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Abstract

An FPGA-based implementation of Lyon and
Mead’s electronic cochlea filter and its application to
a real-time cochleagram display are presented. Com-
pared with analog VLSI implementations, an FPGA
implementation offers shorter design time, improved
dynamic range, higher accuracy and a simpler com-
puter interface. The FPGA cochlea filter is generated
by a tool which takes filter coefficients to compile an
application-optimized design with arbitrary precision.
In the process of compilation, the tool can use simula-
tion test vectors in order to determine the appropriate
scaling for each filter. The resulting model can be used
as an accelerator for cochlea model research or as the
front end for embedded auditory signal processing sys-
tems.

1 Introduction

It is clear that biological-based systems perform
feats of signal processing that we cannot approach us-
ing even the most sophisticated computers and digi-
tal signal processing techniques. Generally, biological-
based auditory systems operate with greater func-
tionality, lower power consumption and increased ro-
bustness than their man-made electrical counterparts.
This is particularly true in tasks such as speech recog-
nition where humans are able to process signals far
better than the most sophisticated computer-based
systems. We can learn a lot from the elegant designs
of nature.

The field of neuromorphic engineering has the long
term objective of taking architectures from our under-
standing of biological systems to develop novel signal
processing systems. This field of research, pioneered
by Carver Mead [1] has concentrated on using ana-
log VLSI to model biological systems. Research in
this field has led to many biologically inspired signal
processing systems which have improved performance
compared to traditional systems.

The human cochlea is a transducer which converts
mechanical vibrations from the middle ear into neural
electrical discharges, and additionally provides spatial
separation of frequency information in a manner sim-
ilar to that of a spectrum analyzer [2]. It serves as
the front end signal processing for all functions of the
auditory nervous system such as auditory localization,
pitch detection and speech recognition.

Although it is possible to simulate cochlea mod-
els in software, hardware implementations may have
orders of magnitude of improvement in performance.
Hardware implementations are also attractive when
the target applications are on embedded devices in
which power-efficiency and small-footprint are design
considerations.

The electronic cochlea, first proposed by Lyon and
Mead [2] is a cascade of biquadratic filter sections (as
shown in Figure 1) which mimics the qualitative be-
havior of the human cochlea. Electronic cochleas have
been successfully used in many auditory signal pro-
cessing systems such as spatial localization [3], pitch
detection [4], a computer peripheral [5], amplitude
modulation detection [6], correlation [7] and speech
recognition [8].

There have been several implementations of elec-
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Figure 1: Cascaded ITR biquadratic section used in
the Lyon and Meads cochlea model.

tronic cochleas in VLSI technology. The original im-
plementation by Lyon and Mead was published in
1988 and used continuous time subthreshold transcon-
ductance circuits to implement a cascade of 480
stages [2, 9]. In 1992, Watts et. al. reported a 50-
stage version with improved dynamic range, stability,
matching and compactness [10]. A problem with ana-
log implementations is that transistor matching issues
affect the stability, accuracy and size of the filters.
This issue was addressed by van Schaik et. al. in 1997
using compatible lateral bipolar transistors instead of
MOSFETS in parts of the circuit [11]. Their 104-stage
test chip showed greatly improved characteristics. In
addition, a switched capacitor cochlea filter was pro-
posed by Bor et. al. in 1996 [12].

There have also been several previously reported
digital VLSI cochlea implementations. In 1992, Sum-
merfield and Lyon reported an application-specific in-
tegrated circuit (ASIC) implementation which em-
ployed bit-serial second-order filters [13]. In 1997,
Lim et. al. reported a VHDL-based pitch detec-
tion system which used first-order Butterworth band-
pass filters for cochlea filtering [14]. Later in 1998,
Brucke et. al. designed a VLSI implementation of
a speech preprocessor which used gammatone filter
banks to mimic the cochlea [15]. The implementa-
tion by Brucke et. al. used fixed-point arithmetic and
they also explored tradeoffs between wordlength and
precision.

Recently, field programmable gate array (FPGA)
technology has improved in density to the point where
it is possible to develop neuromorphic systems on a
single FPGA. It is our thesis that many interesting
neuromorphic signal processing systems can be imple-
mented using FPGA technology, enjoying the follow-
ing advantages over analog VLSI

e shorter design time

o faster fabrication time

e more robust to power supply, temperature and
transistor mismatch variations

e wider dynamic range and higher signal to noise
ratios

e better stability
e the chips can be reused for different application
e simpler computer interface.

