit to avoid
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overflow, the complex output is scaled via the (real) normalization factor𝑞1 so the real and imaginary
parts are ∈ [−1, 1). This introduces variance 𝜎2

𝑞1.

3.4.2 Conjugate Multiplication + Normalization 2. The computation part is same as the previous
method. The normalized factor for this part is 𝑞2, which rescales to produce a variance 𝜎2

𝑞2.

3.4.3 The Second Fast Fourier Transform + Normalization 3. The second FFT is 𝑁𝑓 points to estimate
the sum with 𝑞3 normalization factor and variance 𝜎2

𝑞3.

3.5 FAM_M2 - SQNR Calculation
Combining all the noise and gain values of Fig. 5 and using the definitions in Table. 1, the output
noise variance and power of output signal can be written as
𝜎2
𝐹𝐴𝑀_𝑀2 = [((((𝜎2

𝑊𝐺𝐹1 + 𝜎2
𝐹1
)𝐺𝑁𝑜𝑟𝑚1 + 𝜎2

𝑞1 )𝐺𝐶𝑀 + 𝜎2
𝐶𝑀 )𝐺𝑁𝑜𝑟𝑚2 + 𝜎2

𝑞2 )𝐺𝐹2 + 𝜎2
𝐹2
]𝐺𝑁𝑜𝑟𝑚3 + 𝜎2

𝑞3

=𝑊𝑊 2−2𝐹𝑊 +𝑊𝐹12
−2𝐹1 +𝑊𝐶𝑀2−2𝐹𝐶𝑀 +𝑊𝐹22

−2𝐹2

=
∑︁

#∈{𝑊,𝐹1,𝐶𝑀,𝐹2}
𝑊#2−2𝐹#

(30)
and

𝑃𝐹𝐴𝑀_𝑀2 = 𝑃𝑖 .𝑠𝐺𝑊𝐺𝐹1𝑞
2
1𝐺𝐶𝑀𝑞

2
2𝐺𝐹2𝑞

2
3 . (31)

The detailed derivations for the FAM_M2 is given in Appendix A.2.

4 IMPLEMENTATION
The FAM algorithm can be decomposed into three sections, DEMODULATE, FFT2, and Sparse
SCD. Fig. 5 indicates the details of the first two parts, and the Sparse SCD will be presented in
Section 4.3. Beginning with a naive baseline implementation, we propose a second design where
computational efficiency is maximised through parallelism. Finally, a technique for I/O bandwidth
reduction which improves system-level performance is described. We design an HLS-based parallel
architecture and integrate it into a Zynq processing system on the Xilinx ZCU111 board, on top of
which a Jupyter notebook is developed to visualize the results.

C/C++-based synthesis via Vivado HLS was chosen in preference to a register transfer language
(RTL) design flow such as VHDL or Verilog because it allows non-FPGA experts to modify the code,
directly supports fixed-point types, and has high design productivity.

The ap_fixed [11] bit-accurate fixed-point library, greatly facilitated comparison of our theoretical
SQNR models with simulations, and hardware implementations in Verilog could be generated from
the same source code. In this library a fixed-point data type is represented using the C++ template
𝑎𝑝_[𝑢]fixed <𝑊, 𝐼,𝑄,𝑂, 𝑁 >, where𝑊 is the wordlength in bits, 𝐼 the number of integer bits, 𝑄
the quantization mode,𝑂 the overflow mode and 𝑁 is the number of saturation bits in the overflow
wrap mode [11].

4.1 Baseline Implementation
An implementation based on Fig. 5 was first developed. The system accepts a window of input data
and calculates all the outputs for each block, and the results are streamed to subsequent blocks.
Parallelism between blocks is achieved via DATAFLOWpragmas in the HLS description. Pseudocode
for the baseline implementation is listed in Algorithm 1. The blocks operate independently in a
pipelined manner so the throughput is equal to the throughput of the block with highest initiation
interval (II). The Second FFT part requires O(𝑁 2

𝑐 ) operations and hence is the computational
bottleneck.
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Algorithm 1: Baseline Implementation.
Input: Stream in.
Output: Stream out.
# pragma HLS DATAFLOW
// Framing
𝑥𝑖𝑛[0 : 𝑃 − 1, 0 : 𝑁𝑐 − 1] ← 𝐹𝑟𝑎𝑚𝑖𝑛𝑔(𝑖𝑛.𝑟𝑒𝑎𝑑 ())
// Windowing
𝑥𝑤 [0 : 𝑃 − 1, :] ← 𝑥𝑖𝑛[0 : 𝑃 − 1, :] ∗ 𝑎[:]
// First FFT
𝑋 [0 : 𝑃 − 1, :] ← 𝐹𝐹𝑇 (𝑥𝑤 [0 : 𝑃 − 1, :]) //𝑁𝑐 point FFT
// Down Conversion
𝑋𝑇 [0 : 𝑃 − 1, :] ← 𝐷𝑜𝑤𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑋 [0 : 𝑃 − 1, :])
// Conjugate Multiplication
for 𝑖 ← 0 to 𝑁𝑐 − 1 by 1 do

for 𝑗 ← 0 to 𝑁𝑐 − 1 by 1 do
𝐶𝑀 [:, 𝑖 ∗ 𝑁𝑐 + 𝑗] ← 𝑋𝑇 [:, 𝑖] ∗ 𝑐𝑜𝑛 𝑗 (𝑋𝑇 [:, 𝑗])

end
end
//Second FFT
𝑀 [:, 0 : 𝑁𝑐 ∗ 𝑁𝑐 − 1] ← 𝐹𝐹𝑇 (𝐶𝑀 [:, 0 : 𝑁𝑐 ∗ 𝑁𝑐 − 1]) //𝑁𝑓 point FFT
𝑃𝑎 [:, :] ← 𝑀 [𝑃/2 : (3𝑃/4 − 1), 0 : 𝑁𝑐 ∗ 𝑁𝑐 − 1]
𝑃𝑏 [:, :] ← 𝑀 [𝑃/4 : (𝑃/2 − 1), 0 : 𝑁𝑐 ∗ 𝑁𝑐 − 1]
𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 () ← {𝑃𝑎, 𝑃𝑏}
return 𝑜𝑢𝑡

4.2 Computation Optimization
To optimize the design we employ spatial parallelism by instantiating DSTRIDE parallel units for
the DEMODULATE computation and FSTRIDE parallel units for FFT2. We note that DEMODULATE
(framing, windowing, 𝑁𝑐 -point FFT and down-conversion) is computed row-wise, whereas FFT2
requires column-wise inputs (Algorithm 1). This makes their boundary a natural place for a pipeline
stage.
Our overall strategy is to create a pipeline where the DEMODULATE and FFT2 stages have a

similar II. In Algorithm 2, we merge related blocks in the same loop, so that we can circulate arrays
with 𝑁𝑐 items in complex demodulation, or pass arrays with 𝑃 items in the second part of the
loop. Streams are characterized by reading or writing once in each loop, and the HLS PARTITION
pragma is used to parallelise array accesses.