In this paper, we present an FPGA implementation
of an electronic cochlea which can serve as an acceler-
ator in its own right, or as a front end preprocessing
stage for embedded auditory applications. A module
generator which can generate synthesizable VHDL de-
scriptions of arbitrary wordlength fixed-point cochlea
filters was developed. The module generator can also
be used together with our fp simulation tool [16, 17]
to determine the minimum and maximum ranges of
all variables. This range information is then used to
determine the number of fractional bits used in the
variable’s two’s complement fraction representation.
Finally, as a sample application, a real-time cochlea-
gram display is presented.

The rest of the paper is organized as follows. In Sec-
tion 2 Lyon and Mead’s cochlea model is described.
Section 3 describes the implementation of the filter
stages using distributed arithmetic (DA). Our design
methodology is presented in Section 4 followed by re-
sults in Section 5. Conclusions are drawn in Section 6.

2 Lyon and Mead’s Cochlea Model

Lyon and Mead proposed the first electronic cochlea
in 1988 [2, 18]. This model captured the qualitative
behavior of the human cochlea using a simple cascade
of second order filter stages which they implemented
in analog VLSI. In this section a very superficial sum-
mary of the Lyon and Mead cochlea model is given.
More detailed descriptions of the cochlea can be found
in [2] and [19].

The human cochlea, or inner ear, is three dimen-
sional fluid-dynamic system which converts mechani-
cal vibrations from the middle ear into neural electri-
cal discharges [2]. Tt is composed of the basilar mem-
brane, inner hair cells and outer hair cells. The cochlea
connects to higher levels in the auditory pathway for
further processing.

The basilar membrane is a longitudinal membrane
within the cochlea. The oval window is the input to
the cochlea. Vibrations of the eardrum are coupled
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Figure 2: Tllustration of a sine wave travelling through
a simplified box model of an uncoiled cochlea (adapted

from [2]).

via bones in the middle ear to the oval window caus-
ing a traveling wave from base to apex along the basi-
lar membrane. The basilar membrane has a filtering
action and can be thought of as a cascade of lowpass
filter with exponentially decreasing cutoff frequency
from base to apex.

The result of the filtering of the basilar membrane
at any point along its length is a bandpass filtered
version of the input signal, with center frequency de-
creasing along its length. Different distances along the
basilar membrane are tuned to specific frequencies in a
manner similar to that of a spectrum analyzer. A sim-
plified box model showing a sinusoidal wave traveling
along an uncoiled cochlea is shown in Figure 2.

Several thousand inner hair cells are distributed
along the basilar membrane and convert the displace-
ment of the basilar membrane to a neural signal. The
hair cells also perform a half-wave rectifying function
since only displacements in one direction will cause
neurons to fire.

The outer hair cells perform automatic gain control
by changing the damping of the basilar membrane.
It is interesting to note that there are approximately
three times more outer hair cells than inner hair cells.

In order to simulate the properties of the basilar
membrane, Lyon and Mead’s cochlea model used a
cascade of scaled second-order low-pass filters with the
transfer function

1
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where ) represents the damping characteristic (or
quality) of the filter and 7 the time constant. In the
cochlea filter, the 7 of each filter is varied exponen-

tially along the cascade, causing filters to have expo-
nentially decreasing cutoff frequencies. The @ of all
the filters is held constant. The outputs of each filter
corresponds to the displacement of different positions
along the basilar membrane.

3 IIR Filters Using DA
3.1 Distributed Arithmetic

Distributed arithmetic (DA) offers an efficient
method to implement a sum of products (SOP) pro-
vided that one of the variables does not change during
execution. Instead of requiring a multiplier, DA uti-
lizes a precomputed look-up table [20, 21].

Consider the SOP, S of N terms

N-1
=0

where k; is the (fixed) weighting factor and z; is the
input. For two’s complement fractions, the numerical
value of z; = {Zio®i1 .. . Ti(n-1)} is

n—1
r; = —x;0 + Z Zip X 270, (3)

b=1
Substituting Equation 3 into Equation 2 yields

S=- (xoo X k0—|—1‘10 X k1—|—...—|—£L‘(N_1)0 X kN—l)

x 20

+ (xo1 X ko + 211 X k14 ...+ x(v_1)1 X kn-1)
x 271

+ (zo2 X ko + 212 X k1 + . TNy X kn_1)
x 272

+ (Tom-1) X ko + Z1(n_)y x B1 4+ ...+
T(N—1)(n—1) X kn_1) x 27771 (4)