The pseudo-code for computing the DEMODULATE and FFT2 stages are presented as Algorithm 3.
Referring to Fig 5, the 𝑥𝑤 , 𝑋 , and 𝑋𝑇 variables represent the output arrays of windowing, first FFT,
and down conversion steps (described in Section 3.2) respectively. We implement the FFT for the
DEMODULATE block using the Xilinx FFT library. The FFT IP core library computes the unscaled
fixed point precision DIT FFT and rounds to the specified wordlength after the butterfly, which
means the rounding error comes from real and imaginary part of the complex result.
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Algorithm 2:Merging of Algorithm 1.
Input: Stream in.
Output: Stream out.
# pragma HLS DATAFLOW
// Framing
𝑥𝑖𝑛[0 : 𝑃 − 1, 0 : 𝑁𝑐 − 1] ← 𝐹𝑟𝑎𝑚𝑖𝑛𝑔(𝑖𝑛.𝑟𝑒𝑎𝑑 ())
//DEMODULATE
for 𝑖 ← 0 to 𝑃 − 1 by 1 do

// Windowing
𝑥𝑤 [:] ← 𝑥𝑖𝑛[𝑖, :] ∗ 𝑎[:]
// First FFT
𝑋 [:] ← 𝐹𝐹𝑇 (𝑥𝑤 [:]) //𝑁𝑐 point FFT
// Down Conversion
𝑋𝑇 [𝑖, :] ← 𝐷𝑜𝑤𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑋 [:])

end
// FFT2
for 𝑖 ← 0 to 𝑁𝑐 − 1 by 1 do

for 𝑗 ← 0 to 𝑁𝑐 − 1 by 1 do
𝐶𝑀 [:, 𝑖 ∗ 𝑁𝑐 + 𝑗] ← 𝑋𝑇 [:, 𝑖] ∗ 𝑐𝑜𝑛 𝑗 (𝑋𝑇 [:, 𝑗])
𝑀 [:] ← 𝐹𝐹𝑇 (𝐶𝑀 [:, 𝑖 ∗ 𝑁𝑐 + 𝑗]) //𝑁𝑓 point FFT
𝑃𝑎 [:] ← 𝑀 [𝑃/2 : (3𝑃/4 − 1)]
𝑃𝑏 [:] ← 𝑀 [𝑃/4 : (𝑃/2 − 1)]
𝑜𝑢𝑡 .𝑤𝑟𝑖𝑡𝑒 () ← {𝑃𝑎, 𝑃𝑏}

end
end
return 𝑜𝑢𝑡

The DEMODULATE computation requires less resources than the following FFT2 part and so
compile-time parameters are introduced to balance the II of each stage. In Algorithm 3, DSTRIDE con-
trols the degree of parallelism. The 𝑠𝑎𝑣𝑒_𝑖𝑛 function is used for buffering. The final stage of DEMOD-
ULATE, 𝑎𝑟𝑟𝑎𝑦_𝑟𝑒𝑜𝑟𝑑𝑒𝑟 , is transferring the matrix from the size of 𝐷𝑆𝑇𝑅𝐼𝐷𝐸 × (𝑃/𝐷𝑆𝑇𝑅𝐼𝐷𝐸) ×𝑁𝐶

to 𝑁𝑐 × 𝑃 and reordering in preparation for FFT2.
Fig. 7 illustrates the data flow for the FFT2 part of the FAM implementation. The initial stages

prepare data for parallel Conjugate Multiplication + FFT (CMF) units (Fig. 8). FSTRIDE determines
the degree of parallelism used in the CMF units. A total of FSTRIDE×CMF units are operated
in parallel, with each CMF unit optimised for minimal II. Together this has 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 =

𝑁 2
𝑐 𝐼 𝐼𝐶𝑀𝐹 /𝐹𝑆𝑇𝑅𝐼𝐷𝐸. For high performance we wish to have 𝐼 𝐼𝐶𝑀𝐹 = 1. This can be achieved under

the following conditions represented in Fig. 8:
• an array and its conjugate should be passed to the CMF unit each cycle;
• arrays must use PARTITION to read or write values each cycle;
• the inner for loops must be UNROLLed;
• the computation of each stage and the buffers for the result in the 𝑁𝑓 -point FFT must all be
independent;
• the 𝑁𝑓 -point FFT executes all butterflies in parallel.
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Algorithm 3: Optimization through spatial parallelism.
Input: Stream in.
Output: An array of stream 𝑂𝑢𝑡 with a size of 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 × 𝑃/2.
# pragma HLS DATAFLOW
// DEMODULATE
𝑥𝑖𝑛[:] [:, :] ← 𝑠𝑎𝑣𝑒_𝑖𝑛(𝑖𝑛.𝑟𝑒𝑎𝑑 ()) // The size of 𝑥𝑖𝑛 is [𝐷𝑆𝑇𝑅𝐼𝐷𝐸] [𝑃/𝐷𝑆𝑇𝑅𝐼𝐷𝐸, 𝑁𝑐 ]
for 𝑖 ← 0 to 𝑃/𝐷𝑆𝑇𝑅𝐼𝐷𝐸 − 1 do

for 𝑛 ← 0 to 𝐷𝑆𝑇𝑅𝐼𝐷𝐸 − 1 do
# pragma HLS UNROLL
𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠: // Preprocess is a function with following sub_functions
{
# pragma HLS DATAFLOW
𝑥𝑤 [𝑛] [𝑖, :] ← 𝑥𝑖𝑛[𝑛] [𝑖, :] ∗ 𝑎[:]
𝑋 [𝑛] [𝑖, :] ← 𝐹𝐹𝑇 (𝑥𝑤 [𝑛] [𝑖, :]) //𝑁𝑐 point FFT
𝑌 [𝑛] [𝑖, :] ← 𝐷𝑜𝑤𝑛𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛(𝑋 [𝑛] [𝑖, :])
}

end
end
𝑋𝑇 [:, 0 : 𝑃 − 1] ← 𝑎𝑟𝑟𝑎𝑦_𝑟𝑒𝑜𝑟𝑑𝑒𝑟 (𝑌 [0 : 𝐷𝑆𝑇𝑅𝐼𝐷𝐸 − 1] [0 : 𝑃/𝐷𝑆𝑇𝑅𝐼𝐷𝐸 − 1, :])
// FFT2
for 𝑛 ← 1 to 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 do

#𝑝𝑟𝑎𝑔𝑚𝑎𝐻𝐿𝑆 𝐴𝑅𝑅𝐴𝑌_𝑃𝐴𝑅𝑇𝐼𝑇 𝐼𝑂𝑁 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒 = 𝑋𝑛.𝑐𝑜𝑛𝑗 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑑𝑖𝑚 = 2
𝑋𝑛.𝑐𝑜𝑛𝑗 [:, :] ← 𝐶𝑜𝑛𝑗𝑢𝑔𝑎𝑡𝑒 (𝑋𝑇 [𝑛 : 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 : 𝑁𝑐 − 1, :])

end
for 𝑖 ← 0 to 𝑁𝑐 − 1 by 1 do

𝑋𝑡𝑒𝑚𝑝 [:] ← 𝑋𝑇 [𝑖, :]
for 𝑗 ← 0 to 𝑁𝑐 − 1 by 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 do

# pragma HLS PIPELINE = 1
for 𝑛 ← 0 to 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 − 1 by 1 do

# pragma HLS UNROLL
CMF unit:
{
𝐶𝑀 [:] ← 𝑋𝑡𝑒𝑚𝑝 [:] ∗ 𝑋𝑛.𝑐𝑜𝑛𝑗 [ 𝑗 + 𝑛, :]
𝑀 [:] ← 𝐹𝐹𝑇 (𝐶𝑀 [:]) //𝑁𝑓 point FFT
𝑃𝑎 [:] ← 𝑀 [𝑃/2 : (3𝑃/4 − 1)]
𝑃𝑏 [:] ← 𝑀 [𝑃/4 : (𝑃/2 − 1)]
𝑂𝑢𝑡 [𝑛 ∗ (𝑃/2) : (𝑛 + 1) ∗ (𝑃/2)] .𝑤𝑟𝑖𝑡𝑒 () ← {𝑃𝑎 [:], 𝑃𝑏 [:]}
}

end
end

end
return 𝑠𝑡𝑟𝑒𝑎𝑚𝑂𝑢𝑡 [0 : 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 ∗ 𝑃/2]
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Fig. 8. CMF unit data flow

The FFT2 part of Algorithm 3 shows the pseudo-code for Fig. 7. Before passing the data to the
CMF unit, we split and save the conjugate values into FSTRIDE matrices of size 𝑁𝑐/𝐹𝑆𝑇𝑅𝐼𝐷𝐸 × 𝑃
and PARTITION as 𝑑𝑖𝑚 = 2 (the second dimension is partitioned). The data is then transferred and
run into the FSTRIDE× CMF units synchronously. To accept coming data set in the next cycle, the
CMF is fully expanded by UNROLL in a for loop to compute the complex multiplication and the
result is stored in a new CM array. This is then passed to the 𝑁𝑓 -point FFT, and similarly, after each
stage of the FFT, the results are saved and passed in a new array while all the butterfly functions in
the for loop are fully expanded and computed.

The FFT2 requires a 𝑁𝑓 𝑙𝑜𝑔2 (𝑁𝑓 )/2 butterfly operations and, as illustrated in Fig. 4b, requires one
complex multiplication (two real multiplications and four real additions) and two complex additions
(four real additions). In FFT2, executing all butterflies in parallel will cause high computational
complexity. Thus, for the twiddle factor whose value is (1, −1, 𝑗, − 𝑗), the butterfly calculation can
be done by addition only. Therefore, we replace the first two stages of the FFT with pure addition,
so that the complex multiplication of 2/𝑙𝑜𝑔2(𝑁𝑓 ) can be reduced.
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Fig. 9. The SCD function is reduced either via thresholding or computing the alpha profile.

Table 2. Parameters chosen for our design. We set 𝐿 = 𝑁𝑐/4 and 𝑁𝑓 = 𝑃 = 𝑁 /𝐿.

Parameters 𝑁 𝑁𝑐 𝑃 𝑁𝑓 𝐿 𝐷𝑆𝑇𝑅𝐼𝐷𝐸 𝐹𝑆𝑇𝑅𝐼𝐷𝐸

value 2,048 256 32 32 64 1 or 4 2

4.3 I/O Optimization
As illustrated in Fig. 9, our architecture first computes the entire SCD matrix (dotted box) using
the approach just described. The number of streams in red in Fig. 9 is 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 × 𝑃/2. The result
is a dense matrix, but we are only interested in entries with high correlation, those values being
less than 1% of the complete matrix. The right-hand box illustrates a block to create a sparse SCD
matrix. It thresholds multiple, parallel streams and then multiplexes them into a single one. The
bottom box also illustrates the alpha profile which we have not implemented, but could be easily
included. In Eq. 3, the alpha profile is the maximum amplitude of the SCD matrix, mapped to
the alpha frequency axis [2, 13, 14]. The sparse SCD matrix provides an additional dimension of
information over the alpha profile.

Returning a sparse matrix or the alpha profile both serve to reduce the amount of data transferred
from accelerator to the host. This is fortunate because the SCD matrix has dimension 2𝑁 × 2𝑁𝑐 ,
e.g. for the example of Fig. 1c, value of 𝑁𝑐 and 𝑁 are set in Table 2, the output has 524,288 values.
In comparison, the sparse matrix fomat in Fig. 1d has only 2,396 values but is able to capture the
features of interest.

Our implementation of the FAM method just described outputs 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 × 𝑃/2 parallel streams,
each having a width of 𝑁 2

𝑐 /𝐹𝑆𝑇𝑅𝐼𝐷𝐸 values. As the number of CMF cells increases, the number of
output streams increases, which requires more I/O transactions. Algorithm 4 describes how we filter
and output the target value with associated position information and eventually merge the multiple
data streams to a single one. After thresholding, a converter function combines the nonzero value
and its coordinates into an Int64 data type which is streamed to the Multiplex function, which
combines data from the parallel streams to produce a stream of outputs that includes value and the
label information (frequency label (flabel) and alpha frequency label (alabel)).