The organization of the input variables are in a bit-
serial, least significant bit (LSB) first format. Since
z; €{0,1} (¢=0,1,..., N=1,7=0,1,...,n—1),
each term within the brackets of Equation 4 is the
sum of weighting factors kg, k1,... ,kny—1. On every
clock cycle, one of the bracketed terms of S can thus be
computed by applying g, 1, ...,z Ny—1 as the address
inputs of a 2(N=1) entry read-only memory (ROM).
The contents of the ROM are precomputed from the
constant k;’s and are shown in Table 1. The output



by_1...bob1bg  Address Contents
0...000 0 0
0...001 1 ko
0...010 2 kq
0...011 3 ko + k1
0...100 4 ko
0...101 5 ko + ko
0...110 6 ko + kq
0...111 7 ko + k1 + ko
1...111 9N-1 ko+ki+...+kn_q

Table 1: Contents of a DA ROM. For each address,
the terms k; for which b; = 1 are summed.

of the ROM is multiplied by a power of two (a shift
operation) and then accumulated. After n cycles, the
accumulator contains the value of S.

3.2 Digital ITIR Filters

Equation 1 can be converted from the s-domain to
the z-domain via a bilinear transform. The resulting
transfer function has the form

. b0+b12_1 +b22_2
T 14 arz7t+agz?

H(z)

The corresponding time domain IIR filter can be im-
plemented by the function

y(n) = boz(n)+biz(n—1)+ bax(n—2)
+aoy(n — 1) + a1y(n — 2)

where z(n — k) is the k’th previous input, y(n — k) is
the k’th previous output and y(n) is the output. The
operation is essentially the SOP of five terms, and can
be directly map to a biquadratic section as shown in 3.

Figure 4 illustrates our actual implementation using
distributed arithmetic (described in Section 3.1) on
an Xilinx Virtex FPGA. The previous values z(n— 1),
z(n—2), and y(n—2) are implemented using shift regis-
ters with the number of stages equal to the wordlength
of the variables used. The shift registers are imple-
mented by cascades of Virtex SRL16E primitives for
minimum area. The DA ROM takes z(n), z(n — 1),
z(n — 2), y(n — 1) and y(n — 2) as inputs to gener-
ate partial sums (bracketed terms in Equation 4). As
there are 5 inputs, the required number of entries in
the ROM is 2° = 32, leading to an efficient implemen-
tation using Xilinx ROM32X1 primitives. The scaling

Figure 3: The architecture of an ITR biquadratic sec-
tion.
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Figure 4: Implementation of an ITR biquadratic sec-
tion on an Xilinx Virtex FPGA.

accumulator shifts and adds the output from the ROM
(unscaled partial sum in bit-parallel organization) at
every cycle to produce y(n). In the last cycle of scal-
ing and accumulation, the parallel to serial converter
latches the value at the scaling accumulator. Since
the scaling accumulator has a latency equal to the
wordlength of the variables, the value latched by the
converter is y(n — 1).

4 Design Methodology

Given the filter coefficients, the designer selects ap-
propriate values of filter wordlength, and the number
of bits (width) of the DA ROM’s output. Note that all
filter sections have the same wordlength although the
allocation of integer and fractional parts used within
each filter section can vary.

The cochlea filter model is written in a subset of C
which supports only expressions and assignments. A
compiler uses standard parsing techniques to translate
expressions into directed acyclic graphs (DAG). Each
node in the DAG carries out an operation on a set of
operands (edges incident to the node) and produces
a set of results (edges incident from the node). Each
operator is mapped to a module which is a software



object, consisting of a set of parameters, a simula-
tor and a component generator. The simulator can
perform the operation at a requested precision to de-
termine range information. It can also compare fixed-
point output with a floating-point computation to de-
rive error statistics. For this cochlea model, we defined
a new operator — the ITR biquadratic section. Indeed,
the sole class of operator used in this model is the ITR,
biquadratic section.

The coefficients for the biquadratic filters in our
implementation of Lyon and Mead’s cochlea model
were obtained using Malcom Slaney’s Auditory Tool-
box [22]. This MATLAB toolbox has several differ-
ent cochlea models, test inputs and visualization tools.
The same toolbox was used to verify our designs and
produce cochleagram plots.

As input, the fp cochlea generator takes the
coefficients obtained from Auditory Toolbox, the
wordlength of variables and the width of the DA ROM.
Although inputs and outputs of all filter sections are
of the same wordlength, their fractional wordlength
can be different (two’s complement fractions are used).
The dynamic ranges of inputs and outputs are deter-
mined by fp through simulation of a set of user sup-
plied test vectors. The generator performs simulation
using the test vectors as inputs and the range of each
variable can be determined. From this information the
minimum number of bits needed for the integer part
of each variable is known and since the wordlength is
fixed, the maximum number of bits can be assigned to
the fractional part of the variable.