4.4 Exploiting Symmetry
In Section 2 we have shown that the representation of the SCD estimation 𝑆𝛼𝑥 (𝑓 ) is a 2-D feature
map with the 𝑓 and 𝛼 axes. It is symmetrical in the bi-frequency dimension [6] as indicated in
Equations (32) and (33).

1Algorithm 4: for 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 = 2;
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Algorithm 4: Sparse SCD
// Threshold
Input: FSTRIDE array stream 𝐼𝑛1,...,𝐹𝑆𝑇𝑅𝐼𝐷𝐸 , each of size of 𝑃/2 and sequence order 𝑐𝑜𝑢𝑛𝑡𝑛.
Output: FSTRIDE array stream 𝑂𝑢𝑡1,...,𝐹𝑆𝑇𝑅𝐼𝐷𝐸 .
for 𝑗 ← 1 to 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 by 1 do

# pragma HLS UNROLL
for 𝑖 ← 0 to 𝑃/2 − 1 by 1 do

# pragma HLS UNROLL
if 𝐼𝑛 𝑗 [𝑖] > 𝑇𝐻𝑅𝐸𝑆𝐻𝑂𝐿𝐷 then

𝑎𝑙𝑎𝑏𝑒𝑙 ← 𝑎𝑙𝑝ℎ𝑎_𝑙𝑎𝑏𝑒𝑙 (𝑐𝑜𝑢𝑛𝑡𝑛)
𝑓 𝑙𝑎𝑏𝑒𝑙 ← 𝑓 𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦_𝑙𝑎𝑏𝑒𝑙 (𝑐𝑜𝑢𝑛𝑡𝑛)
𝑂𝑢𝑡 𝑗 [𝑖] ← (𝑖𝑛𝑡64)𝑝𝑎𝑐𝑘{𝐼𝑛 𝑗 [𝑖], 𝑎𝑙𝑎𝑏𝑒𝑙, 𝑓 𝑙𝑎𝑏𝑒𝑙}

end
countn = countn+1

end
end
return 𝑠𝑡𝑟𝑒𝑎𝑚 (𝑂𝑢𝑡1,...,𝐹𝑆𝑇𝑅𝐼𝐷𝐸 [0 : 𝑃/2])
// Multiplex
Input: FSTRIDE array stream 𝐼𝑛1,...,𝐹𝑆𝑇𝑅𝐼𝐷𝐸 , each of size 𝑃/2.
Output: Three streams 𝑣𝑎𝑙𝑢𝑒 , 𝑎𝑙𝑎𝑏𝑒𝑙 and 𝑓 𝑙𝑎𝑏𝑒𝑙 .
for 𝑗 ← 1 to 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 by 1 do

for 𝑖 ← 0 to 𝑃/2 − 1 by 1 do
{𝑣𝑎𝑙𝑢𝑒, 𝑎𝑙𝑎𝑏𝑒𝑙, 𝑓 𝑙𝑎𝑏𝑒𝑙} ← 𝑢𝑛𝑝𝑎𝑐𝑘 (𝐼𝑛 𝑗 [𝑖])

end
end
return 𝑠𝑡𝑟𝑒𝑎𝑚 (𝑣𝑎𝑙𝑢𝑒, 𝑎𝑙𝑎𝑏𝑒𝑙, 𝑓 𝑙𝑎𝑏𝑒𝑙)

𝑆𝛼𝑥 (𝑓 ) = 𝑆𝛼𝑥 (−𝑓 ) (32)

𝑆−𝛼𝑥 (𝑓 ) = 𝑆𝛼𝑥 (𝑓 )∗ (33)
Thus, it is sufficient to compute a quarter of the SCD matrix 𝑆𝛼𝑥 (𝑓 ), reducing computation by

25%. Fig. 10 shows an example for 𝑁𝑐 = 256 and 𝑁 = 2, 048 (the 𝑖 and 𝑗 symbols are from the
FFT2 section of Algorithm 3). Note that only 𝑃𝑎 and 𝑃𝑏 contribute to the SCD matrix, represented
by the light and dark colors of the same color. For each color in Fig. 10, different rows of 𝑋𝑇 are
represented, and for same color from left to right 𝑗 increases from 1 to 𝑁𝑐 representing the rows
of the conjugate matrix, which are arranged in the SCD matrix in the staggered order shown in
Fig. 10. Moreover, in Fig. 10, the shaded area is the quarter SCD, and it is obtained by changing
𝑖 ∈ [0 : 1 : 𝑁𝑐 − 1] to 𝑖 ∈ [0 : 1 : 𝑁𝑐/2 − 1] and 𝑗 ∈ [0 : 1 : 𝑁𝑐 − 1] to 𝑗 ∈ [𝑖 : 1 : 𝑁𝑐/2 − 1 − 𝑖] in
Algorithm 3.

4.5 Cycle Count Summary
After applying the optimizations described above, the pipelining scheme for the DEMODULATE
and FFT2 blocks is illustrated in Fig 11. Since FFT2 stage is the computational bottleneck, we
design the II of FFT2 to meet throughput requirements and then ensure the II of DEMODULATE
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Value    responds
to the entire SCD

matrix

Fig. 10. An example of an SCD matrix (symbol i and j are from Algorithm 3 FFT2).

(𝐼 𝐼𝐷𝐸𝑀𝑂𝐷𝑈𝐿𝐴𝑇𝐸 ) is less than or equal to 𝐼 𝐼𝐹𝐹𝑇 2. We apply a DATAFLOW pragma so that the II of each
block is equal to the maximum II over the sub-blocks multiplied by the number of iterations. For the
parameters in Table 2, the 𝐼 𝐼𝐹𝐹𝑇 2 of the full and quarter SCD matrix computations are 32,768 and
8,192 respectively. From synthesis reports, the II of save_in, preprocess and save_out are 1, 875 and
4. Therefore, the IIs of the sub-blocks of DEMODULATE are 𝐼 𝐼𝑠𝑎𝑣𝑒_𝑖𝑛 = 𝑁𝑐 ∗𝑃 = 8, 192, 𝐼 𝐼𝑃𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 =
𝑚𝑎𝑥{𝐼 𝐼𝑊 , 𝐼 𝐼𝐼𝑃 , 𝐼 𝐼𝐷𝐶 } ∗𝑃/𝐷𝑆𝑇𝑅𝐼𝐷𝐸 = 874∗32/𝐷𝑆𝑇𝑅𝐼𝐷𝐸 = 27, 968/𝐷𝑆𝑇𝑅𝐼𝐷𝐸, 𝐼 𝐼𝑠𝑎𝑣𝑒_𝑜𝑢𝑡 = 𝑁𝑐 ∗𝑃 =

8, 192. Thus to match 𝐼 𝐼𝐹𝐹𝑇 2, DSTRIDE should be set to 1 and 4 for computing the full and quarter
SCD matrix.