After deducing the best representation for each
variable, the generator outputs synthesizable VHDL
code that describes an implementation of the corre-
sponding cochlea model. The fractional wordlengths
of the scaling accumulator and the output variable can
be different, so the operator must also include a mech-
anism to convert the former to the latter. Since the
output of the scaling accumulator is bit-parallel while
the output variable is bit-serial, the parallel to serial
converter can perform format scaling by selecting the
appropriate bits to serialize. The resulting VHDL de-
scription can then be used as a core in other designs.

The high level cochlea model description 1s approx-
imately 60 lines of C code. From that it generates
approximately 50000 lines of VHDL code for the case
of a cochlea filter with 88 biquadratic sections.

5 Results

The cochlea implementation was tested on an An-
napolis “Wildstar” Reconfigurable Computing En-

gine [23], a PCI-based reconfigurable computing plat-
form containing three Xilinx Virtex XCV1000-BG560-
6 FPGAs. The cochlea implementations were verified
by comparing Synopsys VHDL Simulator simulations
with the results produced by a floating-point software
model. Synthesis and implementation were performed
using Synopsys FPGA Express 3.5 and Xilinx Foun-
dation 3.3i respectively.

5.1 Tradeoffs among Wordlength, Width
of DA ROM and Precision

A series of cochlea implementations, with
wordlengths from 10 to 32 bits and DA ROM
width from 10 to 24 bits, were generated in order
to present the tradeoffs among wordlengths, widths
of DA ROMs and precisions. The coefficients of
these 1mplementations were obtained from the
Auditory Toolbox using the MATLAB command
DesignLyonFilters(16000, 8, 0.25), which spec-
ifies a 16 kHz sampling rate, ) = 8 and a spacing
which gives 88 biquadratic filters.

In order to present the improvement in precision
with increasing wordlengths and ROM width, the fre-
quency responses of several different fixed-point im-
plementations are plotted in Figure 5. Figure 6 shows
impulse and frequency responses obtained from a soft-
ware floating-point implementation and a hardware
16-bit wordlength and 16-bit ROM width implemen-
tation.

It can be observed that the filter accuracy grad-
ually improves with increasing wordlength or ROM
width. When wordlengths or ROM widths are too
small, there are significant quantization effects that
may result in oscillation (as in the 12-bit wordlength
implementations) or improper frequency responses at
certain frequency intervals (as in the 12-bit DA ROM
implementations). With 24-bit wordlength and 16-
bit ROMs for example, the total quantization error is
-39.46 dB, which is sufficient for most speech appli-
cations. Figure 7 shows the trend of improved quan-
tization error with increasing wordlength and ROM
width.

Area requirements, maximum clock rates and max-
imum sampling rates of these implementations on
an Xilinx Virtex XCV1000-6 FPGA, as reported by
the Xilinx implementation tools, are shown in Ta-
bles 2 and 3. For each implementation, a timing con-
straint, determined by the corresponding wordlength
and ROM width, was supplied to the tools. An Xilinx
XCV1000 FPGA has 12288 slices and the largest cur-
rently available parts, XCV3200E have 32448 slices.
As a bit-serial architecture was employed, the effective
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Figure 6: Tmpulse response of (a) a software floating-
point implementation and (b) the hardware 16-bit
wordlength, 16-bit ROM width implementation. Fre-
quency response of (c) the software floating-point im-
plementation and (d) hardware 16-bit wordlength, 16-
bit ROM width implementation.

Quantization error (dB)

28 Wordlength

Figure 7: Mesh plot showing the quantization errors
of implementations with varying wordlengths and DA
ROM widths.

Wordlength ROM Width

12-bit  16-bit 20-bit 24-bit
12-bit 5770 6582 7440 8340
16-bit 6160 6800 7589 8515
20-bit 6914 7343 7874 8602
24-bit 7620 8048 8578 9106
28-bit 8288 8748 9278 9805
32-bit 9297 9716 10245 10771

Table 2: Area requirements of an 88-section cochlea
implementation of different wordlengths and ROM
width (number of slices).

sampling rate of the implementations are their maxi-
mum clock rates divided by their wordlengths. With
increasing wordlength or ROM width, an increase in
area requirement and a general trend of decreasing
maximum clock rate and sampling rate were observed.

5.2 Application to Speech Processing

A 24-bit wordlength, 16-bit DA ROM implementa-
tion was used to construct a cochleagram display ap-
plication. This implementation was chosen because it
is the smallest implementation that does not oscillate
(refer to Figure 5 and Table 2).

The design of the cochleagram display is shown
in Figure 8. The host PC writes input data into a
dual-port BlockRAM (256 x 32-bit synchronous RAM)

which passes through a parallel to serial converter



Word- ROM Width
length 12-bit 16-bit 20-bit 24-bit

12-bit |70.89, 5.91 68.03, 5.67 64.94, 5.41 63.91, 5.33
16-bit |67.74, 4.23 67.38, 4.21 61.60, 3.85 60.24, 3.77
20-bit [66.87, 3.34 65.60, 3.28 61.02, 3.05 59.79, 2.99
24-bit 66.15, 2.76 65.58, 2.73 60.53, 2.52 57.08, 2.38
28-bit [65.00, 2.32 63.13, 2.25 59.41, 2.12 57.01, 2.04
32-bit [64.96, 2.03 63.63, 1.99 58.00, 1.81 56.55, 1.77

Table 3: Maximum clock rates and corresponding
sampling rates of 88 section cochlea implementations
for different wordlengths and ROM width (maximum
clock rate (MHz), maximum sampling rate (MHz)).

and enters the cochlea core. Each of the outputs of
the cochlea core undergoes serial to parallel conver-
sion followed by half-wave rectification (to model the
functionality of the inner hair cells). The outputs are
accumulated to integrate its value over 256 samples.
The accumulated output is read by the PC and dis-
played to obtain a cochleagram.

The cochleagram display was tested with several
different inputs. Figure 9 shows the cochleagrams pro-
duced from swept-sine wave and the Auditory Tool-
box’s “tapestry” inputs, the former being a 25 second
linear chirp and the latter the speech file of a woman
saying “a huge tapestry hung in her hallway”.

In addition to the cochlea model, the cochleagram
display consists of half-wave rectifiers, accumulators
and interface. Due to limited hardware resources on
a Xilinx XCV1000-6 FPGA, only the first 60 out
of the 88 cochlea sections were used in order to re-
duce area requirements. The resultant cochleagram
display requires 10344 slices and can be clocked at
52.51 MHz, yielding a sampling rate of 2.19 MHz (or
137 times faster than real time performance). Includ-
ing software and interfacing overheads, the measured
throughput on the “Wildstar” platform was 238 kHz.
As a comparison, the auditory toolbox achieves a
64 kHz throughput on a Sun Ultra-5 360 MHz ma-
chine.

It is interesting to compare the FPGA-based
cochleagram system with a similar system developed
in analog VLSI by Lazzaro et. al. in 1994 [5]. Using a
2 pum CMOS process, they integrated a 119 stage sil-
icon cochlea (with a slightly more sophisticated hair
cell model), non-volatile analog storage and a sophis-
ticated event-based communications protocol on a sin-
gle 3.6 x 6.8 mm? chip with a power consumption of
5 mW. The analog VLSI version has improved density
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(a) Swept-sine wave input
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(b) “tapestry” input

Figure 9: Cochleagrams of (a) swept-sine wave and
(b) “tapestry” inputs. The former has 400000 samples
while the latter has 50380 samples.
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Figure 8: System architecture of the cochleagram display.

and power consumption compared with the FPGA ap-
proach. However, the FPGA version is vastly simpler;
easier to modify; has a shorter design time; and is
much more tolerant of supply voltage, temperature
and transistor matching variations. Although qualita-
tive results are not available, it is expected the FPGA
version also has better filter accuracy; can operate at
higher @@ without instability; and has a wider dynamic
range.

We believe that there are many applications of the
FPGA cochlea, some including for audio compres-
sion, speech recognition, audio and speech visualiza-
tion, models of human auditory localization, models
of bat localization etc. Our next application will be to
demonstrate the feasibility of an FPGA based neuro-
morphic isolated wordspotting system which uses the
FPGA cochlea for preprocessing.

6 Conclusion

FPGASs provide a very flexible platform for the de-
velopment of neuromorphic circuits and offer advan-
tages in terms of faster design time, faster fabrication
time, wider dynamic range, better stability and sim-
pler computer interface over analog VLSI implemen-
tations.

A parameterized FPGA implementation of an elec-
tronic cochlea was developed that can be used as a
building block for many systems which model the
human auditory pathway. This electronic cochlea
demonstrates the feasibility of incorporating large
neuromorphic systems on FPGA devices. Neuromor-
phic systems employ parallel distributed processing
which 1s well suited to FPGA implementation, and
may offer significant advantages over conventional ar-
chitectures.
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