5 RESULTS
We created the IP blocks for FAM_M1 and FAM_M2 separately using the Vivado HLS 2020.1 High-
level synthesis tool. Then Vivado 2020.1 was used to generate bitstreams which were tested on
a Xilinx ZCU111 RFSoC board which uses a Zynq UltraScale+ XCZU28DR-2FFVG1517E device.
We verified the accuracy between the computational expressions of the two methods FAM_M1
and FAM_M2 and the actual operation, and compared a range of information regarding SQNR
and resource and energy consumption. Although the ZCU111 is larger than needed for just the
IP blocks, it was chosen so we could accommodate designs with larger wordlengths and more
parallelism. Moreover, future work will integrate the FAM core with high-speed ADCs and deep
learning. Our implementation is parameterized, and we report on a design with FAM parameters
matching the literature [2, 14] which were summarized in Table 2. Our choice of parallelization
parameters are 𝐹𝑆𝑇𝑅𝐼𝐷𝐸 = 2 and 𝐷𝑆𝑇𝑅𝐼𝐷𝐸 = 1 (Full SCD) or 𝐷𝑆𝑇𝑅𝐼𝐷𝐸 = 4 (Quarter SCD).
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DEMODULATE FFT2
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Windowing FFT IP Core Down
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* For full SCD and quarter SCD, SIZE is 1 and
4 respectively
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Fig. 11. A cycle-aware system flowchart with pipeline stage details.

5.1 SQNR
Bit-accurate simulations were made through a direct implementation of the FAM_M1 and FAM_M2
algorithms in C. The ap_fixed type in Vivado HLS was used for fixed point arithmetic. The simu-
lations were compared with our mathematical derivations using sine-waves, square-waves and
samples from the DeepSig RADIOML 2018.01A dataset [10]. On FPGA devices, wordlengths up to
18-bits are supported by the embedded DSP blocks, and additional bits can be implemented using
the programmable logic so experiments were focused around this and higher values.
Fig. 12 shows the SQNR for different uniform wordlengths for Deepsig, Sine Wave and Square

Wave signals using the different methods mentioned in Section 3. The FAM_M2 techniques have
considerably improved SQNR compared with FAM_M1. For each signal and method, it can be
seen in Fig 12 that there is a 6 dB improvement in the SQNR with each additional bit because
2−2(𝐹−1) = 4 × 2−2𝐹 . The traces in Fig. 12 are input-signal dependent because Eq. (28) and Eq. (31)
depend on the input power. Note that for different input signals, the normalization involves different
scale factors, which affects a direct comparison with FAM_M2.

5.1.1 SQNR vs Number of Bits. One of the benefits of the proposed approach is that it enables us
to easily determine the best bit allocation to achieve the highest SQNR. Noting that Eq. (27) and
Eq. (30) are simple sums of products and the SQNR is given by Eq. (29), the proposed approach to
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Fig. 12. SQNR performance for the FAM Method in our models FAM_M1 and FAM_M2 (theory) at different
wordlengths 𝐵 (𝐹 = 𝐵 − 1) (Red: Sine Wave; Blue: Square Wave; Green: Deepsig;)

minimizing this expression results in each block providing an equal contribution to 𝜎2. Given the
𝑊# values, and assigning 𝐹 bits to the FFT2 stage, we make each sum term in Eq. 27 and Eq. 30
equal via the allocation in Table 3.

Table 3. Reduce wordlength with less impact on SQNR

Methods Window FFT1 CM FFT2

DeepSig FAM_M1 𝐹 − 13 𝐹 − 8 𝐹 − 3 𝐹

FAM_M2 𝐹 − 1 𝐹 − 1 𝐹 𝐹

SineWave
SquareWave

FAM_M1 𝐹 − 11 𝐹 − 6 𝐹 − 2 𝐹

FAM_M2 𝐹 − 6 𝐹 − 4 𝐹 − 1 𝐹

Table 4. Bit allocation for best SQNR using exhaustive search (𝐹𝑠𝑢𝑚 = 72 Signal: DeepSig) vs Uniform

Methods Uniform Window FFT1 CM FFT2 SQNR

FAM_M1 No 11 (24-13) 16 (24-8) 21 (24-3) 24 46.04
Yes 18 18 18 18 15.87

FAM_M2 No 17 (19-2) 17 (19-2) 19 19 84.29
Yes 18 18 18 18 82.85

Table 4 illustrates the potential benefits of using a non-uniform wordlength throughout the
computation. This example is run on the Deepsig input, with the optimal bitwidth allocation
computed by an exhaustive search over all of the possible bit allocations, for a fixed number of total
bits 𝐹𝑠𝑢𝑚 = 72. We can see that by using a non-uniform number of bits, it enables one to achieve a
higher SQNR. Note that exhaustive search results have reached similar bitwidth configurations to
our formulas from Table 3; the minor difference being that the formula for FAM_M2 is not designed
for a maximum of 𝐹𝑠𝑢𝑚 = 72 total bits.
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(a) The comparison of theory and Vivado simulation (b) Absolute error between theory and simulation

Fig. 13. Simulation result in average bits FAM_M2 (Red: Sine Wave; Blue: Square Wave; Green: Deepsig;)

(a) Different wordlength (b) Different SQNR

Fig. 14. FAM methods for DSP utilization at different conditions

5.2 Vivado HLS Simulation
Bit accurate simulations using Vivado_HLS were used to verify the theoretical results of Section 3.4.
The designs are described in C, compiled and executed to obtain a bit-exact result. Since the theory
directly calculates SQNR from the SCD parameters, it is orders of magnitude faster than simulation
using HLS.

Fig. 13a shows the average SQNRwith non-uniform accuracy for FAM_M2 for theoretical andHLS
simulations with different input signals, where the average number of bits = (𝐵𝑊 +𝐵1+𝐵𝐶𝑀 +𝐵2)/4
(𝐵# ∈ [14, 26] in steps of 4). Fig. 13b shows the difference between the theoretical and Vivado
simulations in Fig. 13a. The result shows our models described in Section 3.3 and Section 3.5 can
serve as an accurate estimate of the lower bound for SQNR. We further verified the models with
other parameter settings (𝑁𝑐 , 𝐿 and 𝑁𝑓 ), and found similar correspondence between simulation
and theory.

Given that the bit-accurate simulations match the theoretical results, we could use the methodol-
ogy described in Section 5.1 to search for non-uniform bits allocation to optimise performance for
a given resource budget.
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Fig. 15. Verification flow

The Vivado_HLS synthesis reports the LUTs and DSPs utilization for each design. The DSP48E2
slice contains a 27-bit by 18-bit two’s complement multiplier. In Fig 14a, the DSPs utilization of
FAM_M1 doubles when the wordlength is increased from 19 to 20 bits. This is because in our
number system, 1 integer bit is used for the sign and the remaining 18 bits are used as fraction bits.
For FAM_M2, as we assume that there are enough integer bits for the FFT sections and conjugate
multiplication, the DSP utilization increases as the number of bits increases. In Fig 14a, at the same
wordlength, FAM_M2 requires more DSPs than the FAM_M1. Hence in Fig 14b, we can see that at
the same SQNR, FAM_M2 consumes fewer DSPs. Furthermore, based on our area model, we can
look for a non-uniform allocation to balance DSP usage with the SQNR.

5.3 FPGA Implementation
We evaluate the performance of our design by comparing it with the state-of-the-art hybrid FPGA-
GPU implementation [2] and the state-of-the-art GPU implementation [14], both of which perform
alpha-profile calculations in terms of resource utilization, throughput, and power consumption.
The alpha profile ( Fig. 1c) is a one dimensional output but our sparse SCD (Fig. 1d), includes the
frequency axis and, as explained in Section 4.3, provides richer information.
The verification process is shown in Fig. 15. Based on the parameter settings in the previous

section, we first apply the baseline implementation of FAM method, then derive the FAM_M1 and
FAM_M2 methods with the implementation optimization mentioned in Section 4.2 and Section 4.3
in Vivado HLS. Then we check the SQNR of the full DEMODULATE+FFT2 using a bit-accurate
C simulation. We then generate a IP block for each of the two FAM methods with sparse SCD.
Bitstreams are then generated in Vivado, tested via a Jupyter notebook which controls the execution
of our FAM accelerators on the FPGA board. The output of the Jupyter notebook is compared with
a floating point. We choose 16 and 24 bits as the wordlength for our design to trigger doubling of
the number of DSPs required for implementation (see Fig. 14a). In terms of implementation, the
data transfer between IP blocks will use AXI, which supports wordlengths in 16-bit multiples.
Table 5 gives a comparison of FPGA resource usage and operating frequency between a FPGA-

GPU hybrid design [2], a recent FPGA Verilog design by Li et al. [13], the baseline implementation,
and our optimized implementation. It can be seen that the hybrid FPGA-GPU design uses very few
FPGA resources, since the FPGA is responsible for only a small part of the overall algorithm and it
runs at a much lower clock frequency. While Li et al. [13] achieved a high clock frequency, it has
higher resource utilization for the same wordlength. Even though our baseline implementation
achieves a maximum clock frequency of 330 MHz, its II is 29 M cycles, so it takes 87.88 ms to
process a window. In contrast, our optimized design achieves only a clock frequency of 200 MHz,
but it takes only 33k clock cycles and has an execution time of 0.165 ms per window.
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Fig. 16. Speedup breakdown for full-size SCD compared to baseline implementation in cycles. The total
speedup is the product of all these optimizations.

Table 5. Comparison of FPGA resource usage and operating frequency

wordlength LUTs FFs BRAMs DSPs Power (W) SQNR (dB) Fmax

Full SCD Hybrid FPGA-GPU design [2] - 69 ( 0.1%) 153 ( 0.1%) 4 ( 2.9%) 0 (0%) - - 140MHz
Avaliable on ZedBoard - 53,200 106,400 140 220 - - -

Full SCD
Baseline implementation 16 bit 38,345 (9.0%) 46,557 (5.5%) 23 (2.1%) 226 (5.3%) 2.912 71.05(70.88) 330MHz
Optimized FAM_M1 16 bit 72,140 (17.0%) 63,699 (7.5%) 161 (14.9%) 736 (17.2%) 6.002 5.41(3.83)1 200MHz
Optimized FAM_M2 16 bit 85,050 (20.0%) 74,722 (8.8%) 162 (15.0%) 934 (21.9%) 6.102 71.05(70.88)1 200MHz

Quarter SCD
Li et al. [13] 16 bit 150,802 (35.5%) 150,824 (17.7%) 264 (24.4%) 1,054 (24.7%) 12.52 - 530MHz
Optimized FAM_M2 16 bit 97,603 (23.0%) 89,477 (10.5%) 177 (16.4%) 1,048 (24.5%) 7.732 71.05(70.88)1 200MHz
Resources on ZCU111 - 425,280 850,560 1,080 4,272 - - -

1 The theory values are in parentheses
2 Total on-chip power estimated by Vivado

The optimization steps described in Section 4 include pipelining, parallelism, I/O and symmetry.
Fig. 16 shows a bar chart with the performance gain achieved by each optimization. Since the
computational bottleneck is FFT2, we set FSTRIDE to 2, doubling its performance. Pipelining
minimizes the II and achieves a speedup of 14. The I/O optimization parallelises this stage with a
speedup of 32 (value of P). Therefore the total speedup for the Full size SCD is the product of all of
these factors, 2× 14× 32 = 896. Finally, symmetry as shown in Fig. 16 allows us to avoid computing
the full SCD, reducing computing for the Quarter SCD by a factor of 4, and improving the speedup
to 3,584.
The FAM_M2 is also compared with FAM_M1. In Table 5, FAM_M2 achieves a higher SQNR

for the same wordlength, but requires more resources. Thus, in the Fig. 17 the implementation
resource utilization is plotted from 14 bits to 26 bits, showing that even at 24 bits FAM_M1 utilises
more resource than FAM_M2 at 16 bis but still has a lower SQNR (53.32 dB in Fig 12), this indicates
that the improvement in SQNR for FAM_M2 outweighs the additional resources. We also explored
16 bit, half precision floating point which uses 5 exponent bits and 10 fractional bits. This achieved
an SQNR of 60 dB with 4× higher DSP utilization than the optimized 16 bit FAM_M2.

Referring to the FFT2 block in Fig. 5, we denote the number of real-valued multiply-accumulate
(MAC) operations required per window for the conjugate multiplication, norm2, FFT2 and norm3
blocks as 𝑂𝐶𝑀 , 𝑂𝑛2, 𝑂𝐹𝐹𝑇 2 and 𝑂𝑛3 respectively. Since these components account for the majority
of FAM operations, we estimate the total number of MACs (𝑁𝑀𝐴𝐶 ) as (Article 6 of reference [7]):

𝑁𝑀𝐴𝐶 ≈ 𝑂𝐶𝑀 +𝑂𝑛2 +𝑂𝐹𝐹𝑇 2 +𝑂𝑛3 (34)
≈ 4𝑁 2

𝑐 𝑁𝑓 + 2𝑁 2
𝑐 𝑁𝑓 + 2𝑁 2

𝑐 𝑁𝑓 log2 𝑁𝑓 + 2𝑁 2
𝑐 𝑁𝑓 . (35)
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(a) FAM_M1 utilization rate (b) FAM_M2 utilization rate

Fig. 17. Comparison of FPGA resource utilization between FAM_M1 and FAM_M2 (wordlengths from 14 bits
to 26 bits)

Table 6. Comparison of throughput and power consumption for the same configuration of FAM.

Full SCD1 Full SCD2 Quarter SCD1 Quarter SCD2

GPU [2] GPU [2] FPGA+GPU [2] Optimized GPU [14] FPGA [13] Optimized

Platform Tegra K1 Tesla K20 ZedBoard+Tegra K1 ZCU111 Tesla K40 ZCU111 ZCU111
Initiation Interval (ms) 111.61 8.98 50.95 0.164 0.303 0.065 0.041
Throughput (MS/s) 0.018 0.228 0.040 12.5 6.8 31.5 50
Speedup 1 12.3 2.1 677.6 366.7 1,704.4 2,710
Computational Performance (GOPS) 0.14 1.75 0.30 460 13.0 60.4 460
Power (W) 3.5 51 5 35(6.10)5 55.53 12.54 37(7.65)5
Energy Efficiency (MOPS/W) 40 34 60 13,143 234 4,832 12,432
Signal-to-quantization noise ratio (dB) - - - 736 - - 736

1 Output is the alpha profile.
2 Output is the sparse SCD.
3 Power consumption is estimated by scaling to the result of [2].
4 Power consumption is calculated from Vivado [13].
5 The system power of entire ZCU111 board (power reported by Vivado report_power).
6 An example of FAM_M2 using 16 bits. The system supports quantization error analysis for custom wordlengths.

Counting a MAC as 2 operations, number of cycles, 𝑁𝑐𝑦𝑐𝑙𝑒𝑠 = 𝑁 2
𝑐 , and clock frequency 𝑓𝑐𝑙𝑘 =

200𝑀𝐻𝑧, we estimate the numerical performance in billion operations per second to be

𝐺𝑂𝑃𝑆 =
2𝑁𝑀𝐴𝐶 × 𝑓𝑐𝑙𝑘

𝑁𝑐𝑦𝑐𝑙𝑒𝑠

(36)

≈ 460. (37)

When computing one quarter of the SCD, the 𝐺𝑂𝑃𝑆 do not change as 𝑁𝑐𝑦𝑐𝑙𝑒𝑠 and 𝑁𝑀𝐴𝐶 are both
reduced by the same amount. Furthermore, the designs in references [2, 13, 14] referenced in Table 6
calculate the alpha profile by first computing a full-sized or quarter SCD matrix.

We also measured the CPU performance of our FAM_M2 design using single precision floating
point arithmetic. The GNU gcc compiler was used with “-Wall –std=c++14 -O3” parameters which
gave best performance. On an Intel Core i7-9700 operating at 3.00GHz with 8 cores; Memory: 32 GB;
and System: Ubuntu 18.04.5 LTS, a profile confirmed that 93% of the time was spent in FFT2 (15 ms).

Power consumption was measured using an Ecoflow River Pro inverter. In Table 6 we report the
system power (power consumption measured at the AC power supply for the ZCU111 transformer)
and total FPGA power (dynamic + static) as reported by the Vivado report_power command in
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Fig. 18. Measuring the power consumption of the ZCU111 via AC power supply.

Table 7. Performance of two FAM methods running on FPGAs in 16 bits for different size of SCD matrices

Size of SCD SCD Function Time (ms) Interface Delay (ms) Execution Time (ms) SQNR (dB) Accuracy1

FAM_M2 Full 0.164 0.161 0.266 73.41 2−13.7
Quarter 0.041 0.055 0.088 73.66 2−14

1 The max error compared with floating point.

Fig. 19. Interface Delay.

parentheses. Fig. 18 shows the EcoFlow AC power supply powering the ZCU111. It is unclear to the
authors whether the power consumption figures in reference [2] refer to system power or dynamic
power, and power consumption is not reported in [14].
Li et al. [13] extrapolated Nvidia K40 performance (2,880 CUDA cores, 745 MHz clock) to a

more recent RTX 3080 Ti GPU (8,960 CUDA cores, 1,365 MHz clock) and estimated a potential
performance improvement of 5.5x [13]. Our HLS design can achieve this performance. However,
the RTX 3080 Ti has a maximum power consumption of 350W so we believe our design will be
more energy efficient.

Table 7 lists the execution time measured on the ZCU111 FPGA board. The execution time is the
average time over 100 windows of input data, and larger than the FAM time due to data transfer
overheads. Fig. 19 is a block diagram illustrating the interface delay of the system. To estimate the
SCD function execution time, the threshold and multiplexer blocks were removed, keeping only
the data transfer. In Table 7, it can be seen that the total execution time is close to the sum of SCD
time and data transfer delay. The accuracy of the sparse SCD output is also calculated, and the
maximum error compared to floating-point results for 16 bit data (15 fraction bits) were 2−13.7 and
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2−14 for full-size or quarter-size sparse SCDs. We also verified that the sparse SCD matrix was the
expected value.

6 CONCLUSION
In this paper, we derive explicit expressions to estimate signal to quantization noise, for the
FAM technique in fixed precision (FAM_M1) and mixed precision (FAM_M2). This enables an
understanding of how different blocks contribute to overall SQNR, and area-precision tradeoffs
to be navigated in an analytical manner. Based on the quantization error analysis we note that
FAM_M2 significantly improves SQNR with a minor increase in DSP resources (16-bit wordlength)
and is hence preferable. Our simulations confirm that our analytic result matches the bit-exact
simulation to within 1 dB. We also presented an HLS-based design of the FAM_M1 and FAM_M2
quantization schemes. High performance was achieved by exploiting spatial parallelism, pipelining,
I/O optimization and symmetry. Together, these techniques allowed a design with state-of-the-art
throughput and energy consumption.
In the future, we intend to extend the analysis to block floating point and integrate the IP core

with data acquisition and deep neural networks for prediction.
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A QUANTIZATION ERROR ANALYSIS EXPRESSION FOR SCD FUNCTION
This appendix derives the output noise and signal variance of the FAM method for the Fixed
Precision (FAM_M1) and Mixed Precision (FAM_M2) methods. The definition of the symbols in
the expression are listed in the front (glossary of symbols). The 𝜎2

𝐹𝐴𝑀
is the variance of the output

noise of FAM algorithm and 𝑃𝐹𝐴𝑀 is the variance (power) of the output signal. In this appendix,
the expressions of the output noise variance are simplified to the format of Eq. (27).

A.1 FAM_M1 - Fixed Precision Model
In this section, 𝜎2

𝑊
, 𝜎2

𝐹1
, 𝜎2

𝐶𝑀
and 𝜎2

𝐹2
are the noise variance generated by the quantization in

windowing, first FFT, conjugate multiplication and second FFT section respectively. Similarly, 𝐺𝐹1 ,
𝐺𝐶𝑀 and 𝐺𝐹2 are the gains of each section, used to amplify the noise and signal passed through.
Details of the calculation of those parameters are described in the Section 3.1.1 and Section 3.3.

𝜎2
𝐹𝐴𝑀_𝑀1 = [(𝜎2

𝑊𝐺𝐹1 + 𝜎2
𝐹1
)𝐺𝐶𝑀 + 𝜎2

𝐶𝑀 ]𝐺𝐹2 + 𝜎2
𝐹2

= ((2𝜎2
𝑠.𝐶𝑀 (𝜎2

𝑊

1
𝑁𝑐

+ 𝜎2
𝐹1) + (𝜎2

𝑊

1
𝑁𝑐

+ 𝜎2
𝐹1)2) + 𝜎2

𝑟 )
1
𝑁𝑓

+ 𝜎2
𝐹2

= ( 2𝑃𝑖 .𝑠
𝑁𝑐1.592

( 2
−2𝐹𝑊

6𝑁𝑐

+ 2−2𝐹1
3
(2 − 𝑚1 + 1.5

𝑁𝑐

)) + ( 2
−2𝐹𝑊

6𝑁𝑐

+ 2−2𝐹1
3
(2 − 𝑚1 + 1.5

𝑁𝑐

))2

+ 2−2𝐹𝐶𝑀

3
) 1
𝑁𝑓

+ 2−2𝐹2
3
(2 − 𝑚2 + 1.5

𝑁𝑓

)

≈ 2𝑃𝑖 .𝑠
6𝑁 2

𝑐 𝑁𝑓 1.592
2−2𝐹𝑊 + 2𝑃𝑖 .𝑠 (𝐴1)

3𝑁𝑐𝑁𝑓 1.592
2−2𝐹1 + 1

3𝑁𝑓

2−2𝐹𝐶𝑀 + 𝐴2

3
2−2𝐹2

=𝑊𝑊 2−2𝐹𝑊 +𝑊𝐹12
−2𝐹1 +𝑊𝐶𝑀2−2𝐹𝐶𝑀 +𝑊𝐹22

−2𝐹2

(38)

𝑃𝐹𝐴𝑀_𝑀1 = (
𝑃𝑖 .𝑠

𝑁𝑐1.592
)2 1
𝑁𝑓

(39)
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A.2 FAM_M2 - Mixed Precision Model
Expressions for the output noise and signal variance for the FAM method is given below.
𝜎2
𝐹𝐴𝑀_𝑀2 = [((((𝜎2

𝑊𝐺𝐹1 + 𝜎2
𝐹1
)𝐺𝑁𝑜𝑟𝑚1 + 𝜎2

𝑞1 )𝐺𝐶𝑀 + 𝜎2
𝐶𝑀 )𝐺𝑁𝑜𝑟𝑚2 + 𝜎2

𝑞2 )𝐺𝐹2 + 𝜎2
𝐹2
]𝐺𝑁𝑜𝑟𝑚3 + 𝜎2

𝑞3

≈
𝑁 2
𝑐 𝑁𝑓 𝑃𝑖 .𝑠𝑞

4
1𝑞

2
2𝑞

2
3

3 ∗ 1.592 2−2𝐹𝑊 +
2𝑃𝑖 .𝑠𝑁𝑐𝑁𝑓 𝑞

2
1𝑞

2
2𝑞

2
3

3 ∗ 1.592 [𝑞21𝐵1 + 0.5]2−2𝐹1

+
𝑁𝑓 𝑞

2
3 (𝑞22 + 0.5)

3
2−2𝐹𝐶𝑀 +

𝑞23𝐵2 + 0.5
3

2−2𝐹2

=𝑊𝑊 2−2𝐹𝑊 +𝑊𝐹12
−2𝐹1 +𝑊𝐶𝑀2−2𝐹𝐶𝑀 +𝑊𝐹22

−2𝐹2

(40)

𝑃𝐹𝐴𝑀_𝑀2 = (
𝑃𝑖 .𝑠𝑁𝑐

1.592
𝑞21)2𝑞22𝑞23𝑁𝑓 (41)

ACM Trans. Reconfig. Technol. Syst., Vol. 37, No. 4, Article 111. Publication date: September 2022.


	Abstract
	1 Introduction
	2 Background
	2.1 Spectral Correlation Density Estimation
	2.2 Example of Spectral Correlation Desity, Alpha Profile and Sparse SCD
	2.3 FAM Technique

	3 FAM Error Analysis
	3.1 Quantization Models
	3.2 FAM Signal Flow Diagram
	3.3 SQNR Noise Model for FAM_M1
	3.4 SQNR Noise Model for FAM_M2
	3.5 FAM_M2 - SQNR Calculation

	4 Implementation
	4.1 Baseline Implementation
	4.2 Computation Optimization
	4.3 I/O Optimization
	4.4 Exploiting Symmetry
	4.5 Cycle Count Summary

	5 Results
	5.1 SQNR
	5.2 Vivado HLS Simulation
	5.3 FPGA Implementation

	6 Conclusion
	Acknowledgments
	References
	A Quantization error analysis expression for SCD function
	A.1 FAM_M1 - Fixed Precision Model
	A.2 FAM_M2 - Mixed Precision Model


